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Abstract: This is a continuation of the authors’ previous study of the geometric characterizations of
the preduals of injective Banach lattices. We seek the properties of the unit ball of a Banach space
which make the space isometric or isomorphic to an injective Banach lattice. The study bases on the
Boolean valued transfer principle for injective Banach lattices. The latter states that each such lattice
serves as an interpretation of an AL-space in an appropriate Boolean valued model of set theory.
External identification of the internal Boolean valued properties of the corresponding AL-spaces
yields a characterization of injective Banach lattices among Banach spaces and ordered Banach spaces.
We also describe the structure of the dual space and present some dual characterization of injective
Banach lattices.

Keywords: injective banach lattice; L-projection; M-projection; gordon’s theorem; boolean valued
analysis; boolean valued representation

1. Introduction

An injective Banach lattice is an injective object in the category of Banach lattices
with positive contractions as morphisms. Arendt [1] (Theorem 2.2) proved that the
injective objects are the same if we take the regular operators with contractive modulus as
morphisms. The first example of an injective Banach lattice was provided by Abramovich
who did not use the term in [2]: A Dedekind complete AM-space with unit is an injective
Banach lattice. Later Lotz rediscovered this fact in [3] where the concept of injective Banach
lattice was introduced. Lotz also proved that each AL-space is an injective Banach lattice;
see [3] (Proposition 3.2). Hence, injective Banach lattices differ essentially from injective
Banach spaces. Indeed, C(K), the Banach lattice of real-valued continuous functions
on an extremally disconnected Hausdorff compact space K is the only injective object
(up to isomorphism) in the category of Banach spaces and linear contractions (see the
Nachbin–Goodner–Kelley–Hasumi Theorem [4] (Theorem 6)). The important contribution
to the study of injective Banach lattices belongs to Cartwright [5] who found the order
intersection property and proved that a Banach lattice X is injective if and only if X has the
order intersection property and there exists a contractive positive projection to X in X′′

(the property (P)); see [6] (Definition 5.10.9 (3), Theorems 5.10.10, and 5.10.11). Another
significant advance is due to Haydon [7]. He discovered that an injective Banach space has
a mixed AM-AL-structure and proved three theorems on the representation of injective
Banach lattices as the space of order continuous operators between Dedekind complete
Banach lattices with strong order units [7] (Theorems 5C), the space of integrable functions
with respect to a Stone-algebra-valued modular measure [7] (Theorems 6H), and the space
of all continuous sections of a continuous bundle of AL-spaces [7] (Theorems 7B).

The Boolean valued approach to the theory of injective Banach lattices was initiated
in [8,9]. By the main result announced in [8] (Theorem 1) and proved in [9] (Theorem 4.4),
each theorem about AL-spaces within Zermelo–Fraenkel set theory has its counterpart
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for injective Banach lattices. Translation of theorems from AL-spaces to injective Banach
lattices is carried out by the machinery of Boolean valued analysis; see [6] (§ 5.10 –5.13). For
other contributions of the Boolean valued approach to injective Banach lattices see [6,10,11]
and for other aspects of injective Banach lattices see [12–15].

The present article is a continuation of the paper [11] which deals with the geometric
characterization of Banach spaces whose duals are injective Banach lattices. The article is
organized as follows: Section 2 collects some Boolean valued requisites that include the
Boolean valued interpretation of Banach spaces, Banach lattices, and AL-spaces. Section 3
yields the necessary and sufficient conditions for the unit ball in a Banach space be such that
the space will admit some partial ordering that make the space an injective Banach lattice.
Section 4 characterizes injective Banach lattices among ordered Banach spaces by Boolean
valued interpretation of the result by Ellis that an ordered Banach space is an AL-space if
and only if it is regular, enjoys the Riesz decomposition property, and its norm is additive
on the positive cone. Section 5 contains an isomorphic characterization of injective Banach
lattices by interpreting in an appropriate Boolean valued model the Timofte result that
a directed, monotone complete ordered normed space X with the Riesz decomposition
property is order and topologically isomorphic to some AL-space if and only if the positive
cone of X is generated by some bounded closed convex subset not containing the zero. We
start Section 6 with a description of the dual space, and then give a dual characterization of
an injective Banach lattice.

For the theory of Banach lattices and positive operators we refer to the books [16–18].
The prerequisites of the theory of Boolean valued models are briefly presented in [19]
(Chapter 9) and [6] (Chapter 1); see also [20–22] for more detail.

Throughout the sequel, U = U(X) and U′ = U(X′) stand for the closed unit balls
of a normed space X and its topological dual X′. Let X+ denote the positive cone of an
ordered vector space X, and we will assume that X+ is closed. Also, P(X) stands for
the Boolean algebra of band projections of a vector lattice X. We let := designate the
assignment by definition, while N and Rwill symbolize the naturals and the reals.

2. Some Boolean Valued Requisites

The main purpose of this section is to provide notation and terminology as well as
some results about Boolean valued representation we will need in what follows.

Throughout the sequel B is a complete Boolean algebra with unit 1 and zero O, while
V(B) stands for the corresponding Boolean valued universe. There is a natural way of assign-
ing to each formula φ(u1, . . . , un) of Zermelo–Fraenkel set theory with choice, ZFC in short, the
Boolean truth value [[φ(x1, . . . , xn)]] ∈ B with x1, . . . , xn ∈ V(B). We say that the statement
φ(x1, . . . , xn) is true within V(B) and write V(B) |= φ(x1, . . . , xn) if [[φ(x1, . . . , xn)]] = 1.
There is a smooth mathematical technique for revealing interplay between the interpre-
tations of one and the same fact in the two models, the von Neumann universe V and the
Boolean valued universe V(B). The relevant ascending-and-descending machinery rests on the
functors of canonical embedding X 7→ X∧ and ascent X 7→ X↑, acting from V into V(B), and
of descent X 7→ X↓, acting from V(B) into V, see [6,21] for details. The operations of descent,
ascent, and canonical embedding can be naturally extended to mappings and relations, so
that they are applicable to algebraic structures. So, there arise some functors of Boolean
valued analysis whose interplay is of import in applications; see [21] (Chapter 3).

The basic properties of a Boolean valued universe are formulated in the three prin-
ciples: The transfer principle tells us that all theorems of ZFC are true within V(B). The
maximum principle asserts that if V(B) |= (∃x) ϕ(x), then there exists x0 ∈ V(B) such that
V(B) |= ϕ(x0). A partition of unity in B is a family (bξ)ξ∈Ξ ⊂ B such that

∨
ξ∈Ξ bξ = 1 and

bξ ∧ bη = O whenever ξ 6= η. The mixing of a family (xξ)ξ∈Ξ in V(B) by a partition of unity
(bξ)ξ∈Ξ in B is an element x ∈ V(B) satisfying bξ ≤ [[x = xξ ]] for all ξ ∈ Ξ. The mixing
principle states that in V(B) there exists a mixing of every family by each partition of unity.
Thus, the maximum principle guarantees the existence of various Boolean valued “replicas”
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or “counterparts” of usual mathematical objects, while the mixing principle shows how
these replicas may be constructed.

The following property of descents turns out rather useful in interpreting mathemat-
ical objects and statements in the Boolean valued universe V(B); see [21] (2.3.8). Given
X ⊂ V(B), denote by mix(X) the set of all mixings of all families in X by arbitrary partitions
of unity in B. If X ∈ V(B) and [[X 6= ∅]] = 1, then for an arbitrary subset X ⊂ V(B) with
mix(X) = X ↓ and all formulas ϕ and ψ of ZFC we have

[[(∀ x ∈ X )ψ(x)→ ϕ(x)]] =
∧
{[[ϕ(x)]] : x ∈ X, [[ψ(x)]] = 1}. (1)

Applying the transfer and maximum principles to the ZFC-theorem on the existence
of the reals, find R ∈ V(B) called the reals within V(B) which satisfies [[R is the reals]] =
1. The Gordon Theorem [23] states that the descent R := R↓ of R (with the descended
operations and order) is a universally complete vector lattice. Moreover, there is a Boolean
isomorphism χ from B onto P(R↓) such that

χ(b)x = χ(b)y⇐⇒ b ≤ [[ x = y ]],

χ(b)x ≤ χ(b)y⇐⇒ b ≤ [[ x ≤ y ]]
(2)

for all x, y ∈ R and b ∈ B; see [21] (Theorem 5.2.2) and [6] (Theorem 2.2.4). Moreover,
the universally complete vector lattice R↓ endowed with the descended multiplications
is a semiprime f -algebra with ring unity 1 := 1∧. Moreover, for every b ∈ B the band
projection χ(b) acts as the multiplication by the χ(b)1; see [6] (Theorem 2.3.2). For a special
B, the Gordon Theorem was first discovered by Takeuti; see [24,25].

