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Abstract: We investigate the efficiency of several types of continued fraction expansions of a number
in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the
efficiency by describing the rate at which the digits of one number-theoretic expansion determine
those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and
Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the
absolutely continuous invariant probability measures of the associated dynamical systems.

Keywords: continued fractions; entropy; measure preserving transformation

1. Introduction

The purpose of this paper is to compare the efficiency of some continued fractions in
approximating a real number in the unit interval. For any irrational x ∈ (0, 1), suppose
we have two known expansions x = [a1, a2, . . .]1 and x = [b1, b2, . . .]2. A natural question
is: Which of these continued fraction expansions is more “efficient”? In mathematical
terms, “efficiency” means: Which of the two sequences [a1, a2, . . . , an]1 and [b1, b2, . . . , bn]2
converges more quickly to x as n→ ∞? It is therefore relevant to ask how much information
(e.g., in terms of the digits in the second expansion) can be determined once we know n
digits of the first expansion. Suppose we approximate x by keeping the first n digits of its
first expansion. To attain the same degree of accuracy, we need to keep the first m = m(n, x)
digits of the second expansion. What can we say about the ratio m(n, x)/n in general?
We show that the relative speed of approximation of two different expansions (almost
everywhere) is related to the quotient of the entropies of the transformations that generate
these expansions. The strategy used in this paper fits for all pairs of number-theoretic
fibered maps (NTFMs) for which the generating partition has finite entropy.

1.1. Motivation

The ancient charms of number theory have been replaced by the modern fascination
of an algorithmic thinking. When analytic number theory was being formulated in the
nineteenth century, probability theory was not yet a reputable branch of mathematics.
Nowadays, probabilistic techniques are routinely used in number theory. The field of
probabilistic number theory is currently evolving very rapidly and uses more and more
refined probabilistic tools and results. It is well-known that continued fractions lie at the
heart of a number of classical algorithms such as Euclid’s greatest common divisor or the
lattice reduction algorithm of Gauss [1]. Thus, continued fractions arise naturally in the
theory of approximation to real numbers by rationals. To this day, the Gauss map, on which
metrical theory of regular continued fraction is based, has fascinated researchers from
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various branches of mathematics and science, with many applications in computer science,
cosmology, and chaos theory. Apart from the regular continued fraction expansion, many
other continued fraction expansions have been studied. In the last century, mathematicians
broke new ground in this area. Since there are several continued fraction algorithms,
we ask ourselves which of them provides the best approximation of a real number. The
representation of a real number by a continued fraction can be viewed as a source of
information about the number. For this purpose, we need the notion of entropy, a rigorous
tool at the crossroads of probability, information theory, and dynamical systems [2,3].

1.2. Entropy

As is well known, entropy is an important concept of information in physics, chemistry,
and information theory [4]. The connection between entropy and the transmission of
information was first studied by Shannon [5]. Thus, entropy can be seen as a measure of
randomness of the system or the average information acquired under a single application
of the underlying map. Entropy also plays an important role in ergodic theory. Thus,
Shannon’s probabilistic notion of entropy was first introduced into the ergodic theory by
Kolmogorov [6] via a measure theoretic approach. The contribution of Kolmogorov to
modern dynamics was the discovery of the concept of entropy, which was made rigorous
by Sinai [7]. This concept provides an important generalization of Shannon entropy.
Kolmogorov–Sinai (K-S) entropy measures the maximal loss of information for the iteration
of finite partitions in a measure preserving transformation. The concept has shown its
strength through the adequate answers to problems in the classification of dynamical
systems. Two metrically isomorphic dynamical systems have the same K-S entropy, so this
concept is a tool for distinguishing non-isomorphic (non-conjugate) dynamical systems.

We briefly review this very important concept of K-S entropy in Ergodic Theory. Given
a measure preserving system (X,X , µ, T), we say α = {Ai : i ∈ I} is a partition of X if
X =

⋃
i∈I Ai, where Ai ∈ X for each i ∈ I and Ai ∩ Aj = ∅ for i 6= j, i, j ∈ I. Here, I is a

finite or countable index set. For a partition α of X, we define the entropy of the partition α as

H(α) := − ∑
A∈α

µ(A) log µ(A). (1)

In this definition, T does not appear. However, the entropy of the dynamical system is
defined by the entropy of the transformation T as follows.

