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Abstract: We propose a mathematical model based on a set of delay differential equations that
describe intracellular HIV infection. The model includes three different subpopulations of cells
and the HIV virus. The mathematical model is formulated in such a way that takes into account
the time between viral entry into a target cell and the production of new virions. We study the
local stability of the infection-free and endemic equilibrium states. Moreover, by using a suitable
Lyapunov functional and the LaSalle invariant principle, it is proved that if the basic reproduction
ratio is less than unity, the infection-free equilibrium is globally asymptotically stable. In addition, we
designed a non-standard difference scheme that preserves some relevant properties of the continuous
mathematical model.

Keywords: HIV infection; mathematical delay model; eclipse phase; NSFD; numerical simulation

1. Introduction

History has recorded that infectious diseases have caused devastation in the human
population. Despite the great advances in epidemic control, it was believed that infectious
diseases would soon be eradicated, but this has clearly not been the case. Microorgan-
isms adapt and evolve, and consequently, new infectious diseases such as AIDS, Ebola or
COVID-19 appear, which cause many deaths. In addition, the genome of some microor-
ganisms can sometimes change slightly and consequently, they can acquire resistance to
some drugs [1]. According to the World Health Organization, since its first registration
in the 1980s, Human Immunodeficiency Virus (HIV), the causative agent of Acquired Im-
munodeficiency Syndrome (AIDS), has caused more than 35 million deaths worldwide [2].
The greatest impact of deaths caused by AIDS occurs in underdeveloped or very poor
countries, especially in sub-Saharan Africa [2,3].

HIV is an RNA virus that belongs to the retroviridae family, specifically to the
lentivirus subfamily, and acts against the immune system, weakening its defense sys-
tems against infections and certain types of cancer, which is why the infected person
gradually loses its immunodeficiency [4,5]. The HIV replication process is active and
dynamic in the sense that when the virus enters the body, the cells that have the CD4+
receptor are infected, most of them are TCD4+ lymphocytes. After entering the cell, the HIV
virus can remain latent, replicate in a controlled manner, or undergo massive replication
that results in a cytopathic effect for the infected cell. In most lymphocytes the virus is
latent, and the infection gradually decreases the amount of these in both the tissues and
the blood. This leads the patient to a severe state of cellular immunosuppression, and then
a group of microorganisms causes infections. As a consequence, there is a great mortality
of people affected by HIV [6].
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Epidemiologists conduct scientific experiments, sometimes in controlled settings
through self-experimentation, to analyze the spread and possible control strategies of infec-
tious diseases. However, designing such controlled experiments is sometimes impossible
due to ethical concerns and the possible collection of erroneous data [1,7,8]. These reasons
motivate the possibility of using mathematical models as tools to corroborate the perception
of disease transmission, test theories, and suggest better intervention and control strategies.

Recently, there have been a growing literature regarding mathematical models for
virus infection within-host [9–19]. These mathematical models include a variety of char-
acteristics related to the viral dynamics. For instance, some models include discrete time
delays, cell to cell viral transmissions, and the most well-known virus to cell transmis-
sion [10,15,17,19–21]. This article presents a new mathematical model, by means of a set
of differential equations with delay, to determine the effect of how to produce viruses by
target cells inside the dynamics of viruses. In this case, two types of virus-infected cells are
analyzed: the cells in the eclipse phase that are not producing the virus IE, and the cells
that are actively producing the virus I. The cells in the eclipse phase change to the state of
virus production at a m rate, and the mortality rate of each cell type is δIE and δI , respec-
tively. Cells in the eclipse phase may die because they could be recognized as infectious by
mediators of innate immunity or due to the accumulation of DNA intermediates in the cell
cytoplasm, see [22,23].

Numerous mathematical models represented by means of a system of differential
equations, with or without delay, have been discretized by means of the non-standard
finite difference method proposed by Ronald Mickens, see [24–34]. Their use is mainly
because they are very effective in preserving certain qualitative properties of the original
differential equations and the convergence, consistency and stability of their solutions have
been demonstrated, see [35–46].

In this study, we also design a non-standard finite difference (NSFD) scheme that
allows us to obtain numerical solutions of a set of delayed and ordinary differential equations,
which describes the dynamics of HIV infection within-host. First, we apply the techniques
designed by Mickens for the construction of the non-standard finite difference (NSFD)
scheme to our HIV mathematical model. Secondly, we prove some main properties of the
non-standard finite difference (NSFD) scheme, and that agree with qualitative properties
on the HIV mathematical model with discrete time delay. One important property that the
non-standard finite difference (NSFD) scheme has is that it allows us to guarantee accurate
and positive solutions. This is very important when solving inverse problems related to
estimation of parameters [13,47–51]. Finally, we perform some numerical simulations that
show the advantages regarding accuracy and computational cost.

This paper is organized as follows. In Section 2, we present the mathematical model of
HIV within-host with discrete time delay. Section 3 is devoted to the stability mathematical
analysis. In Section 4, we construct the NSFD numerical scheme. We include in this
section the study of some properties of this numerical scheme such as stability analysis.
In Section 5, the numerical simulation results using the constructed NSFD scheme are
shown, and the last section is devoted to the conclusions.

