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Abstract: The Hochschild cohomological dimension of any commutative k-algebra is lower-bounded
by the least-upper bound of the flat-dimension difference and its global dimension. Our result is
used to show that for a smooth affine scheme X satisfying Pointcaré duality, there must exist a vector
bundle with section M and suitable n which the module of algebraic differential n-forms Ωn(X, M).
Further restricting the notion of smoothness, we use our result to show that most k-algebras fail to be
smooth in the quasi-free sense. This consequence, extends the currently known results, which are
restricted to the case where k = C.
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1. Introduction

Non-commutative geometry is a rapidly developing area of contemporary mathemat-
ical research that studies non-commutative algebras using formal geometric tools. The
field traces its most evident origins back to the results of [1], which show that any compact
Hausdorff space can be fully reconstructed, and largely understood, from its associated
C?-algebra of functions C(X). However, the trend of understanding geometric properties
via algebraic dual theories is echoed throughout mathematics; with notable examples
coming from the duality between finitely generated algebras and affine schemes (see [2]),
the description of any smooth manifold M through its commutative algebra C∞(M), and
ultimately culminating with the work of [3,4] describing the duality relationship between
algebra and geometry in full generality.

Though a large portion of the interest in non-commutative geometry stems from its
connections with physics, see [5–7]. A. Connes largely made these connections through
the cyclic cohomology theory of [8], a generalized de Rham cohomology theory for non-
commutative spaces, which closely tied through the Connes complex to one of the central
tools of non-commutative geometry and the central object of study of this paper, namely
Hochschild (co)homology.

Hochschild (co)homology, originally introduced in [9], is a cohomology theory for
non-commutative k-algebras. Since its introduction, it has become a key tool and object of
study in non-commutative geometry since the results of [10] (and more recently generalized
in [11] to characteristic p fields); which identifies the Hochschild homology of commutative
k-algebras over a characteristic 0 field k, to the module of Khäler differentials over their
associated affine scheme. Likewise, the result identifies Hochschild’s cohomology theory
with the modules of derivations and, therefore, with the tangential structure over the
commutative algebra’s associated affine scheme. Likewise, in these cases, Pointcaré duality-
like results can also be entirely formulated between these structures and the Hochschild
(co)homology theories as shown in [12].
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This article focuses on a fundamental non-commutative geometric invariant derived
from the Hochschild (co)homology, namely its (co)homological dimension. We focus on the
interplay between this (co)homological invariant of commutative k-algebras over general
commutative rings k, and its implications on various notions of smoothness of its associated
dual non-commutative space; such as the quasi-freeness (or formal smoothness) of [13,14],
or more generally, the vanishing of their higher modules of differential forms as seen in [12].

The relationship between the Hochschild (co)homology theory and smoothness has
seen study in the case where k is a field in [15,16]. However, the general case is still far from
understood and this is likely due to it requiring a more subtle treatment offered by the
less-standard tools of relative homological-algebraic (see [17,18] for example). Indeed, this
paper proposes a set of lower-estimates of this invariant, which can be easily computed
from local data of any commutative k-algebra over a commutative ring k with unity.

The paper’s main results are used to show that for any smooth affine scheme X there
must exist a vector bundle on X with section M and a suitably small natural number
n for which the module of algebraic differential n-forms with values in M, denoted by
Ωn(X, M) is non-trivial. Our results are also used to derive simple tests for a k-algebras’
quasi-freeness. This latter application extends known results of [14] in the special case
where k = C. Using this result, we conclude that typical k-algebras are not quasi-free.
Concrete applications are considered within the scope of arithmetic geometry.

Organization of the Paper

The paper is organized as follows. Section 2 contains the paper’s main theorems as
well as its non-commutative geometric questions consequences. Each result is followed
by examples which unpack the general implications in the context of algebraic geometry.
Appendix A contains detailed background material in the relative homological algebraic
tools required for the paper’s proofs is included after the paper’s conclusion. Likewise, the
paper’s proofs and any auxiliary technical lemma is also relegated to Appendices B–D.

2. Main Result

From here on out, A will always be a commutative k-algebra. The remainder of this
paper will focus on establishing the following result. An analogous statement was made
in [14] that all affine algebraic varieties over C of dimension at greater than 1 fail to have
a quasi-free C-algebra of functions. Once, the assumption that k = C is relaxed, we find
an analogous claim is true; however, the analysis is more delicate. Our principle result is
the following.

Theorem 1 (Lower-Bound on Hochschild Cohomological Dimension). Let A be a commu-
tative k-algebra and m be a non-zero maximal ideal in A such that Am is has finite ki−1[m]-flat
dimension and D(ki−1[m]) is finite. Then:

f dAm
(Mm)− D(ki−1[m])− f dkm(Am) ≤HCdim(A|k)

Theorem 1 allows for an easily computable lower-bound on the Hochschild cohomo-
logical dimension of nearly any commutative k-algebra A, granted that it is smooth in the
classical sense at-least at one point. The next result, obtains an even simpler criterion under
the additional assumption that A is k-flat.

Theorem 2. Let k be of finite global dimension, A be a k-algebra which is flat as a k-module.
Then M:

f dA(M)− D(k) ≤ HCdim(A|k). (1)
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Example 1. Let A be a commutative k-algebra and m be a non-zero maximal ideal in A such that
Am is has finite ki−1[m]-flat dimension, D(ki−1[m]), and A is Cohen-Macaulay at some maximal
ideal m. Then

Krull(Am)− D(ki−1[m])− f dm(Am) ≤ HCdim(A|k).

Example 2. Let k be of finite global dimension, A be a k-algebra which is flat as a k-module. Then,
for every A-module M, if x1, .., xn is a regular sequence in A then:

n− D(k) ≤ HCdim(A|k). (2)

Furthermore if A is commutative and Cohen-Macaulay at a maximal ideal m then:

Krull(Am)− D(k) ≤ HCdim(A|k). (3)

Next, we consider the implications of our dimension-theoretic formulas within the
scope of algebraic geometry from the non-commutative geometric vantage-point.

2.1. Non-Triviality of Higher Differential Forms

The paper’s provides a homological argument showing that a smooth affine scheme
must have some non-trivial module of higher-differential forms. These begin with the
non-triviality of the Hochschild homology modules.

To show our result, we begin by recalling the terminology introduced in [12]. Recall
that a k-algebra is satisfies Pointcaré duality in dimension d if the dualising module ωA ,
Extd

E k
A
(A, A) satisfies Exti

E k
A
(A, k) = 0 for every i 6= d and if in addition pdE k

A
(ωA) < ∞.

We also recall that an A-bimodule M is invertible if and only if there exits another A-
bimodule, which we denote by M−1, for which M⊗A M−1 ∼= M−1 ⊗A M ∼= A in A ModA.

Corollary 1 (Non-Triviality of Hochschild Homology Modules). Let k be a commutative ring
and X be a d-dimensional smooth affine scheme over k whose coordinate ring satisfies Pointcaré
duality in dimension d and is invertible. Then, there is an A-bimodule M and some 0 ≤ n ≤
d− f dA(M) + D(k) satisfying

HHn(A, M) 6∼= 0.