Given a partition α, we consider the partition

αn :=
n−1∨
i=0

T−iα =

{
n−1⋂
i=0

T−i Ai : Ai ∈ α, i = 0, 1, . . . , n− 1

}
. (2)

Then, the entropy of transformation T with respect to α is given by

h(α, T) := lim
n→∞

1
n

H(αn). (3)

The entropy of T is defined as

h(T) := sup{h(α, T) : α partition of X such that H(α) < ∞}. (4)

In general, it does not seem possible to calculate the entropy straight from its definition.
First, let us define that a partition α of X is a generator with respect to a non-invertible
transformation T if

σ

(
∞∨

i=0

T−iα

)
= X up to sets of µ-measure zero. (5)
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In computation of h(T), the K-S Theorem is very useful. For completeness, we recall
this theorem. Let α be a partition of X such that H(α) < ∞. If α is a generator with respect
to T, then h(T) = h(α, T).

We also have the following classical Shannon–McMillan–Breiman theorem [8]. Let
(X,X , µ, T) be an ergodic measure preserving system and let α be a finite or countable
partition of X satisfying H(α) < ∞. The Shannon–McMillan–Breiman theorem says,if
An(x) denotes the unique element An ∈ αn such that x ∈ An, then for almost every x ∈ X
we have:

lim
n→∞

− 1
n

log µ(An(x)) = h(α, T). (6)

In 1964, Rohlin [9] showed that, when Rényi’s condition is satisfied, the entropy of a
µ-measure preserving operator T : X → X is given by the formula:

h(T) :=
∫

X
log
∣∣T′(x)

∣∣dµ(x). (7)

The Rény’s condition means that there is a constant C ≥ 1 such that

sup
x,y∈Tn(αn)

|u′n(x)|
|u′n(y)|

≤ C, (8)

where un :=
(

Tn|αn

)−1
.

2. Lochs’ Theorem

Expansions that furnish increasingly good approximations to real numbers are usually
related to dynamical systems. In 1964, Lochs [10] compared the decimal expansion and
the regular continued fraction (RCF) expansion. Although comparing dynamical systems
seems difficult, using detailed knowledge of the continued fraction operator, Lochs was
able to relate the relative speed of approximation of decimal and regular continued fraction
expansions (almost everywhere) to the quotient of the entropies of their dynamical systems.
Thus, roughly 97 RCF digits are determined by 100 decimal digits, which indicates that the
RCF expansion is slightly more efficient compared to the decimal expansion at representing
irrational numbers.

2.1. Decimal Expansions

It is a common known fact that any real number x ∈ [0, 1) can be written as

x =
∞

∑
i=1

di(x)
10i , (9)

where di = di(x) ∈ {0, 1, 2, . . . , 9} for i ∈ N+ := {1, 2, 3, . . .}. The representation of x in (9),
denoted by x = 0.d1d2 . . ., is called the decimal expansion of x. We can generate the decimal
expansions by iterating the decimal map

Td : [0, 1)→ [0, 1); Td(x) = 10x− b10xc, (10)

where b·c denotes the floor (or entire) function. In other words, Td is given by

Td(x) = 10x− i if
1

10
≤ x <

i + 1
10

, i = 0, 1, 2, . . . , 9. (11)

Thus, we obtain:

x =
d1

10
+

d2

102 + . . . +
dn

10n +
Tn

d (x)
10n , (12)

where
d1 = d1(x) = b10xc (13)
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and
dn = dn(x) = d1

(
Tn−1

d (x)
)

, n ≥ 2. (14)

Since 0 ≤ Tn
d (x) < 1, we obtain

n

∑
i=1

di

10i → x as n→ ∞. (15)

2.2. Regular Continued Fraction Expansions

Beside decimal expansions, there are many other possible representations of real
numbers in terms of a sequence of integers. We refer to the regular continued fractions as
another famous example. Any irrational number x ∈ [0, 1) has a unique regular continued
fraction expansion

x =
1

a1 +
1

a2 +
. . .

, (16)

where an ∈ N+ for any n ≥ 1. This expansion is obtained by applying repeatedly the Gauss
map or the regular continued fraction transformation

TG : [0, 1)→ [0, 1); TG(0) = 0, TG(x) =
1
x
−
⌊

1
x

⌋
. (17)

Therefore, it follows that the digits a1, a2, . . . are related by

an = an(x) = a1

(
Tn−1

G (x)
)

, n ≥ 2, (18)

where

a1 = a1(x) =
⌊

1
x

⌋
. (19)

If we denote by [a1, a2, . . .]G the expansion in (16), we have

[a1, a2, . . . , an]G → x as n→ ∞. (20)

2.3. Comparing the Efficiency of Decimal Expansion and RCF Expansion

In [10], Lochs answered the question which of these developments is more efficient,
namely which of the two sequences in (15) and (20) converges more quickly to x as n→ ∞.