2. Mathematical Model of HIV Within-Host with Discrete Time Delay

We construct the mathematical model using a combination of virus facts, hypotheses,
and previous proposed mathematical models within-host [9,11,14,52–55]. Despite there
has been a growing number of studies related to viral dynamics within-host there are still
some aspects that are not well understood [8,9,18,56–58]. Moreover, mathematical models
include assumptions that make them more tractable to be able to extract useful information
and test different hypotheses [9,55,59,60]. We start noticing that it has been argued that at
least in vitro, most HIV-infected cells die before virus production begins [22,61,62]. Virus-
producing cells produce virions V at a rate of NδI , where N is the average number of
infectious virions released by an infected cell during its lifetime. In general, it is accepted
that most virions produced by infected cells are not infectious [63–65], and since these
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virions are not contributing to the infection of new cells, non-infectious virions are not
considered in this model. On the other hand, V virions that are infectious can be removed
by the immune system from the population of virus-free cells at intrinsic clearance rate
C, or they can infect target cells (CD4+ T) at a β rate, with T the concentration of target
cells, where Λ is the generation rate of uninfected CD4+ T cells and µ0 mortality rate of
uninfected cells. In the constructed mathematical model there are two classes of infected
cells. The first one is the class that includes the cells in the eclipse phase which are not
making the virus, IE. The second class include the cells that are actively producing the
virus, I. Cells in the eclipse phase transition to the class I at a rate, m. These cells die at
rate δIE . The cells in class I then die at rate δI . Cells in the eclipse phase die due to the
immune systems. Notice that the number of targets cells T are not virus-infected and vary
depending on the parameters Λ and the particular death rate for target cells µ0.

Based on the previous assumptions, we propose a model that describes the intracellular
dynamics of HIV and is given by the following system of ordinary differential equations,

dIE(t)
dt

= βT(t)V(t)− (m + δIE)IE(t)

dI(t)
dt

= mIE(t)− δI I(t) (1)

dV(t)
dt

= NδI I(t)− CV(t)− βT(t)V(t)

dT(t)
dt

= Λ− βT(t)V(t)− µ0T(t).

Notice, that the transmission term βT(t)V(t) also appears in the equation for virions
because of the assumption that it takes only one virion to infect a target cell [52,66]. The pos-
sibility of multiple infected cells is excluded [66]. It also should be noted that during the
eclipse phase (the time from viral entry to the active production of viral particles) the
infected cells are not producing virions [8,9,16,67,68]. This delay affects the maximum viral
load time and the probability that a viral infection will be established [9,68–70], and there-
fore should be explicitly modeled [9,68]. For this case, let ∆ > 0 be the duration of the
eclipse phase and iE(t, τ) the density of cells at a time t that were infected τ units of time
before of t, i.e., are infected cells of age τ. Then iE(t, ∆) represents the proportion of cells in
the eclipse phase that go into the state of virus production, whereby

dI(t)
dt

= iE(t, ∆)− δI I(t). (2)

Since the mortality rate of eclipse cells δIE is constant, it is appropriate to assume
that iE(t, τ) satisfies the equation of McKendrick-Von Foerster age-structured population
dynamics model, see [71] that is

∂iE(t, τ)

∂t
+

∂iE(t, τ)

∂τ
= −δIE iE(t, τ), (3)

subject to the boundary condition iE(t, 0) = βT(t)V(t). Thus, the solution of the Equation (3)
is given by iE(t, τ) = βT(t− τ)V(t− τ)e−δIE τ . Therefore, Equation (2) is given by

dI(t)
dt

= βT(t− ∆)V(t− ∆)e−δIE ∆ − δI I(t). (4)

The total number of cells in the eclipse phase is given by IE(t) =
∫ ∆

0 iE(t, τ)dτ, and by
integrating both sides of Equation (3) on the interval [0, ∆] we have

dIE(t)
dt

= βT(t)V(t)− βT(t− ∆)V(t− ∆)e−δIE ∆ − δIE IE(t). (5)
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Thus the mathematical model given in (1) takes the form

dIE(t)
dt

= βT(t)V(t)− βT(t− ∆)V(t− ∆)e−δIE ∆ − δIE IE(t)

dI(t)
dt

= βT(t− ∆)V(t− ∆)e−δIE ∆ − δI I(t) (6)

dV(t)
dt

= NδI I(t)− CV(t)− βT(t)V(t)

dT(t)
dt

= Λ− βT(t)V(t)− µ0T(t),

where ∆ is the duration of the eclipse phase, e−δIE ∆ represents the probability that an infected
cell will survive a time ∆ after viral entry. Notice that ∆ is a fixed time delay, and then we
have a differential equation with a discrete time delay. For a better understanding of the
mathematical model, we can analyze it from the following flow chart shown in Figure 1 [54]:

Figure 1. Flow chart of model (6).

In addition, the system (6) satisfies the initial conditions given by

T(s) = ξ1(s), V(s) = ξ2(s), s ∈ [−∆, 0], (7)

with ξ1(s), ξ2(s) positive continuous functions defined from the interval [−∆, 0] to R2
+,

and equipped with the norm ‖ξ1,2‖ = sup
−∆≤s≤0

|ξ1,2|.

3. Properties of the Solutions of the Mathematical Model

Using the fundamental theory of functional differential equations [72,73], it follows
that the solution of the system (6) with the initial condition (7) exists for all t ≤ 0 and
is unique.

Next, we will establish different dynamic properties of the solution of the mathematical
model described by the system of Equation (6). Since the system (6) represents a biological
model, it is important to determine the nature of the solution. Thus, if it is assumed that
all the parameters are non-negative as well as the initial conditions IE(s), I(s), V(s), T(s),
for s ∈ [−∆, 0]. Therefore, we must guarantee the positivity and boundedness of the solu-
tion (IE(t), I(t), V(t), T(t)) of the system (6) at [0, ∞). The following results characterizes
these properties.