On applying the Hochschild-Kostant-Rosenberg Theorem to Corollary 1, we imme-
diately obtain the claimed result. Recall that Ωn(X, M) denotes the algebraic differential
n-forms on the affine scheme X with coefficients in the vector bundle whose section is the
k[A]-bimodule M.

Corollary 2. Let k be a commutative ring and X be a d-dimensional smooth affine scheme over k
whose coordinate ring satisfies Pointcaré duality in dimension d and is invertible. Then, there exists
a some 0 ≤ n ≤ d− f dA(M) + D(k) and a vector bundle whose section is the k[A]-module M for
which the algebraic differential n-forms for which

Ωn(X, M) 6∼= 0.

Next, we use Theorem 1 to demonstrate the rarity of commutative quasi-free k-algebras.

2.2. Quasi-Free Algebras are Uncommon

Corollary 3 (Krull Dimension-Theoretic Criterion for Quasi-Freeness). Let A be a commu-
tative k-algebra and m be a non-zero maximal ideal in A such that Am is has finite ki−1[m]-flat
dimension, D(ki−1[m]), and A is Cohen-Macaulay at some maximal ideal m. Then, A is not
Quasi-free if

Krull(Am) ≤ 2 + D(ki−1[m])− f dm(Am).

Let us also consider the simpler form implied by Theorem 2.
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Corollary 4. If k is of finite global dimension, A is a k-algebra which is flat as a k-module, and if
Am’s Krull dimension is at least 2 + D(k) then A is not Quasi-free.

We unpack Theorem 2 in the context of classical algebraic and arithmetic geometry.

Examples

To build intuition before proceeding, we consider a counter-intuitive consequence.
Namely, that most examples of smooth commutative algebras fail to be quasi-free, even
when k 6= C. This makes smoothness, in the sense of [14], very rare in the non-commutative
category. The following example from arithmetic geometry is of interest.

Let be an affine algebraic C-variety V(A). For any point x in V(A) the ideal generated
by the collection of regular functions on V(A) vanishing at the point x is denoted by I (x);
in fact I (x) is a maximal ideal in A [19]. Moreover, for any affine-algebraic variety V(A)
there exists a point x such that AI (x) is regular. Since every regular local C-algebra is
Cohen Macaulay at its maximal ideal, then A is Cohen-Macaulay at I (x). Since C is a field
it is a regular local ring of Krull dimension 0; the Auslander-Buchsbaum-Serre theorem thus
implies D(k) = Krull(k) = 0, moreover AI (x) is a C-vector space whence it is a C-free
and so is a C-flat module. Therefore Theorem 2 applies if Krull(A) ≥ 2. We summarize
this finding as follows.

Corollary 5. If X is an affine C-variety and k[A]’s Krull dimension is greater than 1 then the
C-algebra A is not quasi-free

Remark 1. Corollary 5 implies that any affine algebraic C-variety which is not a disjoint union of
curves or points has a coordinate ring which fails to be quasi-free over C.

Example 3. The C-algebra C[x1,1, x1,2, x2,1, x2,2](det) is not quasi-free.

Proof. C[x1,1, x1,2, x2,1, x2,2](det) is of Krull dimension 4 > 1 [20] therefore Theorem 2
applies.

Corollary 6 (Arithmetic Polynomial-Algebras). The Z-algebra Z[x1, .., xn] fails to be quasi-free
for values of n > 1.

Proof. Since Z[x1, ...xn] is Cohen-Macaulay at the maximal ideal (x1, ...xn, p) and is of Krull
dimension n + 1 = Krull(Z[x1, ...xn]). Moreover, one computes that D(Z) = 1. Whence by
point 2 of Theorem 2: Z[x1, .., xn] fails to be Quasi-free if 2 ≤ Krull(Z[x1, ...xn])− D(Z) =
(n + 1)− 1 = n.

The contributions of the paper are now summarized.

3. Conclusions

This paper’s main result derived a general lower bound on the Hochschild cohomolog-
ical dimension of an arbitrary commutative k-algebra A over a general commutative ring k.
Theorem 1 derived, the lower-bound for this (co)homological invariant was expressed in
terms of other (co)homological dimension-theoretic invariants, namely the flat dimension
over A, the global dimension of A, and the flat dimension of A over k; where each quantity
was appropriately localized. Examples 1 and 2, built on these results to lower-bound the
Hochschild cohomological dimension purely in terms of easily computable quantities,
such as the Krull dimension, when A was Cohen-Macaulay. Theorem 2 then expresses a
non-localized analog of Theorem 1 wherein no commutativity of A was required.

The paper’s results have then been applied the results to purely geometric questions.
First, the dimension-theoretic formula was used in Corollary 2 to show infer the non-
triviality of certain higher algebraic differential forms of any smooth affine scheme with
values in a vector bundle with a non-trivial section. The dual result was also considered in
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Corollary 1 where dimension-theoretic conditions were obtained for the non-vanishing of
some of the Hochschild homology modules under Pointcaré duality in the sense of [12].

Next, using the general (co)homological dimension-theoretic estimates, a result of [14],
which showed that most commutative affine k-algebras fail to be smooth in the non-
commutative sense formalized by quasi-freeness, was extended from the simple case where
k was a field to the general case where k is simply a commutative ring. Specifically, in
Corollaries 3 and 4, easily applicable dimension-theoretic tests for the non-quasi-freeness
(non-formal smoothness) of a commutative k-algebra over a general ring k were derived.
The tools are simple and only require a simple computation involving the Krull dimension
of A, the flat-dimension of k at one point, and the base ring’s global dimension to identify
if A’s associated non-commutative space is quasi-free or not.
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Appendix A. Background

This appendix contains the necessary background material for the formulation of this
paper’s main results. We refer the reader in further reading to the notes of [21].

Appendix A.1. Relative Homological Algebra

The results in this paper are formulated using the relative homological algebra, see [17]
for example. The theory is analogous to standard homological algebra; see [22] for example,
but in this case, one builds the entire theory relative to a suitable subclass of epi(resp.
mono)-morphisms. In our case, these are defined as follows.

Definition A1 (E k
A-Epimorphism). For any k-algebra A, an epimorphism ε in A Mod is an

E k
A-epimorphism if and only if ε’s underlying morphism of k-modules is a k-split epimorphism in

k Mod. The class of these epimorphisms is denoted E k
A.

Definition A2 (E k
A-Exact sequence). An exact sequence of A-modules:

...
φi−1−−→ Mi

φi−→ Mi+1
φi+1−−→ Mi+2

φi+2−−→ ... (A1)

is said to be E k
A-exact if and only if for every integer i the there exists a morphism of k-modules

ψi : Mi+1 → Mi such that:
φi = φi ◦ ψi ◦ φi. (A2)

In particular, a short exact sequence of A-modules which is E k
A-exact is called an E k

A-short
exact sequence.