Suppose that the irrational number x ∈ (0, 1) has the decimal expansion x = 0.d1d2 . . .
and the RCF expansion x = [a1, a2, . . .]G. Let y = 0.d1d2 . . . dn be the rational number
determined by the first n decimal digits of x, and let z = y + 10−n. Then, [y, z] is the
nth-order decimal cylinder containing x, which we also denote by Cn(x). Now, let y =
[b1, . . . , bl ]G and z = [c1, c2, . . . , ck]G be the RCF expansions of y and z. Let

m(n, x) := max{i ≤ max(l, k) : for all j ≤ i, bj = cj}. (21)

In other words, m(n, x) is the largest integer such that Cn(x) ⊂ Dm(n,x)(x), where
Dj(x) denotes the jth-order RCF cylinder containing x. Lochs [10] proved that, for almost
every irrational x ∈ (0, 1), we have

lim
n→∞

m(n, x)
n

=
6 log 2 log 10

π2 = 0.97027014 . . . (22)

For example, Lochs [11] computed the first 968 RCF digits of π from its first 1000
decimals, and Brent and McMillan [12] computed the first 29,200 RCF digits of Euler–
Mascheroni constant from its first 30,100 decimals.
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2.4. Extended Lochs’ Theorem

Dajani and Fieldsteel [13] proved a generalization of Lochs’ theorem showing that we
can compare any two expansions of numbers which are generated by number-theoretic fibered
maps, i.e., surjective interval maps S : [0, 1)→ [0, 1) that satisfy the following conditions:

(1) There exists a finite or countable partition of [0, 1) into intervals such that S restricted
to each interval is strictly monotonic and continuous.

(2) S is ergodic with respect to Lebesgue measure λ, and there exists an S invariant
probability measure µ equivalent to λ (i.e., µ(A) = 0 if and only if λ(A) = 0 for all

Lebesgue sets A) with bounded density (both
dµ

dλ
and

dλ

dµ
are bounded).

Consider NTFMs S1 and S2 on [0, 1) with invariant measures µ1 and µ2 (equivalent
to Lebesgue measure) and with partitions P and Q, respectively. Denote by Pn(x) the
nth-order cylinder that contains x ∈ [0, 1) (a similar definition for Qn(x)). Let

mS1,S2(n, x) = sup{m : Pn(x) ⊂ Qm(x)}. (23)

Under the conditions just stated and with the understanding that mS1,S2(n, x) is exactly
the number of digits in the S2-expansion of x that can be determined from knowing the
first n digits in the S1-expansion, we have

lim
n→∞

mS1,S2(n, x)
n

=
h(S1)

h(S2)
λ− a.e. (24)

where h(S1) and h(S2) denote the entropy of S1 and S2, respectively, with h(S1) > 0 and
h(S2) > 0.

3. Other Continued Fraction Expansions

Apart from the RCF expansions, there is a wide variety of continued fraction expan-
sions. Here, we mention only a few of the expansions studied from the metrical point of
view by the authors over time, namely Chan’s continued fractions [14,15],
θ−expansions [16,17], N-continued fraction expansions [18,19], and Rényi-type continued
fraction expansions [20–22].

In this paper, we ask the question which of these expansions is more effective. To apply
the result of Dajani and Fieldsteel [13] in Section 2.4, we briefly present these expansions,
calculating the entropy of each map that generates these expansions.

3.1. Chan’s Continued Fractions

Fix an integer ` ≥ 2. Then, any x ∈ [0, 1) can be written in the form

x =
`−a1(x)

1 +
(`− 1)`−a2(x)

1 +
(`− 1)`−a3(x)

1 +
. . .

=: [a1(x), a2(x), a3(x), . . .]`, (25)

where an(x)s are non-negative integers. Define p`,n(x)
q`,n(x) := [a1(x), a2(x), . . . , an(x)]` the

n-convergent of x by truncating the expansion on the right-hand side of (25), that is,

[a1(x), a2(x), . . . , an(x)]` → x (n→ ∞). (26)
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This continued fraction is associated with the following transformation T` on [0, 1]:

T`(x) :=

 `
log x−1

log ` −
⌊

log x−1
log `

⌋
− 1

`− 1
, if x 6= 0

0, if x = 0.