Theorem 1. If the initial conditions IE(0) = IE0 , I(0) = I0, V(0) = V0, T(0) = T0 of the
mathematical model (6) are positive, then the solutions (IE(t), I(t), V(t), T(t)) of the system (6)
are positive for all t ∈ [0, ∞).
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Proof. Let us start by noting that the solutions of the differential equations of IE(t) and
I(t) given in (6) can be written as

IE(t) = e−δIE t
[

IE0 +
∫ t

t−∆
βT(s)V(s)eδIE sds

]
, (8)

I(t) = e−δI t
[

I0 +
∫ t

0
βT(s− ∆)V(s− ∆)e(δI−δIE )sds

]
. (9)

Therefore, the positivity of the solutions T(t) and V(t) for all t > 0, allows us to
guarantee the positivity of IE(t) and I(t) and thus of system (6). Thus, for T(t) given as
in (6) we have that T(t) > 0, for all t ≥ 0. Indeed, suppose that the positivity does not

holds, therefore there must be a t0 > 0 such that T(t0) = 0,
dT(t0)

dt
≤ 0 and T(t) > 0 for all

t ∈ [0, t0), because the initial condition T0 > 0. Thus, T(t) must be negative from some t0.
However, in the interval [0, t0) the function T(t) is positive, and at point t0 the derivative
at t0 is non-positive. Thus, from the fourth equation of model (6), it follows that for t0,

dT(t0)

dt
= Λ− βT(t0)V(t0)− µ0T(t0) = Λ > 0,

which contradicts that
dT(t0)

dt
≤ 0. Therefore, we must have T(t) > 0, for all t ≥ 0. Now,

we affirm that if V(t) is given by the system (6), it follows that

V(t) > 0, for all t ≥ 0. (10)

Indeed, suppose that there exists a t1 > 0 such that V(t1) = 0,
dV(t1)

dt
≤ 0 and

V(t) > 0 for all t ∈ [0, t1). Then it holds that I(t) > 0 for all t ∈ [0, t1). Otherwise, there

should be a t2 such that 0 < t2 < t1, I(t2) = 0,
dI(t2)

dt
≤ 0 and I(t) > 0 for all t ∈ [0, t2).

Thus, from the second equation of system (6), if follows that for t2 ∈ (∆, t1) it holds

dI(t2)

dt
= βT(t2 − ∆)V(t2 − ∆)e−δIE ∆ − δI I(t2) = βT(t2 − ∆)V(t2 − ∆)e−δIE ∆.

But, −∆ < t2 − ∆ < t1 − ∆ < t1. From the initial conditions given by (7) and the

hypothesis for V(0) > 0 it follows that V(t2 − ∆) > 0. This, contradicts that
dI(t2)

dt
≤ 0.

Thus, I(t) > 0, for all t ∈ [0, t1). Next, from third equation of system (6) for t1 > 0,

dV(t1)

dt
= NδI I(t1)− CV(t1)− βT(t1)V(t1) = NδI I(t1) > 0.

This is a contradiction since
dV(t1)

dt
≤ 0. Therefore, V(t) > 0 for all t ≥ 0.

Theorem 2. The solution (IE(t), I(t), V(t), T(t)) of system (6) is uniformly bounded in [0, ∞).

Proof. From system (6), one can see that

dIE(t)
dt

+
dI(t)

dt
+

dT(t)
dt

= Λ− δIE IE(t)− δI I(t)− µ0T(t) ≤ Λ−M(IE(t) + I(t) + T(t)),

where M = min
{

δIE , δI , µ0
}

. This implies that

IE(t) + I(t) + T(t) ≤ e−Mt
[

IE0 + I0 + T0 +
∫ t

0
ΛeMsds

]
= e−Mt[IE0 + I0 + T0

]
+

Λ
M

(
1− e−Mt

)
.



Mathematics 2021, 9, 257 6 of 21

Thus,

lim sup
t→∞

(IE(t) + I(t) + T(t)) ≤ Λ
M

.

Accordingly, IE(t), I(t) and T(t) are uniformly boundedness. Even more, given ε > 0,
there exists t1 > 0 such that for all t ≥ t1,

I(t) ≤ Λ
M

+ ε.

Then, since
dV(t)

dt
≤ NδI I(t)− CV(t), and V(t) > 0 for all t > t1, one obtains that

dV(t)
dt

+ CV(t) ≤ NδI

(
Λ
M

+ ε

)
.

It follows that

V(t) ≤ V0e−Ct +
(

1− e−Ct
)(NδI

C

)(
Λ
M

+ ε

)
.

As t −→ ∞, then V(t) ≤
(

NδI
C

)(
Λ
M

+ ε

)
. Since ε > 0, V(t) is uniformly bounded-

ness. This completes the proof.

3.1. Equilibrium Points

The model described by the system of differential Equation (6) has two stationary
states, the first one corresponds to the disease-free equilibrium and the second to the
endemic equilibrium, which we will denote P0 and P∗ respectively. To determine both

states we must calculate the critical points of the system (6) by setting
dIE(t)

dt
=

dI(t)
dt

=

dV(t)
dt

=
dT(t)

dt
= 0. Thus, we have

0 = βTV − βTVe−δIE ∆ − δIE IE

0 = βTVe−δIE ∆ − δI I (11)

0 = NδI I − CV − βTV

0 = Λ− βTV − µ0T.

The disease-free equilibrium point of a model are solutions of steady state in the
absence of infection. For this case, we must consider IE = 0, I = 0, V = 0, and T > 0,

in the system (11). Then P0 will be of the form P0 = (0, 0, 0, T0), where T0 =
Λ
µ0

. Therefore,

P0 =

(
0, 0, 0,

Λ
µ0

)
.