Remark A1. Property (A2) is called E k
Ae -admissibility [18]. Alternatively, it is called E k

Ae -
allowable [23].

Example A1. The augmented bar complex ĈB?(A) of a k-algebra A is E k
Ae -exact.
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Definition A3 (E k
A-Projective module). If A is a k-algebra and P is an A-module, then P is said

to be E k
A-projective if and only if for every E k

A-short exact sequence:

0 −→ M
η−→ N ε−→ N′ −→ 0 (A3)

the sequence of k-modules:

0 −→ HomA(P, M)
η?−→ HomA(P, N)

ε?−→ HomA(P, N′) −→ 0 (A4)

is exact.

Remark A2. This definition is equivalent to requiring that P verify the universal property of
projective modules only on E k

A-epimorphisms [23].

Example A2. A⊗n+2 is E k
Ae -projective for all n ∈ N.

E k
A-projective A-modules have analogous properties to projective A-modules. For

example, E k
A-projective A-modules admit the following characterization.

Proposition A1. For any A-module P the following are equivalent:

• E k
A-Short exact sequence preservation property P is E k

A-projective.
• E k

A-lifting property For every E k
A-epimorphism f : N → M if there exists an A-module

morphism g : P→ M then there exists an A-module map f̃ : P→ N such that f ◦ f̃ = g.
• E k

A-splitting property Every short E k
A-exact sequence of the form:

Eπ : 0 −→ M −→ N −→ P −→ 0 (A5)

is A-split-exact.
• E k

A-free direct summand property There exists a k-module F, an A-module Q and an

isomorphism of A-modules φ : P⊕Q
∼=→ A⊗k F.

Remark A3. If F is a free k-module, some authors call A⊗k F an E k
A-free module. In fact this

gives an alternative proof that Ae ⊗k A⊗n ∼= A⊗n+2 is E k
Ae -free for every n ∈ N.)

Proof. See [23] pages 261 for the equivalence of 1, 2 and 3 and page 277 for the equivalence
of 1 and 4.

For a homological algebraic theory to be possible, one needs enough projective
(resp. injective) objects. The next result shows that there are indeed enough E k

A-projectives
in A Mod.

Proposition A2 (Enough E k
A-projectives). If A is a k-algebra and M is an A-module then there

exists an E k
A-epimorphism ε : P→ M where P is an E k

A-projective.

Proof. By Proposition A1 A⊗k M is E k
A-projective. Moreover, the A-map ζ : A⊗k M→ M

described on elementary tensors as (∀a⊗k m ∈ A⊗k M)ζ(a⊗k m) := a ·m is epi and is
k-split by the section m 7→ 1⊗k m.

Since there are enough projective objects, then one can build a resolution of any
A-module by E k

A-projective modules.

Definition A4 (E k
A-projective resolution). If M is an Ae-module then a resolution P? of M is

called an E k
A-projective resolution of M if and only if each Pi is an E k

A-projective module and P? is
an E k

A-exact sequence.
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Example A3. The augmented bar complex ĈB?(A) of A is an E k
Ae -projective resolution of A.

Remark A4. A nearly completely analogous argument to Example A3 shows that for any
(A, A)-bimodule M, M⊗A ĈB?(A) is an E k

Ae -projective resolution of M, see for details [24].

Following [18], the E k
A-relative derived functors of the tensor product and the HomA-

functors are introduced, as follows.

Definition A5. E k
A-relative Tor

If N is a right A-module, M is an A-module and P? is an E k
A-projective resolution of N then

the k-modules H?(P? ⊗A M) are called the E k
A-relative Tor k-modules of N with coefficients in the

A-module M and are denoted by Torn
E k

A
(N, M).

Let H? (resp. H?) denote the (co)homology functor from the category of chain
(co)complexes on an A-module to the category of A-modules. The E k

A-relative Tor functors
are defined as follows.

Example A4. The E k
A-relative Tor functors may differ from the usual (or "absolute") Tor functors.

For example consider all the Z-algebra Z, any Z-modules N and M are E Z
Z -projective. In particular,

this is true for the Z-modules Z and Z/2Z. Therefore Torn
E Z
Z
(Z,Z/2Z) vanish for every positive n,

however Torn
Z(Z,Z/2Z) does not. For example, Tor1

Z(Z,Z/2Z) ∼= Z/2Z [22].

Similarly there are E k
A-relative Ext functors.

Definition A6 (E k
A-relative Ext). If N is and M are A-modules and P? is an E k

A-projective
resolution of N then the k-modules H?(HomA(P?, M)) are called the E k

A-relative Ext k-modules of
N with coefficients in the A-module M and are denoted by Extn

E k
A
(N, M).

The E k
A-relative homological algebra is indeed well defined, since both the definitions of

E k
A-relative Ext and E k

A-relative Tor are independent of the choice of E k
A-projective resolution.

Theorem A1 (E k
A-Comparison theorem). If P? and P′? are E k

A-projective resolutions of an A-
module N then for any A-module M there are natural isomorphisms:

H?(HomE k
A
(P?, N))

∼=→ H?(HomE k
A
(P′?, N)) (A6)

and if P? and P′? are E k
A-projective resolutions of a right A-module N then:

H?(P? ⊗A N)
∼=→ H?(P′? ⊗A N) (A7)

Proof. Nearly identical to the usual comparison theorem, see [23].

Example A5. The ExtZ and E Z
Z -relative Ext may differ. For example, one easily computes

Ext1
Z(Z,Z/2Z) ∼= Z/2Z. However, Ext1

E Z
Z
(Z,Z/2Z) ∼= 0.

Analogous to the fact that for any A-module P, P is projective if and only if Ext1
A(P, N) ∼=

0 for every A-module N there is the following result, which can be found in ([18],
Chapter IX).

Proposition A3. P is an E k
A-projective module if and only if for every A-module N:

Ext1
E k

A
(P, N) ∼= 0 (A8)
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Using the theory of relative (co)homology, we are now in-place to review the Hochschild
cohomology theory over general k-algebras.

Appendix A.2. Hochschild (Co)homological Dimension

Since CB?(A) is an E k
Ae -projective resolution of A then Theorem A1 and the definition

of the Ext?
E k

Ae
(A,−) functors imply that the Hochschild cohomology of A with coefficients

in of [9], denoted by HH?(A, N), can be expressed using the Ext?
E k

Ae
. We maintain this

perspective throughout this entire article.

Proposition A4. For every Ae module N there are k-module isomorphisms, natural in N:

HH?(A, N)
∼=→ Ext?

E k
Ae
(A, N) (A9)

Taking short E k
Ae -exact sequences to isomorphic long exact sequences.

Definition A7 (Hochschild Homology). The Hochschild homology HH?(A, N) of a k-algebra
A with coefficient in the (A, A)-bimodule N is defined as:

HH?(A, N) := H?(P? ⊗A N) (A10)

where P? is an E k
Ae -projective resolution of A.