(27)

We notice that T` maps the set of irrationals in [0, 1] into itself. For any x ∈ (0, 1), put

an = an(x) = a1

(
Tn−1
` (x)

)
, n ∈ N+, (28)

with T0
` (x) = x and

a1 = a1(x) =
{
blog x−1/ log `c, if x 6= 0
∞, if x = 0.

(29)

The transformation T` which generates the continued fraction expansion (25) is ergodic
with respect to an invariant probability measure, G`, where

G`(A) := k`
∫

A

dx
((`− 1)x + 1)((`− 1)x + `)

, A ∈ B[0,1], (30)

with

k` :=
(`− 1)2

log(`2/(2`− 1))
(31)

and B[0,1] is the σ-algebra of Borel subsets of [0, 1].
An n-block (a1, a2, . . . , an) is said to be admissible for the expansion in (25) if there

exists x ∈ [0, 1) such that ai(x) = ai for all 1 ≤ i ≤ n. If (a1, a2, . . . , an) is an admissible
sequence, we call the set

I`(a1, a2, . . . , an) = {x ∈ [0, 1] : a1(x) = a1, a2(x) = a2, . . . , an(x) = an}, (32)

the nth-order cylinder.
Define (u`,i)i∈N by

u`,i : [0, 1]→ [0, 1]; u`,i(x) :=
`−i

1 + (`− 1)x
. (33)

For each i ∈ N, u`,i =
(

T`|I`(a1)

)−1
. Let

u`,a1a2 ...an(t) :=
(
u`,a1 ◦ u`,a2 ◦ . . . ◦ u`,an

)
(t) =

`−a1(x)

1 +
(`− 1)`−a2(x)

1 +
. . . +

(`− 1)`−an

1 + (`− 1)t

. (34)

We observe that u`,a1a2 ...an =
(

Tn
`

∣∣
I`(a1,a2,...,an)

)−1
. Therefore,

I`(a1, a2, . . . , an) = {u`,a1 ...an(t) : t ∈ [0, 1)} (35)

which is an interval with the endpoints p`,n
q`,n

and p`,n+(`−1)`an p`,n−1
q`,n+(`−1)`an q`,n−1

. Such intervals form a

partition of [0, 1].
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Before applying Rohlin’s formula, we must check Rényi condition (8). We use directly,
without mentioning them here, some properties proved in [14]. Thus, we have∣∣∣u′`,a1 ...an

(t)
∣∣∣∣∣∣u′`,a1 ...an

(r)
∣∣∣ =

(
q`,n + r(`− 1)`an q`,n−1

q`,n + t(`− 1)`an q`,n−1

)2

≤
(

q`,n + (`− 1)`an q`,n−1

q`,n

)2

≤ `2. (36)

Applying Rohlin’s formula (7), we obtain:

h(T`) =
∫ 1

0
log
∣∣T′`(x)

∣∣dG` =
∫ 1

0
log

(
`−a1(x)

(`− 1)x2

)
dG`

=
∫ 1

0
(2 log(1/x)− a1(x) log `− log(`− 1))dG`

=2k`
∫ 1

0

log(1/x)
((`− 1)x + 1)((`− 1)x + `)

dx

− k`(log `)
∫ 1

0

a1(x)
((`− 1)x + 1)((`− 1)x + `)

dx− log(`− 1).

(37)

As examples, we have the values of h(T`) for different values of ` and the graph of
h(T`) in Table 1 and Figure 1, respectively.

Table 1. Entropies h(T`), h(Tθ), h(TN) and h(RN) for different values of the parameters involved.

` h(T`) s h(Tθ) N h(TN) N h(RN)

` = 2 1.62258 s = 1 2.37314 N = 1 2.37314 N = 2 2.37314
` = 3 1.26775 s = 3 3.24705 N = 3 3.24705 N = 3 2.905
` = 5 0.996315 s = 5 3.70244 N = 5 3.70244 N = 5 3.50063
` = 10 0.765943 s = 10 4.35074 N = 10 4.35074 N = 10 4.25052
` = 50 0.476521 s = 50 5.92195 N = 50 5.92195 N = 50 5.90194
` = 100 0.406218 s = 100 6.61015 N = 100 6.61015 N = 100 6.60015
` = 200 0.350849 s = 1000 8.90825 N = 1000 8.90825 N = 1000 8.90726

Figure 1. Graphs of h(T`) (black), h(Tθ) (blue), h(TN) (red), and h(RN) (orange).
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3.2. θ−Expansions