The bounded descent Λ ⊂ R = R↓ of R↓ is the order ideal in R generated by 1∧ and
equipped with the order-unit norm ‖ · ‖∞:

Λ := {x ∈ R : (∃C ∈ R)− C1∧ ≤ x ≤ C1∧};
‖x‖∞ := inf{C > 0 : −C1∧ ≤ x ≤ C1∧} (x ∈ Λ).

Write Λ = Λ(B), since Λ is uniquely defined by B. Clearly, Λ is a Dedekind complete
AM-space with unit 1∧. By the Kreı̆ns–Kakutani Representation Theorem Λ ' C(K) with
K an extremally disconnected compact Hausdorff space, the Stone space of B.

Let (X , ‖ · ‖) be a Banach space within V(B) and R := R↓. Define the mapping
· from X ↓ to R as the descent · := (‖ · ‖)↓ of the norm ‖ · ‖. Then X ↓ (with the

descended operations) is a vector space, · is an R-valued norm on X ↓, and (X, · ) is
a Banach–Kantorovich space; see [11] (Definition 2.7). (Not to be confused with the concept
of Kantorovich-Banach space or KB-space in short, which is, by definition, a Banach lattice
with an order continuous Levi norm. These properties appear in the literature under
different names; see Definition 7 and the footnote on page 89 in [26]). The bounded descent
X ⇓ of X is defined as the set X ⇓ := {x ∈ X ↓ : x ∈ Λ} equipped with the descended
operations with the mixed norm, i.e., x :=

∥∥ x
∥∥

∞ for all x ∈ X ⇓; see [11] (Definition 2.6).
Observe that Λ is a Dedekind complete f -algebra with ring and order unit 1. Moreover,

both (X, · ) and (X, · ) admit the structure of Λ-module; see [6] (5.8.5, 5.8.7).
A projection P on a Banach space X is an idempotent in L (X), the Banach algebra of

bounded linear operators on X, that is, P ∈ L (X) and P ◦ P = P. When speaking of a
Boolean algebra of projections in a Banach space X we always mean some set P of commuting
norm one projections on X which is a Boolean algebra under the operations

π ∧ ρ := π ◦ ρ = ρ ◦ π, π ∨ ρ = π + ρ− π ◦ ρ, π∗ = IX − π (π, ρ ∈P)

and in which the zero and the identity operators in X serve as the top and bottom of P .
A projection π on a Banach space X is an L-projection if ‖x‖ = ‖πx‖+ ‖x− πx‖ for

all x ∈ X, and π is an M-projection if ‖x‖ = max{‖πx‖, ‖x − πx‖} for all x ∈ X. The
L-projections and M-projections different from the zero and the identity are referred to
as nontrivial. The sets of all L-projections and M-projections on X are denoted by PL(X)
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and PM(X). Furthermore, PL(X) is a complete Boolean algebra, PM(X) is a (generally
not complete) Boolean algebra, and the mapping π 7→ π′ is a Boolean isomorphism from
PL(X) onto PM(X′) (see [11] (Theorem 2.10)) and from PM(X) into PL(X′).

Let B be a Boolean algebra of norm one projections in a Banach space X. Take x ∈ X,
a family (xξ) in X, and a partition of the unit (πξ) in B. If πξ x = πξ xξ for all xß ∈ Ξ, then
we say that x is a mixing of (xξ) by (πξ); cf. (2) in Section 2 A subset C ⊂ X is B-complete
or mix-complete if, given a family (xξ) in C and a partition of unity (bξ) in B, we have
mixξ(bξ xξ) ∈ C. A Banach space X is B-complete or B-cyclic if B ⊂ P(X), the mixing of a
family is unique whenever it exists, and the closed unit ball U(X) of X is mix-complete.

The Boolean valued representation of Banach spaces is described as follows (see [19]
(Theorems 8.3.1 and 8.3.2) or [11] (Theorem 5.8.11)): Recall that a linear operator T : X → Y
is B-linear if πT = Tπ for all π ∈ B; here X and Y are Banach spaces with Boolean algebras
of projections and the latter are identified with B. A one-to-one B-linear operator is a B-
isomorphism. An isometric B-isomorphism of Banach spaces is a B-isometry, and a B-isometric
lattice homomorphism between Banach lattices is a lattice B-isometry.

(1) The bounded descent X ⇓ of a Banach space X without nontrivial M-projections
within V(B) is a Banach space with the B-complete unit ball and PM(X ⇓) isomorphic to
B. Conversely, if X is a Banach space whose unit ball is B-complete with B = PM(X),
then there exists a Banach space X without nontrivial M-projections within V(B) whose
M-descent is linearly B-isometric to X and X is unique up to linear isometry.

As regards an alternative approach to Boolean valued interpretation of Banach space
theory with very important applications to the module structure of von Neumann algebras
see [27] and the references therein. We proceed with the result of [9] (Theorem 3.1) about the
Boolean valued representation of Banach lattices. To this end, putM(X) := P(X) ∩ PM(X).

(2) The bounded descent X ⇓ of a Banach lattice X from V(B) is a B-cyclic Banach
lattice. Conversely, if X is a B-cyclic Banach lattice, then in V(B) there exists a Banach
lattice X unique up to lattice isometry whose bounded descent X ⇓ is lattice B-isometric
to X. Moreover, B 'M(X) if and only if [[there is no M-projection in X other than 0 and
IX ]] = 1.

Recall the conventional definition of an injective Banach lattice. A real Banach lattice
X is injective if, for every Banach lattice Y, every closed vector sublattice Y0 ⊂ Y, and every
positive linear operator T0 : Y0 → X there is a positive linear extension T : Y → X of
T0 with ‖T0‖ = ‖T‖. The transfer principle for injective Banach lattices reads as follows
(see [9] (Theorem 4.4) and [6] (Theorem 5.12.5)):

A bounded descent X ⇓ of an AL-space X from V(B) is an injective Banach lattice
with B ' M(X ⇓). Conversely, if X is an injective Banach lattice and B ' M(X), then
there is an AL-space X within V(B) whose bounded descent is lattice B-isometric to X.

Among the useful consequences of this fact we have the following representation
result: An operator T : X → Λ enjoys the Levy property if Λ = T(X)⊥⊥ and each increasing
net (xα) in X has the supremum supα xα provided that the net (Txα) is order bounded in
Λ. Given an injective Banach lattice (X, ‖ · ‖) with B = M(X), there is a strictly positive
Maharam operator Φ : X → Λ (i.e., an interval preserving order continuous linear operator
such that Φ|x| = 0 implies x = 0) enjoying the Levi property and satisfying ‖x‖ =
‖Φ(|x|)‖∞ for all x ∈ X; see [9] (Corollary 4.5). In this event we say that X is representable
as L1(Φ).

3. Banach Space Characterization

In this section we will present the necessary and sufficient conditions on the unit ball
of a Banach space X for X to admit a partial ordering making X into an injective Banach
lattice. We start with recalling a similar characterization of AL-spaces.

Definition 1. A subset C ⊂ X is Λ-convex if λx + µy ∈ C for all x, y ∈ C and λ, µ ∈ Λ+ with
λ + µ = 1. A nonempty Λ-convex subset F of a Λ-convex set C is a Λ-face of C if whenever
z ∈ F and z = λx + µy with x, y ∈ C and λ, µ ∈ Λ+, λ + µ = 1, it follows that λx ∈ λF and



Mathematics 2021, 9, 250 5 of 18

µy ∈ µF. In the case when Λ = R, we speak of convex sets and faces. The cone C is minihedral
whenever the intersection of every two translates of C is a translate of C; i.e., for all x, y ∈ X there
is z ∈ X satisfying (x + C) ∩ (y + C) = z + C.

We also define the Λ-convex hull coΛ(A) of a set A ⊂ X as the intersection of all
Λ-convex sets in X including A and put co := coR. Observe that if A = coΛ(F ∪ D) for
some Λ-convex F and D then A =

⋃{αF + (1− α)D : α ∈ Λ, 0 ≤ α ≤ 1}.

Theorem 1. Let X be a Banach space. Then X is linearly isometric to an AL-space if and only
if there is a maximal face F ⊂ S such that B(X) = co(F ∪ (−F)) and the cone C = {αx : α ∈
R+, x ∈ F} is minihedral.

Proof. See [4] (§ 18, Theorem 1).