Following the results of [10], the Hochschild cohomology has become the central tool
for obtaining non-commutative algebraic geometric analogues of classical commutative
algebraic geometric notions. The one of central focus in this paper, is the Hochschild
cohomological dimension,

Definition A8 (Hochschild cohomological dimension). The Hochschild cohomological dimen-
sion of a k-algebra A is defined as:

HCdim(A|k) := sup
M∈Ae Mod

(sup{n ∈ N#|HHn(A, M) 6 ∼=0}). (A11)

where N# is the ordered set of extended natural numbers.

The Hochschild cohomological dimension may be related to the following cohomo-
logical dimension.

Definition A9 (E k
A-projective dimension). If n is a natural number and M is an A-module then

M is said to be of E k
A-projective dimension at most n if and only if there exists a deleted E k

A-projective
resolution of M of length n. If no such E k

A-projective resolution of M exists then M is said to be of
E k

A-projective dimension ∞. The E k
A-projective dimension of M is denoted pdE k

A
(M).

The following is a translation of a classical homological algebraic result into the setting
of E k

Ae -projective dimension, Ωn(A/k) and Hochschild cohomology. Here, Ωn(A/k) ,
Ker(b′n−1) and b′n−1 is the (n − 1)th differential in the augmented Bar resolution of A;
see [24] for details on the augmenter Bar complex.

Theorem A2. For every natural number n, the following are equivalent:

• HCdim(A|k) ≤ n
• A is of E k

Ae -projective dimension at most n
• Ωn(A/k) is an E k

Ae -projective module.
• HHn+1(A, M) vanishes for every (A, A)-bimodule M.



Mathematics 2021, 9, 251 9 of 22

• Extn+1
E k

Ae
(A, M) vanishes for every Ae-module M.

Proof. (1 ⇒ 4) By definition of the Hochschild cohomological dimension. (4 ⇔ 5) By
Proposition A4. (3⇒ 2) Since Ωn(A/k) is E k

Ae -projective:

0→ Ωn(A/k)→ CBn−1(A)
b′n−1→ ....

b′0→ A→ 0

is a E k
Ae -projective resolution of A of length n. Therefore pdE k

Ae
(A) ≤ n.

(3⇔ 4) By Proposition A9 there are isomorphism natural in M:

(∀M ∈Ae Mod) HH1+n(A, M) ∼= Ext1+n
E k

Ae
(A, M) ∼= Ext1

E k
Ae
(Ωn(A/k), M).

Therefore for every Ae-module M:

Ext1
E k

Ae
(Ωn(A/k), M) ∼= 0 if and only if HH1+n(A, M) ∼= 0.

By Proposition A3 Ωn(A/k) is E k
A-projective if and only if Ext1

E k
Ae
(Ωn(A/k), M) ∼= 0.

(2 ⇒ 1) If A admits an E k
Ae -projective resolution P? of length n then Theorem A1

implies there are natural isomorphisms of Ae-modules:

(∀M ∈Ae Mod)Ext?
E k

Ae
(A, M) ∼= H?(HomAe(P?, M)). (A12)

Since P? is of length n all the maps pj : Pj+1 → Pj are the zero maps therefore so are
the maps p?j : HomAe(Pj) → HomAe(Pj+1). Whence (A12) entails that for all j > n + 1

Ext?
E k

Ae
(A, M) vanishes. By Proposition A4 this is equivalent to HH j(A, M) vanishing for

all j > n + 1 for all M ∈Ae Mod. Hence A is of Hochschild cohomological dimension at
most n.

Next, the non-commutative geometric object focused on in this paper is reviewed.

Appendix A.3. Quasi-Free Algebras

Many of the properties of an algebra are summarized by its Hochschild cohomological
dimension, see [10,17] for example. However, this article focuses on the following non-
commutative analogue of smoothness of [13], introduced by [14].

Remark A5. Due to their lifting property, the quasi-free k-algebras are considered a non-commutative
analogue to smooth k-algebras; that is k-algebras for which ΩA|k is a projective A-module.

This notion of smoothness has played a key role in a number of places in non-
commutative algebraic geometry, especially in the cyclic (co)homology of [25].

Definition A10 (Quasi-free k-algebra). A k-algebra for which all k-Hochschild extensions of A
by an (A, A)-bimodule lift is called a quasi-free k-algebra.

Corollary A1. For a k-algebra A, the following are equivalent:

• A is HCdim(A|k) ≤ 1.
• Ω1(A/k) is a E k

Ae -projective Ae-module.
• A is quasi-free.

One typically construct quasi-free algebras using Morita equivalences. However, the
next proposition, which extends a result of [14] to the case where k need not be a field, may
also be used without any such restrictions on k.
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Proposition A5. If A is a quasi-free k-algebra and P is an E k
Ae -projective (A, A)-bimodule then

TA(P) is a quasi-free A-algebra.

Proof. Differed until the appendix.

Example A6. Let n ∈ N. The Z-algebra TZ

(
n⊕

i=0
Z
)

is quasi-free.

Proof. Since all free Z-modules are projective Z-modules and all projective Z-modules are

E Z
Z -projective modules, the free Z-module

n⊕
i=0

Z is E Z
Z -projective. Whence Proposition A5

implies TZ

(
n⊕

i=0
Z
)

is a quasi-free Z-algebra.

Example A7. If A is a quasi-free k-algebra then TA(Ω1(A/k)) is a quasi-free A-algebra.

Proof. By Corollary A1 if A is quasi-free Ω1(A/k) must be an E k
Ae -projective (A, A)-

bimodule; whence Proposition A5 applies.

Next, we overview some relevant dimension-theoretic notions and terminology.

Appendix A.4. Classical Cohomological Dimensions

We remind the reader of a few important algebraic invariants which we will require.
The reader unfamiliar with certain of these notions from commutative algebra and algebraic
geometry is referred to [2,26] or to [19].

Definition A11 (A-Flat Dimension). If A is a commutative ring then the A-flat dimension
f dA(M) of an A-module M is the extended natural number n, defined as the shortest length of a
resolution of M by A-flat A-modules. If no such finite n exists n is taken to be ∞.

We will require the following result, whose proof can be found in [24].

Proposition A6. If n is a positive integer and if there exists a regular sequence x1, .., xn in A of
length n then:

n = f dA(A/(x1, .., xn)). (A13)

One more ingredient related to the flat dimension will soon be needed.

Proposition A7. If A is a commutative ring and m is a maximal ideal of A then for any A-module
M f dAm

(Mm) is a lower-bound for f dA(M).

Definition A12. A-Projective Dimension
If A is a commutative ring and M is an A-module then the A-projective dimension pdA(M)

of M is the extended natural number n, defined as the shortest length of a deleted A-projective
resolution of M. If no such finite n exists n is taken to be ∞.

Lemma A1. If A is a commutative ring and M is an A-module then f dA(M) ≤ pdA(M).

Proof. Since all A-projective A-modules are A-flat, then any A-projective resolution is a
A-flat resolution.