For a fixed irrational θ ∈ (0, 1), we consider a generalization of the Gauss map,
Tθ : [0, θ]→ [0, θ] defined as

Tθ(x) :=


1
x
− θ

⌊
1
xθ

⌋
, if x ∈ (0, θ],

0, if x = 0.
(38)

The transformation Tθ is connected with the θ−expansion for a number in (0, θ) as
follows. The numbers θ

⌊
1
yθ

⌋
obtained by taking y successively equal to x, Tθ(x), T2

θ (x), . . . ,
lead to the θ-expansion of x as

x =
1

ϑ1θ +
1

ϑ2θ +
1

ϑ3θ +
. . .

=: [ϑ1, ϑ2, ϑ3, . . .]θ , (39)

where ϑn ∈ N+ for all n ∈ N+. The positive integers ϑn = ϑn(x) = ϑ1

(
Tn−1

θ (x)
)

,

n ∈ N+, with T0
θ (x) = x and ϑ1 = ϑ1(x) =

⌊
1
xθ

⌋
are called the digits of x with respect

to the θ−expansion in (39), and we have that the finite truncation of (39), pθ,n/qθ,n :=
[ϑ1, ϑ2, . . . , ϑn]θ , tends to x as n→ ∞.

If θ2 = 1/s, s ∈ N+, the digits ϑns take values greater or equal to s, and the trans-
formation Tθ is ergodic with respect to an absolutely continuous invariant probability
measure

Gθ(A) :=
1

log(1 + θ2)

∫
A

θdx
1 + xθ

, A ∈ B[0,1]. (40)

An n-block (ϑ1, ϑ2, . . . , ϑn) is said to be admissible for the expansion in (39) if there
exists x ∈ [0, θ) such that ϑi(x) = ϑi for all 1 ≤ i ≤ n. If (ϑ1, ϑ2, . . . , ϑn) is an admissible
sequence, we call the set

Iθ(ϑ1, ϑ2, . . . , ϑn) = {x ∈ [0, θ] : ϑ1(x) = ϑ1, ϑ2(x) = ϑ2, . . . , ϑn(x) = ϑn}, (41)

the nth-order cylinder.
Define (uθ,i)i≥s by

uθ,i : [0, θ]→ [0, θ]; uθ,i(x) :=
1

iθ + x
. (42)

For each i ≥ s, uθ,i =
(

Tθ |Iθ(a1)

)−1
. Let

uθ,ϑ1ϑ2 ...ϑn(t) :=
(
uθ,ϑ1 ◦ uθ,ϑ2 ◦ . . . ◦ uθ,ϑn

)
(t) =

1

ϑ1θ +
1

ϑ2θ +
. . . +

1
ϑnθ + t

. (43)

We observe that uθ,ϑ1ϑ2 ...ϑn =
(

Tn
θ

∣∣
Iθ(ϑ1,ϑ2,...,ϑn)

)−1
. Therefore,

Iθ(ϑ1, ϑ2, . . . , ϑn) = {uθ,ϑ1 ...ϑn(t) : t ∈ [0, θ)} (44)

which is an interval with the endpoints pθ,n
qθ,n

and pθ,n+θpθ,n−1
qθ,n+θqθ,n−1

. Such intervals form a partition
of [0, θ].
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We now check Rényi condition (8). We use directly, without mentioning them here,
some properties proved in [16]. Thus, we have∣∣∣u′θ,ϑ1 ...ϑn

(t)
∣∣∣∣∣∣u′θ,ϑ1 ...ϑn

(r)
∣∣∣ =

(
qθ,n + rqθ,n−1

qθ,n + tqθ,n−1

)2
≤
(

qθ,n + θqθ,n−1

qθ,n

)2
≤
(

1 + θ2
)2

. (45)

We compute the entropy h(Tθ) by the Rohlin’s formula (7):

h(Tθ) =
∫ θ

0
log
∣∣T′θ(x)

∣∣dGθ(x) =
∫ θ

0

− log x2

log(1 + θ2)

θdx
1 + θx

=
−2θ

log(1 + θ2)

∫ θ

0

log x
1 + θx

dx. (46)

As examples, we have the values of h(Tθ) for different values of s = 1/θ2 and the
graph of h(Tθ) in Table 1 and Figure 1, respectively.