On the other hand, we can determine the basic reproductive number using the next
generation matrix methodology. With the terms of infection and viral production in the
mathematical model (11), matrices F and V are given by

F =

0 0 βT0
(

1− e−δIE ∆
)

0 0 βT0e−δIE ∆

0 0 0

, V =

δIE 0 0
0 δI 0
0 NδI C + βT0

,
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where T0 =
Λ
µ0

, which it is the number of target cells before infection. Thus, the basic

reproductive numberR0, is calculated as the spectral radius of the matrix given by

FV−1 =

0 0 βT0
(

1− e−δIE ∆
)

0 0 βT0e−δIE ∆

0 0 0




1
δIE

0 0

0 −δI 0
0 − N

C+βT0
1

C+βT0



=


0 −

NβT0
(

1−e
−δIE

∆)
βT0+C

βT0
(

1−e
−δIE

∆)
βT0+C

0 −NβT0e
−δIE

∆

βT0+C
βT0e

−δIE
∆

βT0+C
0 0 0

.

Therefore, the basic reproductive numberR0 is given by

R0 =
NβΛe−δIE ∆

Cµ0 + βΛ
. (12)

Now, the endemic equilibrium point of a model is its steady-state solutions in the
presence of infection or disease, for which it must be considered IE > 0, I > 0, V > 0 and
T > 0 in the system (11.) Then P∗ will be of the form P∗ = (I∗E, I∗, V∗, T∗). In this case,
from the system (11) the following equalities are obtained

I∗E =
βT∗V∗(1− e−δIE ∆)

δIE

. (13)

I∗ =
βT∗V∗e−δIE ∆

δI
. (14)

I∗ =
V∗

NδI
(C + βT∗). (15)

T∗ =
Λ

βV∗ + µ0
. (16)

Replacing (16) in (14) and (15), is obtains

I∗ =
βΛV∗e−δIE ∆

δI(βV∗ + µ0)
=

V∗

NδI

(
C +

βΛ
βV∗ + µ0

)
. (17)

Then

V∗ =
NβΛe−δIE ∆ − Cµ0 − βΛ

Cβ
=

(Cµ0 + βΛ)
NβΛe−δIE ∆

Cµ0 + βΛ
− 1

Cβ
. (18)

Thus, ifR0 > 1, then NβΛe−δIE ∆ − Cµ0 − βΛ > 0. Hence, we can write V∗ as

V∗ =
(Cµ0 + βΛ)(R0 − 1)

Cβ
. (19)

Next, we replace (18) in (17) to get

I∗ =
NβΛe−δIE ∆ − Cµ0 − βΛ

δI βeδIE ∆(Ne−δIE ∆ − 1)
=

(Cµ0 + βΛ)(R0 − 1)

δI βeδIE ∆(Ne−δIE ∆ − 1)
. (20)
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Now, substituting (18) in (16) one gets

T∗ =
ΛC

(Cµ0 + βΛ)(R0 − 1) + Cµ0
. (21)

Finally, we replace (18) and (21) in (13) to obtain

I∗E =

(
NβΛe−δIE ∆ − Cµ0 − βΛ

)(
eδIE ∆ − 1

)
δI βeδIE ∆

(
Ne−δIE ∆ − 1

) =
(Cµ0 + βΛ)(R0 − 1)

(
eδIE ∆ − 1

)
δI βeδIE ∆

(
Ne−δIE ∆ − 1

) (22)

Note that I∗E > 0, I∗ > 0, V∗ > 0 and T∗ > 0 if only if R0 =
NβΛe−δIE ∆

Cµ0 + βΛ
> 1. Thus,

Ne−δIE ∆ >
Cµ0 + βΛ

βΛ
> 1.

3.2. Local Stability of the Equilibrium Points

Theorem 3. The disease-free equilibrium point P0 of the system (6) is locally asymptotically stable
ifR0 < 1.

Proof. The eigenvalues of the Jacobian matrix of system (6) evaluated at point P0, are given
as the roots of polynomial

(−δI − λ)(−µ0 − λ)

[
λ2 +

(
δI + C +

βΛ
µ0

)
λ +

(
δIC +

δI βΛ
µ0
− βe−δIE ∆NδIΛ

µ0

)]
= 0.

Therefore, the first two eigenvalues of the Jacobian matrix evaluated at P0 are λ1 =
−δI < 0 and λ2 = −µ0 < 0.

Next, sinceR0 < 1 then the coefficients of equation

λ2 +

(
δI + C +

βΛ
µ0

)
λ +

δI
µ0

(Cµ0 + βΛ)(1−R0) = 0, (23)

are positives. Thus, since there is no sign change between its terms, and by Descartes’ sign
rule it is concluded that Equation (23) does not have positive roots. Now, if λ is replaced
by −λ in (23) then

λ2 −
(

δI + C +
βΛ
µ0

)
λ +

δI
µ0

(Cµ0 + βΛ)(1−R0) = 0. (24)

Thus, ifR0 < 1 Equation (24) has two sign changes in its terms, and by Descartes’ sign
rule it is concluded that there are exactly two negative roots in Equation (23). Therefore,

P0 =

(
0, 0, 0,

Λ
µ0

)
is locally asymptotically stable ifR0 < 1.