Lemma A2. If A is a commutative ring then for any A-module M the following are equivalent:

• The A-projective dimension of M is at most n.
• For every A-module N, the A-module ExtA

n+1(M, N) is trivial.
• For every A-module N and every integer m ≥ n + 1: ExtA

m(M, N) ∼= 0.
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Proof. Nearly identical to the proof of Theorem A2, see page 456 of [22] for details.

Definition A13 (Cohen-Macaulay at an Ideal). A commutative ring A is said to be Cohen-
Macaulay at a maximal ideal m if and only if either:

• Krull(Am) is finite and there is an Am-regular sequence x1, ..., xd in Am of maximal length
d = Krull(Am) such that {x1, .., xd} ⊆ m.

• Krull(Am) is infinite and for every positive integer d there is an Am-regular sequence x1, .., xd
in m on A of length d.

Proposition A8 ([24]). If A is a commutative ring which is Cohen Macaulay at the maximal ideal
m and Krull(Am) is finite then:

Krull(Am) = f dAm
(Am/(x1, .., xn)) ≤ pdA(Am/(x1, .., xn)) (A14)

Definition A14. Global Dimension
The global dimension D(A) of a ring A, is defined as the supremum of all the A-projective

dimensions of its A-modules. That is:

D(A) := sup
M∈A Mod

pdA(M). (A15)

The following modification of the global dimension of a k-algebra, does not ignore the
influence of k on a k-algebra A, as will be observed in the next section of this paper.

Definition A15. E k-Global dimension
The E k-global Dimension DE k (A) of a k-algebra A is defined as the supremum of all the

E k
A-projective dimensions of its A-modules. That is:

DE k (A) := sup
M∈A Mod

pdE k
A
(M). (A16)

Appendix B. Proofs

This appendix contains certain technical lemmas or auxiliary results that otherwise
detracted from the overall flow of the paper.

Appendix C. Technical Lemmas

We make use of the following result appearing in a technical note of Hochschild circa
1958, see [27].

Theorem A3 ([27]). If k is of finite global dimension, A is a k-algebra which is flat as a k-module
and M is an A-module then:

pdA(M)− D(k) ≤ pdE k
A
(M) (A17)

Proposition A9 (Dimension Shifting). If

...
dn+1−−→ Pn+jPn

dn−→ ...
d2−→ P1

d1−→ P0 −→ 0 (A18)

is a deleted E k
A-projective resolution of an A-module M then for every A-module N and for every

positive integer n there are isomorphisms natural in N:

Ext1
E k

A
(Ker(dn), N) ∼= Extn+1

E k
A
(A, N) (A19)
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Proof. By definition the truncated sequence is exact:

...
dn+j−−→ Pn+j

dn+j−1−−−→ ...
dn+1−−→ Pn+1

η−→ Ker(dn) −→ 0, , (A20)

where η is the canonical map satisfying dn = ker(dn) ◦ η (arising from the universal
property of ker(dn)). Moreover, since (A30) is E k

A-exact, dn is k-split; whence η must be
k-split. Moreover, for every j ≥ n + 1, dj was by assumption k-split therefore (A20) is
E k

A-exact and since for every natural number m > n Pm is by hypothesis E k
A-projective

then (A20) is an augmented E k
A-projective resolution of the A-module Ker(dn).

For every natural number m, relabel:

Qm := Pm+n and pm := dn+m. (A21)

By Theorem A1, for all N ∈A Mod and all m ∈ N, we have that:

Extm
E k

A
(Ker(dn), N) ∼=Hm(HomA(Q?, N))

=Ker(HomA(pn, N))/Im(HomA(pn+1, N))

=Ker(HomA(dn+m, N))/Im(HomA(dn+m+1, N))

=Hm+n(HomA(P?, N))
∼=Extm

E k
A
(A, N).

(A22)

Therefore, the result follows.

Appendix D. Auxiliary Results

Proof of Proposition A5. Let

0→ M→ B π→ TA(P)→ 0 (A23)

be a k-Hochschild extension of TA(P) by M. We use the universal property of TA(P) to
show that there must exist a lift l of (A23).

Let p : TA(P) → A be the projection k-algebra homomorphism of TA(P) onto A. p
is k-split since the k-module inclusion i : A → TA(P) is a section of p; therefore p is an
E k

Ae -epimorphism and
0→ Ker(p ◦ π)→ B→ A→ 0 (A24)

is a k-Hochschild extension of A by the (A, A)-bimodule Ker(p ◦ π). Since A is a quasi-
free k-algebra there exists a k-algebra homomorphism l1 : A → B lifting p ◦ π. Hence B
inherits the structure of an (A, A)-bimodule and π may be viewed as an (A, A)-bimodule
homomorphism. Moreover, l1 induces an A-algebra structure on B.

Let f : P→ TA(P) be the (A, A)-bimodule homomorphism satisfying the universal
property of the tensor algebra on the (A, A)-bimodule P. Since π : B → A is an E k

Ae -
epimorphism and since P is an E k

Ae -projective (A, A)-bimodule, Proposition A1 implies
that that there exists an (A, A)-bimodule homomorphism l2 : P→ B satisfying π ◦ l2 = f .

Since l2 : P→ B is an (A, A)-bimodule homomorphism to a A-algebra the universal
property of the tensor algebra TA(P) on the (A, A)-bimodule P, see [28], implies there is an
A-algebra homomorphism l : TA(P)→ B whose underlying function satisfies: l ◦ f = l2.

Therefore l ◦π ◦ l2 = l2; whence l ◦π = 1TA(P); that is l is a A-algebra homomorphism
which is a section of π, that is l lifts π.

Appendix D.1. Proof of Theorem 1

Our first lemma is a generalization of the central theorem of [27]; which does not rely
on the assumption that A is k-flat.
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Lemma A3. If k is of finite global dimension and A is a k-algebra which is of finite flat dimension
as a k-module, then for every A-module M:

pdA(M)− D(k)− f dk(A) ≤ pdE k
A
(M) (A25)

The proof of Lemma A3 relies on the following lemma.

Lemma A4. If A is a k-algebra such that f dk(A) < ∞ then:

(∀M ∈k Mod) pdA(A⊗k M)− f dk(A) ≤ pdk(M) (A26)

Proof. For every k-module M and every A-module N there is a convergent third quadrant
spectral sequence (see [22], page 667):

Extp
A(Tork

q(A, M), N)⇒
p

Extp+q
k (M, HomA(A, N)). (A27)

Moreover, the adjunction −⊗k A

`

HomA(A,−) extends to a natural isomorphism:

(∀p, q ∈ N)Extp+q
k (M, HomA(A, N)) ∼= Extp+q

A (M⊗k A, N). (A28)

Therefore there is a convergent third-quadrant spectral sequence:

Extp
A(Tork

q(A, M), N)⇒
p

Extp+q
A (M⊗k A, N). (A29)

If pdA(N) < ∞, then the result is immediate. Therefore assume that: pdA(N) < ∞. If
p + q > f dk(A) + pdA(N) then either p > pdA(N) or q > f dk(A). In the case of th

0 ∼= Ep,q
2
∼= Ep,q

∞ ∼= Extp+q
A (M⊗k A, N)

and in the latter case
0 ∼= Ep,q

2
∼= Ep,q

∞ ∼= Extp+q
A (M⊗k A, N)

also. Therefore

(∀N ∈ AMod) 0 ∼= Extn
A(M⊗k A, N)if n > f dk(A) + pdA(N);

hence: pdA(M⊗k A) ≤ f dk(A) + pdA(M).
Finally, the result follows since f dk(A) is finite and, therefore, can be subtracted

unambiguously.