3.3. N-Continued Fraction Expansions

Fix an integer N ≥ 1. The measure-theoretical dynamical system ([0, 1],B[0,1], TN , GN)
is defined as follows:

TN : [0, 1]→ [0, 1]; TN(x) :=


N
x
−
⌊

N
x

⌋
, if x ∈ (0, 1],

0, if x = 0
(47)

and
GN(A) :=

1
log N+1

N

∫
A

dx
x + N

, A ∈ B[0,1]. (48)

The probability measure GN is TN-invariant, and the dynamical system
([0, 1],B[0,1], TN , GN) is ergodic.

For any 0 < x < 1, put ε1(x) = bN/xc and εn(x) = ε1

(
Tn−1

N (x)
)

, n ∈ N+, with

T0
N(x) = x. Then, every irrational 0 < x < 1 can be written in the form

x =
N

ε1 +
N

ε2 +
N

ε3 +
. . .

=: [ε1, ε2, ε3, . . .]N , (49)

where εns are non-negative integers, εn ≥ N, n ∈ N+. We call (49) the N-continued fraction
expansion of x and pN,n(x)/qN,n(x) := [ε1, ε2, . . . , εn]N the nth-order convergent of x ∈ [0, 1].
Then, pN,n(x)/qN,n(x)→ x, n→ ∞.

An n-block (ε1, ε2, . . . , εn) is said to be admissible for the expansion in (49) if there exists
x ∈ [0, 1) such that εi(x) = εi for all 1 ≤ i ≤ n. If (ε1, ε2, . . . , εn) is an admissible sequence,
we call the set

IN(ε1, ε2, . . . , εn) = {x ∈ [0, 1] : ε1(x) = ε1, ε2(x) = ε2, . . . , εn(x) = εn}, (50)

the nth-order cylinder.
Define (uN,i)i≥N by

uN,i : [0, 1]→ [0, 1]; uN,i(x) :=
N

i + x
. (51)
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For each i ≥ N, uN,i =
(

TN |IN(ε1)

)−1
. Let

uN,ε1ε2 ...εn(t) :=
(
uN,ε1 ◦ uN,ε2 ◦ . . . ◦ uN,εn

)
(t) =

N

ε1 +
N

ε2 +
. . . +

N
εn + t

. (52)

We observe that uN,ε1ε2 ...εn =
(

Tn
N
∣∣

IN(ε1,ε2,...,εn)

)−1
. Therefore,

IN(ε1, ε2, . . . , εn) = {uN,ε1 ...εn(t) : t ∈ [0, 1]} (53)

which is an interval with the endpoints pN,n
qN,n

and pN,n+pN,n−1
qN,n+qN,n−1

. Such intervals form a partition
of [0, 1].

We now check Rényi condition (8). We use directly, without mentioning them here,
some properties proved in [19]. Thus, we have∣∣∣u′N,ε1 ...εn

(t)
∣∣∣∣∣∣u′N,ε1 ...εn

(r)
∣∣∣ =

(
qN,n + rqN,n−1

qN,n + tqN,n−1

)2
≤
(

qN,n + qN,n−1

qN,n

)2
≤
(

N + 1
N

)2
. (54)

Using Rohlin’s entropy formula (7), we have:

h(TN) =
∫ 1

0
log
∣∣T′N(x)

∣∣dGN(x) =
1

log N+1
N

∫ 1

0

log
(

N
x2

)
x + N

dx

=
π2

3 + 2Li2(N + 1) + log(N + 1) log N

log N+1
N

, (55)

where Li2 denotes the dilogarithm function, defined by

Li2(x) =
∫ x

0

ln t
1− t

dt or Li2(x) =
∞

∑
k=1

xk

k2 . (56)

As examples, we have the values of h(TN) for different values of N and the graph of
h(TN) in Table 1 and Figure 1, respectively.

3.4. Rényi-Type Continued Fraction Expansions

Fix an integer N ≥ 2. Let the Rényi-type continued fraction transformation RN : [0, 1]→
[0, 1] be given by

RN(x) :=


N

1− x
−
⌊

N
1− x

⌋
, if x ∈ [0, 1),

0, if x = 1.
(57)

For any irrational x ∈ [0, 1], RN generates a new continued fraction expansion of x of
the form

x = 1− N

1 + r1 −
N

1 + r2 −
N

1 + r3 −
. . .