Theorem 4. The P∗ endemic point of the system (6) is locally asymptotically stable ifR0 > 1.
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Proof. We note that R1 = Ne−δIE ∆ − 1 > 0. Thus, the characteristic equation is given by

(−δIE − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−δI − λ
Ce−δIE ∆

R1

βΛR1e−δIE ∆

C
− µ0e−δIE ∆

NδI −C− C
R1
− λ µ0 −

βΛR1

C

0 − C
R1

− βΛR1

C
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Therefore, the first eigenvalue of the Jacobian matrix will be λ1 = −δIE < 0, and the
other, are the roots of polynomial

λ3 +

(
δI + C +

C
R1

+
βΛR1

C

)
λ2 +

(
δI βΛR1

C
+ βΛR1 +

Cµ0

R1

)
λ + δI(Cµ0 + βΛ)(R0 − 1) = 0. (25)

IfR0 > 1 all the coefficients of Equation (25) are positive, i.e., there is no sign change
between their terms, and by Descartes’s sign rule it is concluded that there are no positive
roots. Now if λ is replaced by −λ in (25) it gives us that

− λ3 +

(
δI + C +

C
R1

+
βΛR1

C

)
λ2 −

(
δI βΛR1

C
+ βΛR1 +

Cµ0

R1

)
λ + δI(Cµ0 + βΛ)(R0 − 1) = 0 (26)

Then, if R0 > 1 the polynomial (26) has three sign changes between its terms,
and by Descartes’s sign rule it is concluded that there are exactly three negative roots
of Equation (25). Thus, P∗ is locally asymptotically stable ifR0 > 1.

3.3. Global Stability Analysis of the Mathematical Model

Since the variable IE does not appear in the other three equations, without loss of
generality we will only consider the following three-dimensional system,

dI(t)
dt

= βT(t− ∆)V(t− ∆)e−δIE ∆ − δI I(t)

dV(t)
dt

= NδI I(t)− (C + βT(t))V(t) (27)

dT(t)
dt

= Λ− βT(t)V(t)− µ0T(t).

To analyze the global stability of the equilibrium points of the system (27), we use the
method of the Lyapunov’s functions, and we will use the Volterra function

G(x) = x− 1− ln x (28)

for x > 0, which is no negative for any x > 0 and G(x) = 0 if and only if x = 1.

Theorem 5. IfR0 < 1 then the disease-free equilibrium point Pf =
(

0, 0, Λ
µ0

)
of system (27) is

globally asymptotically stable.

Proof. We define the Lyapunov functional

V(t) = e−δIE ∆T0G
(

T(t)
T0

)
+

1
N

V(t) + I(t) + e−δIE ∆
∫ ∆

0
βT(t− θ)V(t− θ) dθ.

Now, calculating the time derivative of V(t) along the solution of model (27), one
gets that
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dV(t)
dt

=e−δIE ∆ T(t)− T0

T(t)
dT(t)

dt
+

1
N

dV(t)
dt

+
dI(t)

dt
+ e−δIE ∆ d

dt

∫ ∆

0
βT(t− θ)V(t− θ) dθ

=− µ0e−δIE ∆
(
T(t)− T0)2

T(t)
− e−δIE ∆βT(t)V(t) + e−δIE ∆βV(t)T0 + δI I(t)− C

N
V(t)− βT(t)V(t)

N

+ βT(t− ∆)V(t− ∆)e−δIE ∆ − δI I(t)− βT(t− ∆)V(t− ∆)e−δIE ∆ − δI I(t) + e−δIE ∆βT(t)V(t)

≤− µ0e−δIE ∆
(
T(t)− T0)2

T(t)
+

C
N
(R0 − 1).

Thus,
dV(t)

dt
< 0 whenR0 < 1. Therefore, by Lyapunov–LaSalle Invariance Principle,

the infection-free equilibrium E f is globally asymptotically stable.

4. Design of a NSFD Scheme for the Mathematical Model

The use of differential equations in the modeling of the transmission of infectious
diseases has represented a versatile tool to understand better the dynamics of a variety of
infectious diseases [7,59,60,74–76]. Mathematical models based on differential equations
have been useful to study how to reduce the burden of infectious diseases. The models
allow the determination of optimal controls and estimate the impact of a variety of virus on
the disease dynamics [67,75,77]. One advantage of mathematical models is that different
simulations can be performed, and this allows us to analyze different main driven factors
of epidemics under a variety of complex scenarios [8,11,59]. However, there are no general
formulas that allow the obtaining of precise analytical solutions for many differential
equation systems. These solutions exist only occasionally and are often difficult to find,
so good approximations are necessary that preserve the qualitative properties of said
solution, for which numerical methods have been used, see [24,25,31,48–50,78–83].

Discrete epidemic models generated by numerical methods contain additional param-
eters to those that already exist in differential equations, such as the time and space steps.
Variations in these additional parameters can generate solutions to the discrete equations
that do not correspond to any solution of the original differential equations, producing ficti-
tious bifurcations, artificial chaos, spurious solutions, and false stable states [24–26,45,83,84].
Therefore, we must choose numerical discrete schemes that guarantee the qualitative prop-
erties of the mathematical models. There are several methods that can be used to obtain
accurate solutions. For instance, the Richardson extrapolation on uniform and nonuniform
grids or NSFD schemes have been used for that end [45,85–90] .