Lemma A5. If A is a k-algebra then for any k-module M there is an E k
A-exact sequence:

0 −→ Ker(a) −→ A⊗k M α−→ M −→ 0 (A30)

where α be the map defined on elementary tensors (a⊗k m) in A⊗k M as a⊗k m 7→ a ·m.

Proof. α is k-split by the map β : M→ A⊗k M defined on elements m ∈ M as m 7→ 1⊗k m.
Indeed if m ∈ M then:

α ◦ β(m) = α(1⊗k m) = 1 ·m = m. (A31)

Lemma A6. If M and N are A-modules then:

pdA(M) ≤ pdA(M⊕ N). (A32)
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Proof.

(∀n ∈ N)(∀X ∈A Mod) Extn
A(M, X)⊕ Extn

A(N, X) ∼= Extn
A(M⊕ N, X). (A33)

Therefore Extn
A(M⊕ N, X) vanishes only if both Extn

A(M, X) and Extn
A(N, X) vanish.

Lemma A2 then implies: pdA(M) ≤ pd(M⊕ N).

Proof of Lemma A3

Proof.

Case 1: pdE k
A
(M) = ∞

By definition pdA(M) ≤ ∞ therefore trivially if pdE k
A
(M) = ∞ then:

pdA(M) ≤ pdE k
A
(M) + D(k). (A34)

Since k’s global dimension is finite hence (A34) implies:

pdA(M)− D(k) ≤ ∞ = pdE k
A
(M). (A35)

Case 2: pdE k
A
(M) < ∞

Let d := pdE k
A
(M) + D(k) + f dk(A). The proof will proceed by induction on d.

Base: d = 0
Suppose pdE k

A
(M) = 0.

By Theorem A2 M is E k
A-projective. Lemma A5 implies there is an E k

A-exact se-
quence:

0 −→ Ker(a) −→ A⊗k M α−→ M −→ 0. (A36)

Proposition A1 implies that (A36) is A-split therefore M is a direct summand of
the A-module A⊗k M. Hence Lemma A6 implies:

pdA(M) ≤ pdA(M⊗k A). (A37)

Lemma A4 together with (A37) imply:

pdA(M) ≤ pdA(M⊗k A) ≤ pdk(M). (A38)

Definition A15 and (A38) together with the assumption that pdE k
A
(M) = 0 imply:

pdA(M) ≤ pdk(M) ≤ D(k) = D(k) + 0 + 0 = D(k) + pdE k
A
(M) + f dk(A). (A39)

Since k’s global dimension and f dk(A) are finite then (A39) implies:

pdA(M)− D(k)− f dk(A) ≤ pdE k
A
(M). (A40)

Inductive Step: d > 0
Suppose the result holds for all A-modules K such that pdE k

A
(K) + D(k) +

f dk(A) = d for some integer d > 0. Again appealing to Lemma A5, there
is an E k

A-exact sequence:

0 −→ Ker(a) −→ A⊗k M α−→ M −→ 0. (A41)

Proposition A1 implies A⊗k M is E k
A-projective; whence (A41) implies:

pdE k
A
(Ker(α)) + 1 = pdE k

A
(M). (A42)
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Since Ker(α) is an A-module of strictly smaller E k
A-projective dimension than M

the induction hypothesis applies to Ker(α) whence:

pdA(Ker(α)) + 1 ≤pdE k
A
(Ker(α)) + 1 + D(k) + f dk(A)

≤pdE k
A
(M) + D(k) + f dk(A).

(A43)

The proof will be completed by demonstrating that: pdA(M) ≤ pdA(Ker(α)) + 1.
For any N ∈A Mod Ext?A(−, N) applied to (A41) gives way to the long exact
sequence in homology, particularly the following of its segments are exact:

Extn−1
A (A⊗k M, N)→ Extn−1

A (Ker(a), N)
∂n
−→ Extn

A(M, N)→ Extn
A(A⊗k M, N) (A44)

Since A⊗k M is E k
A-projective pdE k

A
(A⊗k M) = 0, therefore by the base case

of the induction hypothesis pdA(A⊗k M) ≤ pdE k
A
+ D(k) + f dk(A) = D(k) +

f dk(A); thus for every positive integer n ≥ D(k) (in particular d is at least n):

(∀N ∈A Mod) Extn−1
A (A⊗k M, N) ∼= 0 ∼= Extn

A(A⊗k M, N); (A45)

whence ∂n must be an isomorphism. Therefore Lemma A2 implies pdA(M) is at
most equal to pdA(Ker(α)) + 1.
Therefore:

pdA(M) ≤ pdA(Ker(α)) + 1 (A46)

≤ pdE k
A
(Ker(α)) + 1 + D(k) + f dk(A) (A47)

≤ pdE k
A
(M) + D(k) + f dk(A). (A48)

Finally since k is of finite global dimension and A is of finite k-flat dimension then
(A48) implies:

pdA(M)− D(k)− f dk(A) ≤ pdE k
A
(M); (A49)

thus concluding the induction.

We will also require the following result.

Remark A6. Let A be a k-algebra, i : k → A the morphism defining the k-algebra A and m a

maximal ideal in A. For legibility the E
ki−1 [m]

Am
-projective dimension of an Am-module N will be

abbreviated by pdEm,k
(N) (instead of writing pd

E
k
i−1 [m]

Am

(N)).

Lemma A7. If A is a commutative k-algebra and m is a non-zero maximal ideal in A then for
every A-module M:

pdEm,k
(Mm) ≤ pdE k

A
(M), (A50)

where i : k→ A is the inclusion of k into A.

Proof. Since m is a prime ideal in A, i−1[m] is a maximal ideal in ki−1[m], whence the
localized ring ki−1[m] is a well-defined sub-ring of Am. Let

...
dn+1−−→ Pn

dn−→ ...
d2−→ P1

d1−→ P0
d0−→ M −→ 0 (A51)

be an E k
A-projective resolution of an A-module M. The exactness of localization [26] implies:

....
dn+1−−→ Pn ⊗A Am

dn⊗A Am−−−−−→ ...
d2⊗A Am−−−−−→ P1 ⊗A Am

d1⊗A Am−−−−−→ P0 ⊗A Am
d0⊗A Am−−−−−→ M⊗A Am → 0 (A52)
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is exact. It will now be verified that (A52) is a Em,k-projective resolution of the Am-
module Mm.