Lemma 1. Let X be a B-complete Banach space and C a B-complete convex subset of X. Then an
arbitrary maximal Λ-face of X is B-complete.

Proof. Assume that F is a maximal Λ-face of C and denote by F̄ the subset of C consisting
of all mixtures of families in F by partitions of unity in B. It suffices to prove that F = F̄.
Consider z ∈ F̄ determined by a partition of unity (πξ) in B and a family (zξ) in F; i.e.,
πξ z = πξ zξ for all ξ. Suppose that z = αx + (1− α)y for some x, y ∈ C and α ∈ Λ with
0 ≤ α ≤ 1. Fix ξ and put x̄= πξ x + π̄ξ zξ and ȳ= πξ y + π̄ξzξ where π̄ξ := 1− πξ . Then
αx̄ + (1− α)ȳ = πξ z + π̄ξzξ = zξ and hence αx̄ = αzξ and (1− α)ȳ = (1− α)ȳ. It follows
that πξ αz = πξ αzξ = πξ αx̄ = πξ αx, whence πξ(αz − αx) = 0 for each fixed ξ, so that
αz = αx as (πξ) is a partition of unity. Similarly, (1− α)z = (1− α)x. Thus F̄ is a Λ-face of
C; and, as F ⊂ F̄ and F is a maximal Λ-face of C, we conclude that F = F̄ and F is a Λ-face
of C.

Let (X , ‖ · ‖X ) be a Banach space within V(B) and let X = X ⇓ be a B-complete
Banach space with the norm ‖x‖ = ‖ x ‖∞ (x ∈ X), where · : X → Λ is the descent of
the internal norm ‖ · ‖X and Λ = R⇓.

Lemma 2. Let F̂ and Ĝ be convex sets in X and let Ŝ stand for the internal unit sphere of X ; i.e.,
[[Ŝ = {x ∈ X : ‖x‖X = 1}]] = 1. Then

(1) U(X )↓ = U(X).
(2) Ŝ↓ = {x ∈ X : ‖πx‖ = 1 for all π ∈ B}.
(3) co(F̂ ∪ Ĝ)↓ = {λ f + µg : f ∈ F̂↓, g ∈ Ĝ↓; λ, µ ∈ Λ+, λ + µ = 1}.
(4) Ĉ↓ = {αx : α ∈ Λ+, x ∈ F̂↓} if and only if [[Ĉ = {αx : α ∈ R+, x ∈ F̂}]] = 1.
(5) F̂↓ is a maximal Λ-face of Ŝ↓ if and only if [[F̂ is a maximal face of Ŝ]] = 1.

Proof. (1): It suffices to observe that ‖x‖ =
∥∥ x

∥∥
∞ ≤ 1 for x ∈ X if and only if x ≤ 1

and if and only if [[‖x‖X = 1]] = 1.
(2): By definition, x ∈ Ŝ↓ means that [[x ∈ Ŝ]] = 1. Because · is the descent of ‖ · ‖X ,

the latter is equivalent to the equality x = 1 which occurs if and only if ‖πx‖ = 1 for all
π ∈ B.

(3): Note that x ∈ co(F̂ ∪ Ĝ)↓ if and only if

(∃ f ∈ F̂)(∃g ∈ Ĝ)(∃λ, µ ∈ R+)λ + µ = 1 ∧ x = λ f + µg

withinV(B). By the maximum principle this is equivalent to the existence of f ∈ F̂↓, g ∈ Ĝ↓,
and λ, µ ∈ R↓+ such that [[λ + µ = 1]] = [[x = λ f + µg]] = 1. Thus, x ∈ co(F̂ ∪ Ĝ)↓means
that x = λ f + µg for some f ∈ F̂↓, g ∈ Ĝ↓, and λ, µ ∈ Λ+ with λ + µ = 1.

(4): A similar argument applies.
(5): The claim [[F̂ is a maximal face of Ŝ]] = 1 means that
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[[(∀z ∈ F̂)(∀x, y ∈ Ŝ)(∀α ∈ R)(0 ≤ α ≤ 1∧ z = αx + (1− α)y

−→ αz = αx ∧ (1− α)z = (1− α)y)]] = 1.

Calculating the Boolean truth values for the universal quantifiers by formula (1), we
arrive at the equivalent statement: For all z ∈ F̂⇓, x, y ∈ Ŝ⇓, and α ∈ R⇓ the relation
[[0 ≤ α ≤ 1 ∧ z = αx + (1− α)y]] = 1 implies [[αz = αx ∧ (1− α)z = (1− α)y)]] = 1.
Considering that X ⊂ X ↓ and Λ ⊂ R↓ are equipped with the descended operations
and 1 = 1∧ by definition, we see that the latter can be rephrased as 0 ≤ α ≤ 1 and
z = αx + (1− α) implies that αz = αx and (1− α)z = (1− α)y.

Theorem 2. For a real Banach space X with B := PM(X) the following are equivalent:
(1) X is linearly B-isometric to an injective Banach lattice Y with B 'M(Y).
(2) We have

(a) B is a complete Boolean algebra and the unit ball of X is B-complete;
(b) the subset S of the unit sphere of X consisting of all x ∈ X such that ‖πx‖ = 1 for
all π ∈ B includes a maximal face F ⊂ S for which UX = coΛ(F ∪ (−F));
(c) C = {αx : α ∈ Λ+, x ∈ F} is a minihedral cone.

Proof. (1) =⇒ (2): If 2(1) holds, then (a) in 2(2) is also true and, by Theorem 1, there exists
an AL-space X within V(B) such that X ⇓ is linearly B-isometric to Y. There is no loss
of generality in assuming X = Y. Let Ŝ stand for the unit sphere of X . By the transfer
principle, Theorem 1 is true within V(B) and the maximum principle yields the existence
of F̂ ∈ V(B) with [[F̂ is a maximal face of Ŝ with U(X ) = co(F̂ ∪ (−F̂)) and the cone
Ĉ = {αx : α ∈ R+, x ∈ F̂} is minihedral]] = 1. Note that (b) and (c) are straightforward
from Lemma 2.

(2) =⇒ (1): Assume that (a)− (c) are fulfilled. Then X is B-isomeric to X ⇓. Put
Ŝ := S↑, F̂ := F↑, and Ĉ := C↑. According to statements (1), (2), and (5) of Lemma 2, Ŝ
is the unit sphere of X and F̂ is a maximal face of Ŝ, since F̂↓ = F↑↓ = F by Lemma 1.
Similarly, B(X) = coΛ(F ∪ (−F)) and Ĉ = {αx : α ∈ R+, x ∈ F̂} in view of assertions (3)
and (4) of Lemma 2. Moreover, Ĉ is a minihedral cone in X if and only if so is Ĉ⇓ in X,
since (Ĉ + Ĉ)⇓ = Ĉ⇓ and

(
(x + Ĉ) ∩ (y + Ĉ)

)
⇓ = (x + Ĉ⇓) ∩ (y + Ĉ⇓) for all x, y ∈ X.

The transfer principle enables us to apply Theorem 1 within V(B) and conclude that X is
isometric to some AL-space Y within V(B). It follows that X is B-isometric to Y ⇓ and Y ⇓
is an injective Banach lattice.

Remark 1. In Theorem 2, we can replace U(X) = coΛ(F ∪ (−F)) with U(X) = co mix0(F ∪
(−F)) and define the cone C as the closure of {αx : α ∈ R+, x ∈ mix0(F)}, where co(A)
designates the closed convex hull of A, while mix0(A) stands for the collection of all ∑m

k=1 αkπkak
with m ∈ N, α1, . . . , αm ∈ R+, a1, . . . , am ∈ A, and {π1, . . . , πm} a finite partition of unity in B.

4. Ordered Banach Space Characterization

In this section, we consider the question of when an ordered normed space is an
injective Banach lattice. First, we introduce some definitions.

Definition 2. An ordered Banach space X is B-complete or B-cyclic whenever X is a B-complete
Banach space, B consists of positive projections, and X+ is B- complete; see definitions in Section 3.

Lemma 3. For an ordered Banach space X to be B-complete it is necessary and sufficient that X be
B-isometric and order isomorphic to the descent X ⇓ of some ordered Banach space X within V(B).

Proof. The Banach part follows from Section 2. The rest of the claim is justified in the same
way as in [9] (Theorem 3.1).
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Definition 3. An ordered normed space X is regular (or has a Riesz norm) if X enjoys the
properties:

(1) ‖ · ‖ is absolute monotone; i.e., if x, y ∈ X and ±x ≤ y then ‖x‖ ≤ ‖y‖.
(2) if x ∈ X, ‖x‖ ≤ 1, and 0 < ε ∈ R; then there is y ∈ X with ±x ≤ y, and ‖y‖ < (1 + ε).