Another, important aspect where a robust numerical method plays an important role is
when solving inverse problems to estimate the parameters of the model [48,51,56,57,91,92].
Thus, for mathematical models of a variety of virus is of paramount importance to have
a robust and efficient numerical method for solving the differential equations [25,49,51].
Usually, when a differential equation is solved numerically a certain tolerance is prescribed
and this has an impact in the success in estimating the parameters [48,49,93,94]. In this
paper, we deal with a mathematical model that is based on system of differential equations
with discrete time delay [17,32,60,72,95–97]. There are different numerical methods to
deal with this type of equations, and some are analogous to the ones used for ordinary
differential equations but with additional issues [50,98–102]. One particular numerical
method that we are interested in is by using NSFD schemes to guarantee some properties
of the continuous mathematical model. Some previous works using this methodology have
been developed for linear and nonlinear delay differential equations [103–107].

For the construction of a discrete numerical scheme that allows us to efficiently
approximate the solutions of the system (6), we use the methodology proposed by Ronald
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Mickens, see [24–27]. In that order of ideas, for the discrete approximation of the time
derivative of a function X(t) ∈ C1(R), we define the non-standard derivative as

dN X(t)
dt

=
X(t + h)− X(t)

ϕ(h)
+O(h), (29)

where ϕ(h) is a real positive valued function that satisfies ϕ(h) = h +O(h2), and N is to
denote the non-standard derivative.

Although there is no general algorithm for constructing an NSFD schema that ap-
proximates the solutions of a given system of differential equations, the following general
rules are often useful to correctly design these schemes.

Rule 1. The discrete derivatives in a numerical scheme must be of the same orders as the
continuous derivatives that appear in the differential equation.

Rule 2. Discrete derivatives may have non-trivial denominators.
Rule 3. Nonlinear terms that appear in differential equations must have non-local repre-

sentations.
Rule 4. The numerical solution must preserve all the special conditions that hold for the

solutions of the corresponding differential equations.
Rule 5. The scheme must not introduce unnecessary or false solutions, i.e., convergence to

false steady states.

Let us denote by In
E, In, Vn and Tn the approximations of IE(nh), I(nh), V(nh) and

T(nh), respectively, for n = 0, 1, 2..., and for h size step in time of the scheme. The value of
In+1
E for n = 0, 1, · · · , is calculated using Equation (8) and a quadrature formula. For this

case, we use

In+1
E = e−δIE ∆(n+1)h

[
In
E +

m1h
2

(
βTn+1Vn+1eδIE ∆(n+1)h + βTn+1−m1 Vn+1−m1 eδIE ∆(n+1−m1)h

)]
, (30)

with ∆ = m1h.
Next, we make the following non-local approximations of the terms on the right side

of the system (27)

βT(t)V(t) → βTnVn

−βT(t− ∆)V(t− ∆)e−δIE ∆ → −βTn−m1+1Vn−m1 e−δIE ∆

−δIE IE(t) → −δIE In+1
E

−δI I(t) → −δI In+1

NδI I(t) → NδI In+1

−(C + βT(t))V(t) → −(C + βTn)Vn+1

−βT(t)V(t) → −βTn+1Vn

−µ0T(t) → −µ0Tn+1

(31)

Then, we approximate the derivatives on the left side of the system (27) as follows

dN I(t)
dt

→ In+1 − In

ϕ(h)
dNV(t)

dt
→ Vn+1 −Vn

ϕ(h)
dNT(t)

dt
→ Tn+1 − Tn

ϕ(h)

(32)
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Consequently, the system (27) can be discretized as an implicit NSFD scheme given by

Tn+1 − Tn

ϕ(h)
= Λ− βTn+1Vn − µ0Tn+1,

In+1 − In

ϕ(h)
= βTn−m1+1Vn−m1 e−δIE ∆ − δI In+1, (33)

Vn+1 −Vn

ϕ(h)
= NδI In+1 − CVn+1 − βTnVn+1.

And the explicit form is given by

Tn+1 =
ϕ(h)Λ + Tn

1 + ϕ(h)(βVn + µ0)
,

In+1 =
ϕ(h)βTn−m1+1Vn−m1 e−δIE ∆ + In

1 + ϕ(h)δI
, (34)

Vn+1 =
ϕ(h)NδI In+1 + Vn

1 + ϕ(h)(C + βTn)
,

where m1 =
∆
h
∈ N. The initial conditions of scheme (34) are given by

T j = ξ
j
1, V j = ξ

j
2, j = −m1,−m1 + 1, · · · , 0.

The positivity of scheme (34) is trivially satisfied, since for n > 0 it holds that Tn, In, Vn

are positive.

Theorem 6. Let (Tn, In, Vn) be a solution of system (34). Then is uniformly bounded for all
n > 0.

Proof. From the first equation of scheme (33), one gets that

Tn+1 − Tn

ϕ(h)
= Λ− βTn+1Vn − µ0Tn+1 ≤ Λ− µ0Tn+1.

When n → ∞ and since ϕ(h) = h + O(h2), then ϕ(h) coincide with 0 in the limit as

h→ 0. This implies that lim sup
n→∞

Tn ≤ Λ
µ0

.

Next, let Wn = Tn−m1 + eδIE ∆ In. From first and second equation of system (33),
one obtains

Wn+1 −Wn

ϕ
=

Tn−m1+1 − Tn−m1

ϕ(h)
+ eδIE ∆ In+1 − In

ϕ(h)
= Λ− µ0Tn−m1+1 − δIe

δIE ∆ In+1

≤Λ− dWn+1,

where d = min{µ0, δI}. Thus, lim sup
n→∞

Wn ≤ Λ
d

. Therefore, lim sup
n→∞

In ≤ Λe−δIE ∆

d
. Then,

give ε > 0 we can choose a M ∈ N such that In ≤ Λe−δIE ∆

d
+ ε for n ≥ M. Using the last

equation of (33) it is concluded that

Vn+1 −Vn

ϕ(h)
≤ NδI In+1 − CVn+1 ≤ NδI

(
Λe−δIE ∆

d
+ ε

)
− CVn+1
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for n ≥ M + 1. Then lim sup
n→∞

Vn ≤ NδI
C

(
Λe−δIE ∆

d
+ ε

)
, and as is for all ε > 0 it fol-

lows that lim sup
n→∞

Vn ≤ NδI
C

(
Λe−δIE ∆

d

)
. This completes the proof. Moreover, from

Equation (27) it follows that In
E is bounded.