The dn ⊗A Am are ki−1[m]-split
Since (A51) was k-split then for every i ∈ N there existed a k-module homomorphism
si : Pn−1 → Pn (where for convenience write P−1 := M) satisfying di = di ◦ si ◦ di.
Since Am is a ki−1[m]-algebra Am may be viewed as a ki−1[m]-module therefore the
maps: si ⊗A 1Am

are ki−1[m]-module homomorphisms; moreover they must satisfy:

di ⊗A 1Am
= di ⊗A 1Am

◦ si ⊗A 1Am
◦ di ⊗A 1Am

. (A53)

Therefore (A52) is ki−1[m]-split-exact.

The Pi ⊗A Am are Em,k-projective
For each i ∈ N if Pi is E k

A-projective therefore Proposition A1 implies there exists
some A-module Q and some k-module X satisfying:

Pi ⊕Q ∼= A⊗k X. (A54)

Therefore we have that:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼=(Pi ⊗A Q)⊗A Am

∼=(A⊗k X)⊗A Am

∼=(A⊗k X)⊗A (Am ⊗ki−1 [m]
ki−1[m])

(A55)

Since A, k and ki−1[m] are commutative rings the tensor products −⊗A −, −⊗k −
and −⊗ki−1 [m]

− are symmetric [22], hence (A55) implies:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼=(A⊗k X)⊗A (Am ⊗ki−1 [m]
ki−1[m])

∼=(Am ⊗A A)⊗ki−1 [m]
(ki−1[m] ⊗k X)

(A56)

Since A is a subring of Am then (A56) implies:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼= Am ⊗ki−1 [m]
(ki−1[m] ⊗k X). (A57)

(ki−1[m] ⊗k X) may be viewed as a ki−1[m]-module with action ·̂ defined as:

(∀c ∈ k)(∀(c′ ⊗k x) ∈ ki−1[m] ⊗k X) c·̂(c′ ⊗k x) := c · c′ ⊗ x. (A58)

Since (ki−1[m] ⊗k X) is a ki−1[m]-module then for each i ∈ N (Pi ⊗A Am) is a direct
summand of an Am-module of the form Am ⊗ki−1 [m]

X′ where X′ is a ki−1[m]-module,
thus Proposition A1 implies that Pi ⊗A Am is Am-projective.

Hence (A52) is an Em,k-projective resolution of M⊗A Am
∼= Mm; whence:

pdEm,k
(Mm) ≤ pdE k

A
(M). (A59)

All the homological dimensions discussed to date are related as follows:
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Proposition A10. If A is a commutative k-algebra and m be a non-zero maximal ideal in A such
that Am has finite ki−1[m]-flat dimension and D(ki−1[m]) is finite then there is a string of inequalities:

f dAm
(Mm)− D(ki−1[m])− f dk(A) ≤pdAm

(Mm)− D(ki−1[m])− f dk(A)

≤pdEm,k
(Mm)

≤pdE k
A
(M)

≤DE k (A).

Proof.

• By definition: pdE k
A
(M) ≤ DE k (A).

• By Lemma A7: pdEm,k
(Mm) ≤ pdE k

A
(M)

• Since Am is flat as a ki−1[m]-module and D(ki−1[m]) is finite Lemma A3 entails:
pdAm

(Mm)− D(ki−1[m])− f dk(A) ≤ pdEm,k
(Mm)

• Lemma A1 implies:
f dAm

(Mm) ≤ pdAm
(Mm). (A60)

Since the global dimension of ki−1[m] was assumed to be finite (A60) implies:

f dAm
(Mm)− D(ki−1[m]) ≤ pdAm

(Mm)− D(ki−1[m]). (A61)

Lemma A8. If A is a commutative k-algebra and M and N be A-modules, then there are natu-
ral isomorphisms:

Extn
E k

A
(M, N) ∼= HHn(A, Homk(M, N)) ∼= Extn

E k
Ae
(A, Homk(M, N)). (A62)

Proof.

• For any (A, A)-bimodule X, X⊗A M is an (A, A)-bimodule [22] [Cor. 2.53].
• Moreover, there are natural isomorphisms [22]:

HomA Mod(X⊗A M, N)
∼=→ HomA ModA(X, Hom

k Mod(M, N)) [Thrm. 2.75]. (A63)

In particular (A63) implies that for every n in N there is an isomorphism which is
natural in the first input:

HomA Mod(A⊗n ⊗A M, N)
ψn→ HomA ModA(A⊗n, Hom

k Mod(M, N)). (A64)

whence if b′n+1 : A⊗n+3 → A⊗n+2 is the nth map in the Bar complex (recall Example A3)
and for legibility denote HomA ModA(b

′
n, Homk(M, N)) by βn. The naturality of the

maps ψn imply the following diagram of k-modules commutes:

HomA Mod(A⊗n+2 ⊗A M, N) HomA ModA (A⊗n+2, Hom
k Mod(M, N))

HomA Mod(A⊗n+3 ⊗A M, N) HomA ModA (A⊗n+3, Hom
k Mod(M, N))

ψn

ψn+1

ψ−1
n+1 ◦ βn ◦ ψn βn

. (A65)

• Therefore for every n in N:

(ψ−1
n+2 ◦ βn+1 ◦ ψn+1) ◦ (ψ−1

n+1 ◦ βn ◦ ψn) =βn+1 ◦ βn

=0.
(A66)
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Whence < HomA Mod(A⊗?+2 ⊗A M, N), (ψ−1
?+1 ◦ β? ◦ ψ?) > is a chain complex. More-

over, the commutativity of (A65) implies that:

(∀n ∈ N) Hn(HomA Mod(A⊗?+2 ⊗A M, N)) = Ker(ψ−1
?+1 ◦ β? ◦ ψ?)/Im(ψ−1

n+2 ◦ βn+1 ◦ ψn+1)

∼=Ker(βn)/Im(βn+1)

=Hn(HomA ModA (A⊗?+2, Hom
k Mod(M, N)))

=HHn(A, Homk(M, N)).

(A67)

Furthermore Proposition A4 implies there are natural isomorphisms:

HHn(A, Homk(M, N)) ∼= Extn
E k

Ae
(A, Homk(M, N)); (A68)

Whence for all n in N there are natural isomorphisms:

Hn(HomA Mod(A⊗?+2 ⊗A M, N)) ∼= HHn(A, Homk(M, N)) ∼= Extn
E k

Ae
(A, Homk(M, N)). (A69)

• Finally if M is an A-module then < HomA Mod(A⊗?+2 ⊗A M, N), (ψ−1
?+1 ◦ β? ◦ ψ?) >

calculates the E k
A-relative Ext groups of M with coefficients in N; therefore, by ([24],

pg. 289), there are natural isomorphisms:

Hn(HomA Mod(A⊗?+2 ⊗A M, N)) ∼= Extn
E k

A
(M, N). (A70)

• Putting it all together, for every n in N there are natural isomorphisms:

Extn
E k

Ae
(A, Homk(M, N)) ∼= HHn(A, Homk(M, N)) ∼= Extn

E k
Ae
(A, Homk(M, N)). (A71)

We may now prove Theorem 1.