Lemma 4. Let X be an ordered Banach space within V(B) and X = X ⇓. The following hold:
(1) X has the Riesz decomposition property if and only if [[X has the Riesz decomposition

property]] = 1.
(2) X is regular if and only if [[X is regular]] = 1.

Proof. The first claim is immediate from the definitions. Regularity of (X , ‖ · ‖X ) means
that the following formulas are true within V(B):

(∀x, y ∈ X ) − x ≤ y ≤ x → ‖y‖X ≤ ‖x‖X ;

(∀x ∈ X )(∀0 < ε ∈ R∧)
(
‖x‖X ≤ 1→ (∃y ∈ X ) − x ≤ y ≤ x ∧ ‖y‖X < 1 + ε

)
.

The appearance of R∧ in the last formula is justified since in Definition 3(2) we can replaced
R by a dense subset of R. Using the descent rule (1) and given x, y ∈ X and c ∈ R, we see
that [[‖x‖X ≤ ‖y‖X ]] = 1 and [[‖x‖X ≤ c∧]] = 1 if and only if x ≤ y and x ≤ c1.
Therefore, the regularity of X is equivalent to

(∀x, y ∈ X) − x ≤ y ≤ x → y ≤ x ;

(∀x ∈ X)(∀0 < ε ∈ R)
(

x ≤ 1→ (∃y ∈ X) − x ≤ y ≤ x ∧ y ≤ (1 + ε)1
)
.

To ensure that the last two conditions are equivalent to the regularity of (X, ‖ · ‖) we only
have to observe that x ≤ c1 if and only if ‖x‖ ≤ c and y ≤ x if and only if ‖πy‖ ≤
‖πx‖ for all π ∈ P(Λ) as well as to use the equations ‖πx‖ =

∥∥ πx
∥∥

∞ =
∥∥π x

∥∥
∞ for all

x ∈ X and π ∈ B. The only matter that needs clarification is as follows: If condition (1)
in Definition 3 is satisfied, then ±y ≤ x implies x ≤ y . Indeed, if x � y , then
there exist a nonzero projection π ∈ B and a real δ > 0 such that π x ≥ π( y + δ1),
whence ‖πx‖ =

∥∥ πx
∥∥

∞ ≥
∥∥ πy + δπ1

∥∥
∞ = ‖πy‖+ δ. So we get that ±πy ≤ πx while

‖πx‖ > ‖πy‖, which contradicts 3(1).

Denote by Prtσ := Prtσ(B) and P f in(X) the set of all countable partitions of unity in
B and the collection of all finite subsets of X. Let X be a B-cyclic Banach lattice. Recall that
‖x‖ =

∥∥ x
∥∥

∞ (x ∈ X), where (X, · ) is a Banach–Kantorovich space with Λ-valued norm
Λ = Λ(B) = Zm(X). Denote

‖x1‖ ⊕B · · · ⊕B ‖xn‖ := inf
(πk)∈Prtσ(B)

sup
k∈N

N

∑
n=1
‖πkxn‖.

In this section we will construct the injective sum of injective Banach lattices and character-
ize the injective Banach lattices in terms of summable sequences.

Lemma 5. Let X be a B-complete ordered Banach space. Then
(1) given a finite collection x1, . . . , xN ∈ X, we have∥∥ x1 + · · ·+ xN

∥∥
∞ = ‖x1‖ ⊕B · · · ⊕B ‖xN‖; (3)

(2) given a family (xα)α∈A in X such that o-summable ( xα )α∈A is o-summable, we have

sup
θ∈P f in(A)

inf
(πk)∈Prtσ

sup
k∈N

∑
α∈θ

‖πkxα‖ =
∥∥∥∥ o-∑

α∈A
xα

∥∥∥∥
∞

. (4)

Moreover, ( xα )α∈A is o-summable if and only if the left hand-side in (4) is finite.
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Proof. (1): Considering finite collection x1, . . . , xN ∈ X and an arbitrary countable partition
of unity (πk) in B, we deduce

N

∑
n=1

xn =
∞∨

k=1

N

∑
n=1

πkxn =
∞∨

k=1

πk(1)
N

∑
n=1
‖πkxn‖p ≤ 1 · sup

k∈N

N

∑
n=1
‖πkxn‖.

Hence, the inequality ≤ holds. To prove the reverse inequality, take an arbitrary 0 < ε ∈ R
and choose a countable partition of unity (πk) such that

‖πkxi‖πk1 ≤ πk( xi + ε1) (k ∈ N, n := 1, . . . , N). (5)

Forming sums over n ≤ N and taking the supremum over k ∈ N in (5), we obtain

sup
k∈N

N

∑
n=1
‖πkxn‖ =

∥∥∥∥ ∞∨
k=1

N

∑
n=1
‖πkxn‖πk1

∥∥∥∥
∞

≤ sup
k∈N

∥∥∥∥ N

∑
i=1

πk( xi + ε1)

∥∥∥∥
∞
≤
∥∥∥∥ N

∑
i=1

xi

∥∥∥∥
∞
+ Nε.

Since 0 < ε is arbitrary, we arrive at the required equality.
(2): According to 5(1), for every θ ∈P f in(A) we can write∥∥∥∥ ∑

x∈θ

x
∥∥∥∥

∞
= inf

(πk)∈Prtσ

sup
k∈N

∑
x∈θ

‖πkx‖. (6)

It follows that the family ( xα )α∈A is order summable if and only if the numerical family
(‖∑α∈θ xα ‖∞)α∈A is bounded, since Λ is Dedekind complete. Taking the supremum in (6)
over all finite subsets θ ⊂ A and using the fact that ‖ · ‖∞ is a Fatou norm we arrive at (4).

Lemma 6. Let (X , ‖ · ‖X ) be an ordered Banach space within V(B) and let (X, · ) be the
restricted descent of (X , ‖ · ‖X ). If ‖x‖X :=

∥∥ x
∥∥

∞ (x ∈ X), then for x, y ∈ X the following
are equivalent:

(1) ‖x + y‖X = ‖x‖X + ‖y‖X within V(B);
(2) x + y = x + y .
(3) ‖x + y‖X = ‖x‖X ⊕B ‖y‖X .

Proof. The equivalence (1)⇐⇒ (2) can be easily deduced by using some simple properties
of descents and ascents [6] (1.5.5(1), 1.5.6, 1.6.4, and 1.6.6), while (2)⇐⇒ (3) immediate
from Lemma 5.

Definition 4. Let X be a B-complete normed ordered vector space. Say that the norm is B-additive
on X+ if for every x, y ∈ X+ we have ‖x + y‖ = ‖x‖ ⊕B ‖y‖ and X+ is B-generating if for every
u ∈ X there exist x, y ∈ X+ with u = x− y and ‖u‖ = ‖x‖ ⊕B ‖y‖.

Lemma 7. Let X be a B-complete Banach space ordered by a B-complete positive cone X+ and let
B consist of positive projections. Then

(1) the norm is B-additive on X+ if and only if x + y = x + y for all x, y ∈ X+;
(2) the cone X+ is B-generating if and only if for every u ∈ X there exist x, y ∈ X+ with

u = x− y and u = x + y .

Proof. The claims are immediate from Lemma 6 and Definition 4.

Theorem 3. For an ordered Banach space X and a complete Boolean algebra B the following are
equivalent:

(1) X is an injective Banach lattice with B 'M(X).
(2) The next four conditions hold:

(a) X has the Riesz decomposition property.
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(b) X is regular.
(c) B ' PM(X) and the unit ball U(X) and the positive cone X+ are B-complete.
(d) The norm of X is B-additive.

Proof. An ordered Banach space X is B-complete if one of the items 3(1) and 3(2a) holds.
Thus, we can assume that X = X ⇓ for some ordered Banach space X withinV(B). By 2.8 X
is an injective Banach lattice if and only if X is AL-space. By the Ellis result [28] (Corollary
9.23) X is an AL-space if and only if X is regular and has the Riesz decomposition
property while the norm ‖ · ‖X is additive on X+. Thus, we have to show only that X
has the above properties if and only if X enjoys 3(2b, 2c, 2d). The latter, however, follows
from Lemmas 4 and 7.