4.1. Equilibrium Points of the NSFD Numerical Scheme

The equilibrium points of the scheme (34) are given by analyzing the behavior of
system when n approaches to infinity. Thus, after a few calculations we find that

I∗ =
ϕ(h)βT∗V∗e−δIE ∆ + I∗

1 + ϕ(h)δI
(35)

V∗ =
ϕ(h)NδI I∗ + V∗

1 + ϕ(h)(C + βT∗)

T∗ =
ϕ(h)Λ + T∗

1 + ϕ(h)(βV∗ + µ0)
.

Note that the equations of the scheme (35) correspond to Equations (14)–(16). Thus,
the critical points of the discrete scheme will coincide in the limit h→ 0, with those of the
continuous model.

4.2. Local Stability of the NSFD Numerical Scheme

For the study of the local stability of the critical points of the numerical scheme (34) it
is necessary to use the following lemma:

Lemma 1. The roots of the quadratic polynomial λ2 − a1λ + a2 = 0, satisfy |λi| < 1 for i = 1, 2
if and only if the following conditions hold:

i. 1− a1 + a2 > 0,
ii. 1 + a1 + a2 > 0,
iii. a2 < 1.

Proof. See [7].

Theorem 7. The disease-free equilibrium point Pf =
(

0, 0, Λ
µ0

)
of the scheme (34) is locally

asymptotically stable ifR0 < 1.

Proof. Calculating the eigenvalues of the Jacobian matrix of the system (34) at the disease-
free point, we obtain the following characteristic polynomial

(
1

1 + ϕ(h)µ0
− λ

)∣∣∣∣∣∣∣∣
1

1 + ϕ(h)δI
− λ

ϕ(h)βe−δIE ∆Λ
µ0(1 + ϕ(h)δI)

µ0hNδI
µ0 + µ0hC + hβΛ

µ0

µ0 + µ0hC + hβΛ
− λ

∣∣∣∣∣∣∣∣ = 0.

Thus, the first eigenvalue is

λ1 =
1

1 + ϕ(h)µ0
< 1.

The other two eigenvalues, are the roots of quadratic polynomial

λ2 −
(

1
p
+

µ0

q

)
λ +

µ0 − ϕ(h)2δI NβΛe−δIE ∆

µ0 pq
= 0, (36)
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where p = 1 + ϕ(h)δI > 0 and q = µ0 + µ0 ϕ(h)C + ϕ(h)βΛ. Next, let a1 =
1
p
+

µ0

q
and

a2 =
µ0 − ϕ(h)2δI NβΛe−δIE ∆

µ0 pq
. We have the following affirmations.

1. If 1 > R0, it follows that ϕ(h)2δI(Cµ0 + βΛ) > ϕ(h)2δI NβΛe−δIE ∆. Thus,

δI(µ0 + µ0hC + hβΛ) > µ0δI + ϕ(h)δI NβΛe−δIE ∆ ⇐⇒

(1 + ϕ(h)δI)q > q + ϕ(h)µ0δI + ϕ(h)2δI NβΛe−δIE ∆ ⇐⇒

pq + µ0 > q + ϕ(h)µ0δI + ϕ(h)2δI NβΛe−δIE ∆ + µ0 ⇐⇒

pq + µ0 > q + ϕ(h)2δI NβΛe−δIE ∆ + pµ0 ⇐⇒

1−
(

1
p
+

µ0

q

)
+

µ0 − h2δI NβΛe−δIE ∆

pq
> 0

Therefore, one gets that 1 + a2 > a1.

2. Since a1 > 0, it is sufficient to prove that 1 + a2 > 0. By hypothesis 1 > R0, then

µ0 + q + ϕ(h)δIµ0 + ϕ(h)2δI(µ0C + βΛ) > ϕ(h)2δI(µ0C + βΛ) > ϕ(h)2δI NβΛe−δIE ∆.

Accordingly

µ0 + q + ϕ(h)δI(µ0 + µ0 ϕ(h)C + ϕ(h)βΛ) > ϕ(h)2δI NβΛe−δIE ∆ ⇐⇒

µ0 + q + ϕ(h)δIq > ϕ(h)2δI NβΛe−δIE ∆ ⇐⇒

µ0 + (1 + ϕ(h)δI)q > ϕ(h)2δI NβΛe−δIE ∆ ⇐⇒

1 +
µ0 − ϕ(h)2δI NβΛe−δIE ∆

pq
> 0

3. Given that

µ0 − ϕ(h)2δI NβΛe−δIE ∆ < µ0 + µ0 ϕ(h)C + ϕ(h)βΛ + ϕ(h)δIq,

then

µ0 − ϕ(h)2βe−δIE ∆ΛNδI
pq

< 1,

that is a2 < 1.

Next, by virtue of Lemma 1 we have that the eigenvalues of the Jacobian matrix of the
system (35) evaluated at Pf satisfy |λi| < 1. for i = 1, 2. Then Pf is locally asymptotically
stable ifR0 < 1.