=: [r1, r2, r3, . . .]R. (58)

Here, rns are non-negative integers greater than or equal to N defined by

r1 := r1(x) =
⌊

N
1− x

⌋
, x 6= 1; r1(1) = ∞ (59)
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and
rn := rn(x) = r1

(
Rn−1

N (x)
)

, n ≥ 2, (60)

with R0
N(x) = x. The sequence of rationals {pR,n/qR,n} := [r1, r2, . . . , rn]R, n ∈ N+ are the

convergents to x in [0, 1].
The dynamical system

(
[0, 1],B[0,1], RN , ρN

)
is measure preserving and ergodic, where

the probability measure ρN is defined by

ρN(A) :=
1

log
(

N
N−1

) ∫
A

dx
x + N − 1

, A ∈ B[0,1]. (61)

An n-block (r1, r2, . . . , rn) is said to be admissible for the expansion in (58) if there exists
x ∈ [0, 1) such that ri(x) = ri for all 1 ≤ i ≤ n. If (r1, r2, . . . , rn) is an admissible sequence,
we call the set

IR(r1, r2, . . . , rn) = {x ∈ [0, 1] : r1(x) = r1, r2(x) = r2, . . . , rn(x) = rn}, (62)

the nth-order cylinder.
Define (uR,i)i≥N by

uR,i : [0, 1]→ [0, 1]; uR,i(x) := 1− N
i + x

. (63)

For each i ≥ N, uR,i =
(

RN |IR(r1)

)−1
. Let

uR,r1r2 ...rn(t) :=
(
uR,r1 ◦ uR,r2 ◦ . . . ◦ uR,rn

)
(t) = 1− N

1 + r1 −
N

1 + r2 −
. . . − N

rn + t

. (64)

We observe that uR,r1r2 ...rn =
(

Rn
N
∣∣

IR(r1,r2,...,rn)

)−1
. Therefore,

IR(r1, r2, . . . , rn) = {uR,r1 ...rn(t) : t ∈ [0, 1]} (65)

which is the interval
[

pR,n−pR,n−1
qR,n−qR,n−1

, pR,n
qR,n

)
. Such intervals form a partition of [0, 1].

Before applying Rohlin’s formula, we must check Rényi condition (8). We use directly,
without mentioning them here, some properties proved in [20]. Thus, we have∣∣∣u′R,r1 ...rn

(t)
∣∣∣∣∣∣u′R,r1 ...rn

(r)
∣∣∣ =

(
qR,n + (r− 1)qR,n−1

qR,n + (t− 1)qR,n−1

)2

≤
(

qR,n

qR,n − qR,n−1

)2
≤
(

N
N − 1

)2
. (66)

The entropy h(RN) is given by

h(RN) =
∫ 1

0
log
∣∣R′N(x)

∣∣dρN(x) =
1

log N
N−1

∫ 1

0

log N
(1−x)2

x + N − 1
dx

= log N +
2Li2

(
1
N

)
log N

N−1
, (67)

where Li2 is as in (56). As examples, we have the values of h(RN) for different values of N
and the graph of h(RN) in Table 1 and Figure 1, respectively.
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4. Comparing the Efficiency of Some Expansions

In this section, we apply the Extended Lochs’ theorem presented in Section 2.4 and
compare two by two the expansions presented in the previous section. First, we observe
that, for various values of the parameters involved, the entropies h(Tθ) and h(TN) are
equal. Since entropy is an isomorphism invariant, we conjecture the following result.

Conjecture 1. For an irrational θ ∈ (0, 1) and a non-negative integer N ≥ 2 with 1/θ2 = N, the
transformations Tθ in (38) and TN in (47) are isomorphic.

For this reason, we make only the following pairs: N-continued fractions and Chan’s
continued fractions, N-continued fractions and Rényi-type continued fractions, and Rényi-
type continued fractions and Chan’s continued fractions.

We observe that the transformations TN , T` and RN satisfy the two conditions from
Extended Lochs’ theorem (see Section 2.4).

4.1. N-Continued Fractions and Chan’s Continued Fractions

Let Ix
N(ε1, ε2, . . . , εn) denote the nth-order cylinder of the N-continued fraction that

contains x and Ix
` (a1, a2, . . . , am) denote the mth-order cylinder of the Chan’s continued

fraction that contains x. Then,

mN`(n, x) := sup{m : Ix
N(ε1, ε2, . . . , εn) ⊂ Ix

` (a1, a2, . . . , am)} (68)

represents the number of digits in the Chan’s expansion of x in (25) that can be deter-
mined from knowing the first n digits in the N-continued fraction in (49). Therefore,
applying (24), we have

lim
n→∞

mN`(n, x)
n

=
h(TN)

h(T`)
(69)

where h(TN) and h(T`) are as in (55) and (37), respectively. Given the values in Table 1,
we observe that N-continued fraction expansion is more effective than Chan’s continued
fraction expansion regardless of the values taken by the parameters N and `, respectively.