Remark 2. Another way of characterizing injective Banach lattices is to use the properties of
positive generation and additivity on the positive cone. An ordered Banach space (X, X+) is an
injective Banach lattice with B = PM(X) if and only if the following hold: (a) x ∧ y exists in
X+ for all x, y ∈ X+; (b) the unit ball U(X) and the positive cone X+ are B-complete; (c) X
is B-generated; (d) X is B-additive. This fact can be obtained as a Boolean valued interpretation
of [29] (Chap 2, Theorem 6.2).

5. Isomorphic Characterization

In this section we give the conditions for a monotone complete normed ordered vector
space to be topologically and order isomorphic to some injective Banach lattice.

Definition 5. A normed ordered vector space X is monotone complete, if every monotone Cauchy
sequence in X is convergent. Say that (X, · ) is monotone norm σo-complete if, given an increasing
sequence (xn)n∈N in X with ( xn − xm )(n,m)∈N×N order convergent to zero in Λ, there exists x ∈
X such that ( xn − x )n∈N is order convergent to zero in Λ. In the same way we define monotone
σr-completeness, by considering relatively uniform convergence instead of order convergence.

Monotone complete ordered normed spaces arise in several different areas. Some
recent advances can be found in [30].

Lemma 8. Let X ∈ V(B) be a normed ordered vector space and X := X ⇓. Then X is monotone
σ-complete if and only if [[X is monotone σ-complete]] = 1.

Proof. By Lemma 3, there is a Λ-valued norm · on X such that (X, · ) is a Banach–
Kantorovich space and ‖x‖ =

∥∥ x
∥∥

∞ for all x ∈ X ⇓; see 2.5. Using the interplay between
convergent sequences in R and Λ (see [19] (Propositions 8.1.4(3, 4) or [6] (Propositions
2.4.5 and 2.4.6)), we can prove that [[X is monotone complete]] = 1 if and only if (X, · ) is
monotone norm σo-complete. Arguing as in [19] (Theorem 7.1.2), we can also prove that
(X, ‖ · ‖) is monotone complete if and only if (X, · ) is norm σr-complete. Consequently,
we only have to show that the monotone σo-completeness of (X, · ) is equivalent to the
monotone norm σr-completeness of (X, · ). This can be done by the same reasoning as
in the proof of [19] (Theorem 2.2.3). To sketch the proof, denote by B[N] the set of all
mappings ν : N → B such that ν(N) is a partition of unity in B and define the order
relation on B[N] by letting ν ≤ µ whenever ν(n)∧ µ(m) 6= 0 implies n ≤ m for all n, m ∈ N.
Given an increasing Cauchy sequence (xn)n∈N and ν ∈ B[N], put xν := mix ν(n)xn. Then
(xν)ν∈B[N] is an increasing net. Let (λn) be a decreasing sequence in λ such that infn λ = 0
and xn − xm ≤ λk for all n, m ≥ k. For an arbitrary 0 < ε ∈ R there exist a partition of
unity ν0 := (τn) in Bwith τnλn ≤ ετn1 for all n ∈ N. Now, if ν1, ν2 ∈ B[N] and ν1, ν2 ≥ ν0,
then xν1 − xν2 ≤ ε1. If X is norm r-complete, there is x ∈ X with r- limν x− xν = 0 and,
clearly, r- limn x− xn = 0.
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The main result of this section will be obtained as a Boolean valued interpretation
of the following two statements. Recall that X is referred to as directed or generating if
X = X+ − X+.

Lemma 9. Assume that an normed ordered vector space X is directed, monotone complete and has
the Riesz decomposition property. Then X is order isomorphic to some AL-space if and only if the
positive cone can be written as X+ = R+B for some closed bounded convex set B ⊂ X+ \ {0}.

Proof. This is a special case of Timofte’s isomorphic characterization of AL-spaces among
Hausdorff topological ordered vector space; see [31] (Theorem 14).

Lemma 10. If X and B are the same as in Lemma 9, then there is an equivalent AL-norm ‖ · ‖L on
X such that the following hold:

(1) r ≤ ‖x‖L for all x ∈ X+ and r ∈ R+ with x ∈ rB.
(2) If there exists 1 < γ ∈ R such that γ−1U ⊂ X \ B and co(B ∪ (−B)) ⊂ γU then

‖x‖L ≤ αγ for all x ∈ X and α ∈ R+ with x ∈ α co(B ∪ (−B)).

Proof. By hypotheses there is an equivalent AL-norm ‖ · ‖L on X such that q(x) ≤ ‖x‖L
for all x ∈ X+, where q(x) := sup{α ∈ R+ : x ∈ αB}; see [31] (Lemma 2 and Theorem 9).
This yields 10(1). As in the proof of [31] (Lemma 2), we can verify that ‖x‖ ≤ γp(x) for all
x ∈ X, where p(·) is the Minkowski functional of co(B ∪ (−B)). Now, 10(2) is immediate
from the definition of the Minkowski functional.

Lemma 11. Let X be a Banach space within V(B) and X = X ⇓. If B ⊂ X is B-complete and
B̂ := B↑, then [[B̂ ⊂ X is closed and convex ]] = 1 if and only if B is closed and convex. If B is
bounded then [[B̂ is bounded]] = 1.

Proof. Observe that [[x ∈ X is a limit point of B̂]] = 1 if and only if for every 0 < ε ∈ R
there exist a partition of unity (πξ) in B and a family (xξ) in B such that ‖x− xε‖ < ε and
xε = mixξ πξ xξ , that is, x is a limit point of mix(B) = B. Together with Lemma 1, this
yields the first claim. The second claim is obvious.

Positive operators are often automatically continuous: Every positive operator from
a Banach lattice to a normed vector lattice is continuous; see [16] (Corollary 4.4) and [18]
(Proposition 1.3.5)). Below we need a stronger version of this fact.

Lemma 12. Let X and Y be two ordered Banach spaces whose positive cones are closed. If X is
directed then every positive operator from X to Y is continuous.

Proof. See [26] (Corollary 6), where the authorship of the statement is attributed to
Lozanovsky.

Theorem 4. Let B be a complete Boolean algebra and Λ = Λ(B). Assume that a B-complete
normed ordered vector space X is regular and monotone complete. Also, X has the Riesz decomposi-
tion property. Then the following are equivalent:

(1) There exists an equivalent norm ‖ · ‖L on X such that (X, ‖ · ‖L) is an injective Banach
lattice with B = PM(X, ‖ · ‖L).

(2) There exists a bounded, closed, and convex B-complete set B ⊂ X+ such that 0 /∈ B and
X+ = Λ+B := {λb : λ ∈ Λ+, b ∈ B}.

Proof. (1) =⇒ (2): Assume 4(1). Then (X, ‖ · ‖L) is representable as L1(Φ) with a strictly
positive order continuous operator Φ : X → Λ having the Levy property. If B := {x ∈
X+ : Φ(x) = 1} then evidently B is convex. Moreover, B is closed and bounded, since the
formula ‖x‖ = ‖Φ(|x|)‖∞ (x ∈ X) implies that Φ is continuous and ‖b‖ = 1 for all b ∈ B. If
πx = 0 for some π ∈ B and x ∈ B then 0 = Φ(πx) = πΦ(x) = π(1) so that π = 0. Given
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x ∈ X+, a partition of unity (πξ) in B and a family (xξ) such that πξ x = πξ xξ for all ξ, we
have πξ Φ(x) = Φ(πξ x) = Φ(πξ xξ) = πξ1Φ(x) and hence Φ(x) = 1. Finally, check that
each x ∈ X+ can be written as x = λb with λ ∈ Λ+ and b ∈ B. Assume first that λ = Φ(x)
is an order unit in Λ. Then there exists µ ∈ Λu such that λµ = 1 and we can pick a disjoint
sequence (µn) in Λ+ with µ =

∨
n µn. Since Φ(

∨n
k=1 µkx) = ∑n

k=1 µkΦ(x) ≤ λµ = 1 and Φ
has the Levy property, x̄ =

∨
n µkx exists in X+ and Φ(x̄) =

∨
n µkΦ(x) = 1. Thus, x̄ ∈ B

and λx̄ =
∨

n λµn = x. To settle the general case, denote by π the band projection onto the
band generated by λ, pick x0 ∈ X+ with Φ(x0) = 1, and put y := x + π′x0, π′ := IΛ − π.
Then Φ(y) = λ + π′1 is an order unit in Λ and, by the above, y = (λ + π′1)b for some
b ∈ B. It follows that x = πy = πλb ∈ Λ+B as desired.