4.3. Global Stability of the NSFD Numerical Scheme

Several authors have used discrete Lyapunov functions to study the global behav-
ior of numerical solutions generated by non-standard finite difference schemes (NSFD),
see [19,106–110]. For the study of the global stability of the critical points of the numerical
scheme (34) it is necessary to use the Lyapunov functions and Equation (28).

Theorem 8. The disease-free equilibrium point Pf =
(

0, 0, Λ
µ0

)
of the scheme (34) is globally

asymptotically stable ifR0 ≤ 1.
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Proof. Let the following Lyapunov function be

Ln =

T0g
(

Tn

T0

)
+ eδIE ∆ In + βT0

(
1
C
+ ϕ(h)

)
Vn

ϕ(h)
+

n−1

∑
i=n−m1

βTi+1Vi. (37)

Using the inequality ln z ≤ z− 1, the difference of Ln in (37) satisfies

Ln+1 −Ln ≤
(

Tn+1 − T0

Tn+1

)(
Λ− βTn+1Vn − µ0Tn+1

)
+ eδIE ∆

(
βTn−m1+1Vn−m1 e−δIE ∆ − δI In+1

)
+

βT0

C

(
NδI In+1 − CVn+1 − βTnVn+1

)
+ βT0

(
Vn+1 −Vn

)
+ βTn+1Vn − βTn−m1+1Vn−m1

≤ −µ0
Tn+1 − T0

Tn+1 − eδIE ∆δI In+1(1−R0).

It follows that Ln+1 −Ln ≤ 0 for all n ≤ 0 ifR0 ≤ 1. This means that Ln is monotone
decreasing sequence and since Ln ≥ 0 for n ≥ 0 then there exists a limit, i.e., lim

n→∞
Ln ≥ 0.

Hence lim
n→∞

(
Ln+1 −Ln) = 0, which implies that lim

n→∞
Tn = T0, lim

n→∞
In = 0, and from (34)

lim
n→∞

Vn = 0. By the previous analysis, we conclude that Pf is globally asymptotically stable

for scheme (34).

5. Numerical Simulations Using the NSFD Scheme

In this section, we present some numerical solutions of the mathematical model of
HIV. To carry out the simulations we use the constructed NSFD numerical scheme (34).
We choose the parameter values based on existing experimental data and previous model
studies, see [54,106,111,112]. The values of these parameters are given in Tables 1 and 2.
For the first case we choose values such R0 < 1 and for the second we have the case
R0 > 1.

Table 1. Parameter values for the numerical simulations whenR0 < 1.

Parameters Value

β 4.8× 10−6 mm3day−1

C 3 mm3 day−1

Λ 2.3 day−1

δI 0.24 day−1

δIE 0.05 day−1

µ0 0.0046 day−1

∆ 0.4 day
N 500
V0 1 mm−3

T0 100 mm−3

IE0 0
I0 0
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Table 2. Parameter values for the numerical simulations whenR0 > 1.

Parameters Value

β 4.8× 10−6 mm3day−1

C 2.4 mm3 day−1

Λ 23 day−1

δI 0.2 day−1

δIE 0.05 day−1

µ0 0.0046 day−1

∆ 0.4 day
N 500
V0 1 mm−3

T0 100 mm−3

IE0 1
I0 1

For the numerical simulations we use a small step size, h = 0.001. For the discrete
derivatives given in system (33), we have many options for the denominator function
ϕ. We have chosen ϕ(h) = (1 − exp(−hp))/p, where p = max

{
A, ∆, µ0, δI , δIE

}
are

parameters of the model and included in the numerical scheme (33). This particular ϕ
usually provides better numerical results based on previous articles related to NSFD
schemes [113,114]. In addition, this option satisfies the asymptotic relation ϕ(h) = h +
O(h2), and Rule 1. We performed numerical simulations to show that the solutions obtained
by the proposed NSFD scheme and the well-known MATLAB routine dde23 agree. A great
advantage of the proposed NSFD numerical scheme (34) is that the computation time is
smaller. For the first case, the numerical solution using the NSFD scheme is obtained in
approximately 0.083992 s, while the dde23 routine spent 2.573003 s. For the second case,
the numerical solution using the NSFD scheme is obtained in approximately 0.176461 s,
while the routine dde23 spent 11.181812 s. The results obtained are shown in Figures 2 and
3 respectively. It can be seen that the numerical solution of the proposed NSFD numerical
scheme (34) and the one obtained by means of the routine dde23 agree.

Figure 2. Simulation NSFD versus dde23 whenR0 < 1.
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Figure 3. Simulation NSFD versus dde23 whenR0 > 1.

6. Conclusions

We proposed a mathematical model based on a set of delay differential equations that
describe intracellular HIV infection. The model considers three different subpopulations
of cells and the HIV virus. The mathematical model is formulated in such a way that
takes into account the time between viral entry into a target cell and the production of
new virions. Moreover, this time is included using a discrete time delay. We analyzed
the local stability of the infection-free and endemic equilibrium states. By using a suitable
Lyapunov functional and the LaSalle invariant principle, it is proved that if the basic re-
production ratio is less than unity, the infection-free equilibrium is globally asymptotically
stable. In addition, we designed a non-standard difference scheme that preserves some
properties of the continuous model. We prove that the constructed NSFD scheme has the
same equilibrium points of the continuous model, and the disease-free equilibrium holds
the same stability properties. As required by the constraints of the real phenomena, the
solutions given by the numerical scheme satisfy positivity and boundedness. The numer-
ical simulations corroborate that the developed NSFD numerical scheme preserves the
properties of the continuous model and presents a robust behavior when working with a
variety of parameter values.
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