As examples, we have,

lim
n→∞

m12(n, x)
n

= 1.462571953 . . . or lim
n→∞

m32(n, x)
n

= 2.001164812 . . . (70)

Thus, roughly, if we approximate a number from the unit interval by keeping the first
1000 digits of the N-continued fraction expansion, to retain the same degree of accuracy,
we need to keep about 1462 digits in the Chan’s continued fraction expansion.

4.2. N-Continued Fractions and Rényi-Type Continued Fractions

Let Ix
N(ε1, ε2, . . . , εn) denote the nth-order cylinder of the N-continued fraction that

contains x and Ix
R(r1, r2, . . . , rm) denote the mth-order cylinder of the Rényi-type continued

fraction that contains x. Then,

mNR(n, x) := sup{m : Ix
N(ε1, ε2, . . . , εn) ⊂ Ix

R(r1, r2, . . . , rm)} (71)

represents the number of digits in the Rényi-type continued fraction of x in (58) that can be
determined from knowing the first n digits in the N-continued fraction in (49). Therefore,
applying (24), we have

lim
n→∞

mNR(n, x)
n

=
h(TN)

h(RN)
(72)

where h(TN) and h(RN) are as in (55) and (67), respectively. Given the values in Table 1, we
observe that N-continued fraction expansion is more effective than Rényi-type continued
fraction expansion regardless of the values taken by the parameter N.
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We notice that h(T1) = h(R2). We also have

lim
n→∞

m33(n, x)
n

= 1.117745267 . . . or lim
n→∞

m55(n, x)
n

= 1.057649623 . . . (73)

As N grows, the entropies are very close, which means that the efficiency of the two
continued fraction expansions are about the same.

4.3. Rényi-Type Continued Fractions and Chan’s Continued Fractions

Let Ix
R(r1, r2, . . . , rn) denote the nth-order cylinder of the Rényi-type continued fraction

that contains x and Ix
` (a1, a2, . . . , am) denote the mth-order cylinder of the Chan’s continued

fraction that contains x. Then,

mR`(n, x) := sup{m : Ix
R(r1, r2, . . . , rn) ⊂ Ix

` (a1, a2, . . . , am)} (74)

represents the number of digits in the Chan’s continued fraction of x in (25) that can be
determined from knowing the first n digits in the Rényi-type continued fraction in (58).
Therefore, applying (24), we have

lim
n→∞

mR`(n, x)
n

=
h(RN)

h(T`)
(75)

where h(RN) and h(T`) are as in (67) and (37), respectively. Given the values in Table 1,
we observe that Rényi-type continued fraction expansion is more effective than Chan’s
continued fraction expansion regardless of the values taken by the parameters N and `,
respectively.

As examples, we have,

lim
n→∞

m22(n, x)
n

= 1.462571953 . . . or lim
n→∞

m23(n, x)
n

= 1.871930586 . . . (76)

5. Final Remarks

N-continued fractions are more efficient than Rényi-type continued fractions at rep-
resenting a number in the unit interval. Since the entropies are h(TN) ≥ 2.37314 for
N ≥ 1, h(RN) ≥ 2.37314 for N ≥ 2 and h(TG) = π2/(6 log 2) = 2.37314, it follows that
N-continued fractions and Rényi-type continued fractions are more efficient than regular
continued fractions (RCFs). Since the entropy is h(T`) ≤ 1.62258 for ` ≥ 2, it follows that
RCFs are more efficient than Chan’s continued fractions. Thus, N-continued fractions are
the most efficient at representing a number in the unit interval, with a very close efficiency
being Rényi-type continued fractions.

Our paper is a systematic presentation of continued fraction expansions that have
been investigated by us during the last ten years. Having always in view the classical
RCF expansion, we consider some interval maps that generate expansions and that admit
an invariant density with suitable ergodic properties. However, these ergodic properties,
recently studied, are not enough to yield rates of convergence for mixing properties. For
this a Gauss–Kuzmin-type theorem is needed. There are still many open questions closely
related to this problem. On the other hand, to extend our references list [14–22], we
consider the opportunity of starting new investigations such as the efficiency of pairs of
maps for which the generating partition has finite entropy. In these circumstances, we
review sufficient conditions on the latter to belong to a class of number-theoretic fibered
maps for which the generating partition has finite entropy.
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