(2) =⇒ (1): Let (X , ‖ · ‖X ) ∈ V(B) be a Boolean valued representation of X. Identify
(X, ‖ · ‖) with (X , ‖ · ‖X )⇓ and put X+ := X+↑. Arguing as in the proof of [9] (Theorem
3.1), we can show that (X , X+) is an normed ordered vector space within V(B), and
X+ = X+⇓ as X+ is B-complete. Moreover, X is regular and has the Riesz decomposition
property by Lemma 4 and X is monotone complete by Lemma 8. Assume 4(2)and put
B := B↑. Then B is bounded, closed, and convex by Lemma 11. If π = [[0 ∈ B]] = 1

then 0 ∈ πB so that π = 0 and [[0 /∈ B]] = 1. To see that [[X+ = R+B]] = 1, we need
only to check that [[∃λ ∈ R+]] = [[∃b ∈ B]] = [[x = λb]] = 1 for all x ∈ X+ or, which is
the same, X+ ⊂ R↓+B. But even more is true: X+ = Λ+B by hypothesis. Thus, X meets
the requirements of Lemma 9. By the transfer principle, Lemma 9 is true within V(B) and
so [[there is an equivalent AL-norm ‖ · ‖L on X ]] = 1. In particular, [[X is Dedekind
complete vector lattice]] = 1 by [31] (Proposition 8). Let · and · L stand for the descents
of ‖ · ‖X and ‖ · ‖L .

Prove that X = XL := {x ∈ X ↓ : x L ∈ Λ}. Interpreting Lemma 10(1) in V(B)

yields that λ ≤ x L for all 0 ≤ x ∈ X ↓ and λ ∈ Λu
+ with x ∈ λB. For an arbitrary

x ∈ X ↓ there is a countable partition of unity (πn) in B such that πn x ∈ Λ for all n.
Then πn|x| ∈ X+ and, by hypothesis, πn|x| = λnbn for some bn ∈ B and λn ∈ Λ. Put
λ = o-∑ λn and b = o-∑ bn. Observe that b ∈ B, while λ exists in Λu. If x L ∈ Λ, then
λ ∈ Λ as πn|x| ∈ λnB and λn ≤ πn x L ≤ x L ∈ Λ. Moreover, λb = |x|. Thus, λ ≤ x L
so that x L ∈ Λ implies x ∈ X, i.e., XL ⊂ X.

To demonstrate the converse inclusion note that we can pick 0 < γ ∈ R such that
(γ−1U) ∩ B = ∅ and B ⊂ γU as B is closed and convex and 0 /∈ B. Note also that
coΛ(B ∪ (−B)) consists of all elements of the form ν1a1 + ν2(−a1) with ν1, ν2 ∈ Λ+, ν1 +
ν2 = 1, and a1, a2 ∈ B. Hence, coΛ(B ∪ (−B)) ⊂ γU. It follows that within V(B) we have
(1/γ∧U ) ∩B = ∅ and co(B ∪ (−B)) ⊂ γ∧U , where U stands for the unit ball of X .
By the transfer principle, Lemma 10 is applicable within V(B) so that ‖x‖L ≤ αγ∧ for all
x ∈ X and α ∈ R+ with x ∈ α co(B ∪ (−B)). Descending, we get that x L ≤ αγ for
all x ∈ X and α ∈ Λ+ with x ∈ α co(B ∪ (−B)). By hypothesis, for an arbitrary x ∈ X
there are λ1, λ2 ∈ Λ+ and b1, b2 ∈ B such that x+ = λ1b1 and x− = λ2b2. Observe that
ν := λ1 + λ2 + ε1 is invertible in Λ and we deduce

x = λ1b1 − λ2b2 = ν
(λ1

ν
b1 +

λ2

ν
b2 +

ε1

ν
0
)
∈ ν coΛ(B ∪ (−B)).

Thus, x L ≤ γν ∈ Λ and the inclusion X ⊂ XL follows. To complete the proof, we
need only note that (X, ‖ · ‖L) is a Banach lattice with ‖x‖L :=

∥∥ x L
∥∥

∞ (x ∈ X) (see 2.8)
and apply Lemma 12.

A rather different isomorphic characterization of AL-spaces is given by the following
result due to Schlotterbeck: A Banach lattice X is lattice isomorphic to an AL-space if
and only if every positive summable sequence in X is absolutely summable; see [32]
(Theorem 2.7).

Definition 6. Put Θ := P f in(N). A sequence (xn) in X isB-summable if there is x ∈ X such that
for every 0 < ε ∈ R there exists a partition of unity (πθ)θ∈Θ in B with

∥∥πθ

(
x−∑x∈θ̄ x

)∥∥ ≤ ε for
all θ ∈ Θ := P f in(N) and θ ⊂ θ̄. In this event x is called the B-sum of (xn). If the sequence (xn)
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is positive and the norm in X is absolute monotone, then we see that that for every 0 < ε ∈ R there
exists a countable partition of unity (πn) in B with

∥∥πn
(
x − ∑N

k=1 xk
)∥∥ ≤ ε for all n, N ∈ N

with N ≥ n. A sequence (xn) is absolutely B-summable if

sup
N∈N

inf
(πk)∈Prtσ(B)

sup
k∈N

N

∑
n=1
‖πkxn‖ < +∞.

Taking B to be the two-element Boolean algebra {O,1} in Definition 6, we arrive at
the definition of a summable and an absolute summable sequence; see [32] (page 240).

Theorem 5. For a B-cyclic Banach lattice X the following are equivalent:
(1) There is a countable partition of unity (πn)n∈N in B such that πnX is lattice πnB-

isomorphic to an injective Banach lattice for every n ∈ N.
(2) Every positive B-summable sequence in X is absolutely B-summable.

Proof. Let X be a B-cyclic Banach lattice and let (X , ‖ · ‖X ) be a Banach lattice within
V(B), the Boolean valued representation of X; see 2.7(1). By Lemma 5(2) a sequence (xn) in
X is absolutely B-summable if and only if o-∑n∈N xn exists in Λ. But the latter is means
that [[the sequence (xn) is absolutely summable in X ]] = 1. It is easy that B-sum of (xn)
exists and equals x if and only if o-limn→∞ x− sn = 0 with sn := ∑n

k=1 xk if and only if[[
lim

n→∞

∥∥∥∥x−
n

∑
k=1

xk

∥∥∥∥
X

= 0
]]

= 1.

Consequently, 5(2) means that [[every positive summable sequence in X is absolutely
summable]] = 1. The transfer principle enables us to apply within V(B) the Schlotterbeck
characterization of AL-spaces, so that by the maximum principle there exists L , v ∈ V(B)

such that [[L is an AL-space]] = 1 and [[v : X → L is a lattice isomorphism of X onto
L ]] = 1. Assume, moreover, that [[‖v‖, ‖v−1‖ ≤ n∧]] = 1 for some n ∈ N. Then V := v⇓ is
a lattice B-isomorphism of X ⇓ onto L := L ⇓ and ‖V‖, ‖V−1‖ ≤ n. To settle the general
case, observe that the sentence (∃ n ∈ N)‖V‖, ‖V−1‖ ≤ n is true, so that by the transfer
principle

1 = [[(∃ n ∈ N∧)‖v‖, ‖v−1‖ ≤ n]] =
∨

n∈N
[[‖v‖, ‖v−1‖ ≤ n∧]].

It follows that there is a partition of unity πn in B such that πn ≤ [[‖v‖, ‖v−1‖ ≤ n∧]]. Put
Bn := πnB := [O, πn], Xn := πnX , Ln := πnL , and vn := πnv. Note that V(Bn) |= “vn
is a lattice isomorphism from Xn onto Ln”. It follows that Vn := vn⇓ is a lattice Bn-
isomorphism from Xn⇓ onto Ln := Ln⇓ and ‖Vn‖, ‖V−1

n ‖ ≤ n.

Remark 3. Condition 5(1) admits the equivalent formulation: There are a Banach lattice (X0, ‖ ·
‖0) and a countable partition of unity (πn) in B such that (a) X0 is an order dense ideal of X;
(b) (X0, ‖ · ‖0) is an injective Banach lattice; (c) πnX0 = πnX for all n ∈ N; and (d) πnX0 and
πnX are lattice πnB-isometric under the induced norms. To demonstrate this, it suffices to put
X0 := {x ∈ X : supn ‖πnx‖Ln < ∞}.

6. Dual Characterization

In this section, we will provide some dual characterization of injective Banach lattices.
To start with, we reveal the structure of the dual space. Below, X′ and 〈·, ·〉 stand for the
topological dual of X and the natural duality pairing between X and X′.