Proof of Theorem 1.

• For any A-modules M and N Lemma A8 implied:

Ext?
E k

A
(N, M) ∼= HH?(A, Homk(N, M)). (A72)

Therefore taking supremums over all the A-modules M, N, of the integers n for
which (A85) is non-trivial implies:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|Extn(M, N) 6= 0})) (A73)

= sup
M,N∈A Mod

(sup({n ∈ N#|HHn(A, Homk(N, M)) 6= 0})). (A74)

Homk(N, M) is only a particular case of an Ae-module; therefore taking supremums
over all A-modules bounds (A87) above as follows:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|HH?(A, Homk(N, M)) 6= 0})) (A75)

≤ sup
M̃∈Ae Mod

(sup({n ∈ N#|HHn(A, M̃) 6= 0})). (A76)

The right hand side of (A89) is precisely the definition of the Hochschild cohomological
dimension. Therefore

DE k (A) ≤ HCdim(A|k) (A77)

Proposition A10 applied to (A90), which draws out the conclusion.
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• Case 1: Krull(Am) is finite
Since A is Cohen-Macaulay at m there is an Am-regular sequence x1, .., xd in m of
length d := Krull(Am) in Am. Therefore Proposition A6 implies:

Krull(Am) = f dAm
(Am/(x1, .., xn)). (A78)

Part 1 of Theorem 1 applied to (A78) implies:

Krull(Am)− D(ki−1[m])− f dm(Am) = f dAm
(Am)− D(ki−1[m])− f dm(Am) ≤ HCdim(A|k). (A79)

Moreover, the characterization of quasi-freeness given in Corollary A1 implies that
A cannot be quasi-free if:

2 + D(ki−1[m])− f dm(Am) ≤ Krull(Am). (A80)

• Case 2: Krull(Am) is infinite
For every positive integer d there exists an Am-regular sequence xd

1 , .., xd
d in m of

length d. Therefore Proposition A6 implies:

(∀d ∈ Z+) d = f dAm
(Am/(xd

1 , .., xd
d)). (A81)

Therefore part one of Theorem 1 implies:

(∀d ∈ Z+) d− D(ki−1[m])− f dm(Am) = f dAm
(Am/(xd

1 , .., xd
d))− D(ki−1[m])− f dm(Am) ≤ HCdim(A|k). (A82)

Since D(k) and f dm(Am) are finite:

∞− D(ki−1[m])− f dm(Am) = ∞ ≤ HCdim(A|k). (A83)

Since Krull(Am) is infinite (A83) implies:

Krull(Am)− D(ki−1[m])− f dm(Am) = ∞ = HCdim(A|k). (A84)

In this case Corollary A1 implies that A is not quasi-free.

Appendix D.2. Proof of Theorem 2

Proof of Theorem 2. For any A-modules M and N Lemma A8 implied:

Ext?
E k

A
(N, M) ∼= HH?(A, Homk(N, M)). (A85)

Therefore taking supremums over all the A-modules M, N, of the integers n for
which (A85) is non-trivial implies:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|Extn(M, N) 6= 0})) (A86)

= sup
M,N∈A Mod

(sup({n ∈ N#|HHn(A, Homk(N, M)) 6= 0})). (A87)

Homk(N, M) is only a particular case of an Ae-module; therefore taking supremums over
all A-modules bounds (A87) above as follows:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|HH?(A, Homk(N, M)) 6= 0})) (A88)

≤ sup
M̃∈Ae Mod

(sup({n ∈ N#|HHn(A, M̃) 6= 0})). (A89)
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The right hand side of (A89) is precisely the definition of the Hochschild cohomological
dimension. Therefore

DE k (A) ≤ HCdim(A|k) (A90)

Proposition A10 applied to (A90) then draws out the conclusion.
Proposition A6 implies that:

n = f dA(A/(x1, .., xn)). (A91)

Therefore (1) applied to the A-module A/(x1, .., xn together with (A91) imply:

n− D(k) = f dA(A/(x1, .., xn) ≤ DE k ≤ HCDim(A/k). (A92)

If Ω1(A/k) is generated by a regular sequence x1, .., xn then Proposition A6 implies:

n = f dAe(A⊗k A/Ω1(A/k)) (A93)

However by definition of Ω1(A/k) as the kernel of µA: A ⊗k A/Ω1(A/k) ∼= A.
Therefore:

n = f dAe(A). (A94)

Lemma A1 together with Lemma A3 imply:

n = f dAe(A) ≤ pdAe(A) ≤ pdE k
Ae
(A) + D(k). (A95)

Since D(k) is finite then (A95) entails:

n− D(k) ≤ pdE k
Ae
(A). (A96)

By Theorem A2 (A96) is equivalent to:

n− D(k) ≤ HCDim(A). (A97)

If A is Cohen-Macaulay at one of its maximal ideals m then there exists a maximal
regular x1, .., xd in Am with d = Krull(Am). Therefore (2) implies:

Krull(Am)− D(k) = d− D(k) ≤ D(Am)− D(k). (A98)

Since D(Am) ≤ D(A), then

Krull(Am)− D(k) ≤ D(Am)− D(k) ≤ D(A)− D(k). (A99)

Finally (1) applied to (A99) implies:

Krull(Am)− D(k) ≤ D(A)− D(k) ≤ HCDim(A). (A100)

Appendix D.3. Proofs of Consequences

Proof of Corollary 1. Since X is a smooth affine scheme its coordinate ring satisfies Point-
caré duality in dimension d then Van den Bergh’s Theorem ([12]) applied. Hence, we have
that for every M ∈Ae Mod

HHn(A, M) ∼= HHd−n(A, Hd−n(A, ω−1
A ⊗A M). (A101)
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Since k[X] is flat as a k-module then we may apply Theorem 2 to the left-hand side
of (A101) to conclude that

0 6∼= HHn(A, M) ∼= HHd−n(A, ω−1
A ⊗A M), (A102)

for some A-bimodule M and some n ≥ f dA(M)−D(k). Again by Van den Bergh’s theorem
we conclude that HHm(A, ω−1

A ⊗A M) ∼= 0 for any m > d. Hence, (A102) must hold for
some A-bimodule M and some

f dA(M)− D(k) ≤ n ≤ d.

Thus, there exists an A-bimodule M′ and some non-negative integer n′ for which

0 ≤ n′ ≤ d− f dA(M) + D(k),

and HHn′(A, M′) 6∼= 0; where M′ , ω−1
A ⊗A M. Relabeling the index we obtain the conclu-

sion.

Proof of Corollary 2. By the Hochschild-Kostant-Rosenberg ([10]) there are isomorphisms
of A-bimodules

HHn(A, M) ∼= Ωn(A, M) , Ωn(A)⊗A M, (A103)

for every A-bimodule M. In particular, (A103) holds for the A-bimodule M of
Corollary 1.
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