Definition 7. The B-dual (X#, · ) of a lattice normed vector space X over Λ is defined as the
lattice normed vector space over Λ, where X# consists of all linear operators x# from X to Λ such
that there exists λ ∈ Λ+ with |〈〈x, x#〉〉| := |x#(x)| ≤ λ x for all x ∈ X. The least λ satisfying
the above is denoted by x# . The mixed norm on X is determined, as usual, by |||x#||| := ‖ x# ‖∞.
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Definition 8. A B-complete AM-space will be referred to as B-AM-space. An M-norm is a Λ(B)-
valued norm · on X satisfying x ∨ y = x ∨ y for all x, y ∈ X+.

Theorem 6. Let X be a B-complete ordered Banach space, let X ∈ V(B) be the Boolean valued
representation of X, and Λ = Λ(B). Then the following are equivalent:

(1) X is an injective Banach lattice with PM(X) isomorphic to B.
(2) X ′ is an AM-space within V(B).
(3) (X#, · ) is a Banach–Kantorovich lattice with a Λ-valued M-norm.
(4) (X#, |||·|||) is a B-AM-space.

Proof. By Section 2, X is an injective Banach lattice with PM(X) ' B if and only if [[X
is an AL-space]] = 1. By the duality between AL- and AM-spaces which was discovered
by Ellis [29] (Theorem 6.4) and the transfer principle, X is an injective Banach lattice with
PM(X) ' B if and only if [[X ′ is an AM-space]] = 1. Hence, (1) ⇐⇒ (2). By Section 2
and [11] (Lemma 3.5), X# is a Banach–Kantorovich lattice if and only if [[X ′ is a Banach
lattice]] = 1. Moreover, it is immediate from the properties of descents that [[ ‖ · ‖ is
an AM-norm]] = 1 if and only if · is an Λ-valued M-norm, whence (2)⇐⇒ (3). Since a
decomposable lattice normed vector space is order complete if and only if it is disjointly
complete and relatively uniformly complete [19] (Theorem 2.3.2). Also, a vector space
with a mixed norm is a Banach space if and only if the corresponding lattice normed vector
space is complete under the norm σr-convergence [19] (7.1.2). It follows that (X#, · ) is
a Banach–Kantorovich lattice if and only if (X#, |||·|||) is a Banach lattice. To demonstrate
the equivalence (3)⇐⇒ (4), it suffices to show that · and |||·||| are or are not M-norms
simultaneously. Assume that |||·||| ia an M-norm, but x ∨ y < x ∨ y for some x, y ∈ X.
Then there are π ∈ B and 0 < ε ∈ R such that

πx ∨ πy + επ1 = π( x ∨ y + ε1) ≤ π x ∨ y = π(x ∨ y) .

Taking ‖ · ‖∞-norms, we obtain

|||πx||| ∨ |||πy|||+ ε =
∥∥ πx ∨ πy + επ1

∥∥
∞ ≤

∥∥ π(x ∨ y)
∥∥

∞ = |||π(x) ∨ π(y)|||.

This is a contradiction. The converse is obvious.

Lemma 13. Let X and Y be Dedekind complete vector lattices and let Φ be a Maharam operator from
X to Y. Then for every regular operator T : X → Y with |T| ≤ Φ there exists an orthomorphism
w ∈ Z (X) such that |w| ≤ IX and Tx = Φ(wx) for all x ∈ X.

Proof. This is a special case of the Radon–Nikodým Theorem for regular operators due to
Luxemburg and Schep; see [33].

Lemma 14. Let X, Y, and Φ be the same as in Lemma 2. Then there exists an f -algebra isomor-
phism h from Z (Y) onto the order complete f -subalgebra of Z (X) such that πΦ(x) = Φ(h(π)x)
holds for all π ∈ Z (Y) and x ∈ X.

Proof. This is an obvious consequence of [19] (Theorem 3.4.10).

Lemma 15. If (X, ‖ · ‖) is a Banach space associated with a Banach–Kantorovich space (X, · )
over Λ, then X′ is associated with the Banach–Kantorovich space (X′, · ), where the Λ-valued
norm x′ ∈ Λ′ of x′ ∈ X′ is defined as

〈λ, x′ 〉 = sup{〈x, x′〉 : x ∈ X, x ≤ λ} (λ ∈ Λ).

In particular, ‖x′‖ =
∥∥ x′

∥∥
∞ and 〈x, x′〉 6

〈
x , x′

〉
for all x ∈ X and x′ ∈ X′.



Mathematics 2021, 9, 250 14 of 18

Proof. See [19] (Theorem 7.1.4).

Theorem 7. Let X be an injective Banach lattice with B :=M(X) and let Φ be a strictly positive
Maharam operator from X to Λ := Λ(B) with the Levi property such that ‖x‖ = ‖Φ(|x|)‖∞ for
all x ∈ X. Then

(1) For every x# ∈ X# there is a unique orthomorphism w ∈ Z (X) such that 〈〈x, x#〉〉 =
Φ(wx) for all x ∈ X;

(2) X# is a B-AM-space and the mapping x# 7→ w is a B-isometry from X# onto Z (X);
(3) Φ′ is a lattice B-isometry from Λ′ onto a majorizing sublattice of X′;
(4) |x′| ≤ Φ′( x′ ) For all x′ ∈ X′; in particular, x′ belongs to the σ(X′, X)-closure of

{ x′ ◦Φ ◦ w : w ∈ Z (X), |w| ≤ IX}.

Proof. If x# ∈ X# then |x#| ≤ λΦ for some λ ∈ Λ. As λΦ is a Maharam operator as well,
there is w′ ∈ Orth(X) such that |w′| ≤ IX and x# = λΦw′ by Lemma 13. Considering that
λΦ = Φλ and putting w = λw′, we arrive at 7(1). The strict positivity of Φ implies the
uniqueness of w as well as the simultaneous positivity of x# and w. Thus, the mapping
x# 7→ w is a lattice isomorphism from X# onto Z (X). By Lemma 14 we can identify Λ
with an order closed sub- f -algebra of Z (X) and define the Λ-valued norm on Z (X)
as w := inf{λ ∈ Λ+ : |w| ≤ λ}. Then the regular norm on Z (X) is a mixed norm:
‖w‖ = ‖ w ‖∞ for all w ∈ Z (X). It is clear from the above that |x#| ≤ λ if and only if
|w| ≤ λ so that x# = w . Consequently, |||x#||| = |||w|||, whence 7(2) holds.

The remaining part of the proof rests upon Lemma 15. Since Φ is interval preserving,
Φ′ is a lattice homomorphism; see [16] (Theorem 2.19). Moreover, considering that Φ(X) =
Λ and Φ is Λ-linear, we deduce that

‖Φ′λ′‖ = sup
x∈X+ ,‖x‖≤1

〈x, Φ′λ′〉

= sup
x∈X+ ,‖Φ(x)‖∞≤1

〈Φ(x), λ′〉 = sup
λ∈Λ+ ,‖λ‖∞≤1

〈λ, λ′〉 = ‖λ‖,

π′Φ′ = (Φπ)′ = (πΦ)′ = Φ′π′.

So, Φ′ is isometric and B-linear. Now, 7(3) is immediate from the relations 〈x, x′〉 ≤
〈 x , x′ 〉 = 〈Φ(|x|), x′ 〉 = 〈|x|, Φ′ x′ 〉 valid for all x′ ∈ X′ and x′ ∈ X′, according to
which |x′| ≤ Φ′( x′ ). Define the continuous seminorm p : X → R and the sublinear
operator P : X → Λ as p(x) := 〈Φ(|x|), x′ 〉 and P(x) := Φ(|x|). By the Hahn–Banach–
Kantorovich Theorem [16] (Theorem 1.25) for an arbitrary x0 ∈ X there exists a linear
operator S : X → Λ such that Sx0 = P(x0) and Sx ≤ P(x) for all x ∈ X. It follows that
S is regular, |S| ≤ Φ, and by Lemma 13 there exists an orthomorphism w ∈ Z (X) with
Sx = Φ(wx) for all x ∈ X and |w| ≤ IX . Moreover, Px0 = Φ(wx0) and we see that

p(x) = 〈P(x), x′ 〉 = sup{〈Φ(wx), x′ 〉 : w ∈ Z (X), |w| ≤ IX} (x ∈ X).

Finally, we conclude that x′ lies in the dual closed unit ball of the seminorm p and this unit
ball is the σ(X′, X)-closure of { x′ ◦Φ ◦ w : w ∈ Z (X), |w| ≤ IX}.

We preface the next result with a few remarks. Denote by P∗L(X′) the part of PL(X′)
consisting of σ(X′, X)-continuous projections. Let L ∗

B (Λ
′, X′) stand for the part of L (Λ′, X′)

consisting of all continuous B-linear operators from (Λ′, σ(Λ′, Λ)) to (X′, σ(X′, X)). Since
Λ′ is an AL-spaces and X′ has the Levi property, every norm bounded linear operator from
Λ′ to X′ is regular. Hence, L (Λ′, X′) coincides with L r(Λ′, X′); see [34] (Theorem 3.5).
Moreover, L r(Λ′, X′) is a Dedekind complete Banach lattice. Now, every weak∗-continuous
linear operator from Λ′ to X′ is norm continuous and L ∗

B (Λ
′, X′) is considered as a subspace

of L r(Λ′, X′) with the induced ordering.
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Theorem 8. Let X be a Banach lattice, B a complete Boolean algebra, and Λ = Λ(B). Then the
following are equivalent:

(1) X is injective with B := PM(X).
(2) The four conditions hold:

(a) B is isomorphic to a complete subalgebra P∗L(X′) of the Boolean algebra PL(X′).
(b) There exists a lattice B-isometry J ∈ L ∗

B (Λ
′, X′) such that J(Λ′) is a majorizing

sublattice of X′.
(c) For every x′ ∈ X′ there exists λ′ ∈ Λ′ such that |x′| ≤ Jλ′, ‖x′‖ = ‖λ′‖, and x′ lie
in the σ(X′, X)-closure of {Sλ′ : S ∈ L ∗

B (Λ
′, X′), ‖S‖ ≤ 1}.

(d) L ∗
B (Λ

′, X′) is a B-AM-space with J as an order unit.

Proof. (1) =⇒ (2): An injective Banach lattice X is representable as L1(Φ), where Φ : X →
Λ is a strictly positive Maharam operator with the Levi property and B := PM(X) ' P(Λ);
see 2.8. It is also clear that a band projection π of X lies in PM(X) if and only if the adjoint
π′ lies in PL(X′). Moreover, π′ is σ(X′, X)-continuous. It follows that the mapping π 7→ π′

is a Boolean isomorphism from P(X) onto P∗L(X′). Put J := Φ′ and observe that J is a lattice
isomorphism [16] (Theorem 2.20) and J is an isometry:

‖Jλ′‖ = sup
x∈X+ ,‖x‖≤1

{〈x, J|λ′|〉}

= sup
x∈X+ ,Φ(x)≤1

{〈Φ(x), |λ′|〉} = sup
λ∈Λ+ ,λ≤1

{〈λ, |λ′|〉} = ‖λ′‖.

Thus, we have established (a) and (b), while (c) and (d) follow from Theorem 7.
(2) =⇒ (1): Assume that (a)− (d) are fulfilled. From (a) it follows that PM(X) is

isomorphic to P∗L(X′) as every projection in P∗L(X′) is of the form π′ with π ∈ PM(X)
and the mapping π 7→ π′ is a norm preserving Boolean isomorphism from PM(X) into
PL(X′). Similarly, PM(Λ) = P(Λ) is Boolean isomorphic to P∗L(Λ′). Below it is convenient
to identify all these five Boolean algebras.

According to (b) there exists a positive operator Φ : X → Λ with J = Φ′. Thus Φ
is norm bounded and almost interval preserving by [18] (Theorem 1.4.19(ii)). Moreover,
Φ(X) = Λ as J is an isomorphism. Assuming that Φ(|x|) = 0 and using (b), for an arbitrary
x′ ∈ X′+ we may pick λ′ ∈ Λ′+ with x′ ≤ Φ′λ′ so that 0 ≤ 〈|x|, x′〉 ≤ 〈Φ(|x|), λ′〉 = 0,
whence x = 0 and Φ is strictly positive. Thus we can define the Λ-valued norm on X as
follows: x := Φ(|x|). Evidently

∥∥Φ(|x|)
∥∥

∞ ≤ ‖x‖ as ‖Φ‖ = ‖J‖ = 1 and, as we will see
later, the reverse inequality holds as well. Note that the norm · is decomposable; i.e.,
π x = πx for all x ∈ X and π ∈ B Indeed, for x ∈ X, x′ ∈ X′, and π ∈ B we have
〈πΦ(x), x′〉 = 〈x, J(π′x′)〉 = 〈x, π′ Jx′〉 = 〈Φ(πx), x′)〉, whence πΦ(x) = Φ(πx).

Using (c), we also define the Λ′-valued norm on X′ by putting x′ = λ′ where
|x′| ≤ Jλ′ and ‖x′‖ = ‖λ′‖, so that ‖x′‖ =

∥∥ x′
∥∥. The definition is sound, since this

λ′ ∈ Λ′+ is unique. Indeed, if |x′| ≤ Jλ′k and ‖x′‖ = ‖λ′k‖ for k = 1, 2; then |x′| ≤ Jλ′1 ∧
Jλ′2 = J(λ′1 ∧ λ′2) and ‖λ′k‖ = ‖x

′‖ ≤ ‖J(λ′1 ∧ λ′2)‖ = ‖λ′1 ∧ λ′2‖ ≤ ‖λ′k‖. It follows that
‖λk‖ = ‖λ′1 ∧ λ′2‖ and, since Λ′ is an AL-space, ‖λ′k − λ′1 ∧ λ′2‖ = ‖λ′k‖ − ‖λ

′
1 ∧ λ′2‖ = 0,

so that λ′k = λ′1 ∧ λ′2. Now, taking into account the inequality |x′| ≤ J( x′ ) we deduce

‖x‖ = sup{〈x, x′〉 : ‖x′‖ ≤ 1} ≤ sup{〈|x|, J x′ 〉 : ‖x′‖ ≤ 1}
≤ sup{〈|x|, λ′〉 : ‖λ′‖ ≤ 1} =

∥∥ x
∥∥

∞

and ‖x‖ =
∥∥ x

∥∥
∞ for all x ∈ X as claimed.

We will show that the Banach lattices X# and L ∗
B (Λ

′, X′) are lattice B-isometric. Each
S ∈ L ∗

B (Λ
′, X′) is an adjoint operator, i.e., S = T′ for some continuous operator T ∈

L (X, Λ). Moreover, in this event for C ∈ R+ we have |T| ≤ CΦ if and only if |S| ≤ CJ.
Thus, the mapping T 7→ T′ is an order preserving isometry from X# onto S ∈ L ∗

B (Λ
′, X′).

This isometry is B-linear, since (πT)′ = T′π = πT′, where π denotes a band projection in
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Λ as well as the corresponding projections in Λ′ and X′. It remains to refer to Theorem 6 to
conclude that X is an injective Banach lattice.

Remark 4. It should be emphasized that the sublattice J(Λ′) in X′ admits a contractive positive
projection. Indeed, there is an order continuous lattice isomorphism Ψ : Λ → X such that
Φ ◦Ψ = IΛ; see [19] (Theorem 3.4.10). Therefore, Ψ′ ◦Φ′ = IΛ′ and P := Φ′ ◦Ψ′ is a contractive
positive projection to X′ with P(X′) = J(Λ′).

Remark 5. In [7] (Proposition 3B) Haydon made the observation: If two hereditary downwards
faces G1 and G2 of U′+, the positive part of the dual unit ball, have the properties (1) G1 and G2 are
σ(X′, X)-closed, (2) each g ∈ U′+ admits a unique representation g = g1 + g2 with g1 ∈ G1 and
g2 ∈ G2, (3) ‖g1 + g2‖ = ‖g1‖+ ‖g2‖ for all g1 ∈ G1 and g2 ∈ G2; then there exists π ∈ P(X)
such that G1 = π′(U′+) and G2 = (IX − π′)(U′+). Of course in this case π′ ∈ PL(X′). Using
this fact, item (a) of Theorem 8, can be formulated in terms of the facial structure of U′+.

7. Concluding Remarks

The geometric study of an L1-predual space, a Banach space whose dual is isometric
(isomorphic) to an AL-space, stems from the works of Grothendieck [35] and Linden-
strauss [36]. The integral representation theorems of Choquet led quite naturally to explo-
ration of the related geometric structure of state spaces; see Alfsen [37]. One of the main
problems in operator algebras is the geometric description of state spaces of operator alge-
bras; the complete solution of this problem by Alfsen, Hanche-Olsen, Iohum, and Shultz is
presented in the book [38]. One of the recent valuable developments is the classification of
facially symmetric spaces which was initiated by Friedman and Rousso in [39]. In particular,
the geometric description of an L1-space as a strongly facially symmetric spaces given by
Ibragimov and Kudaybergenov in [40] admits a counterpart for injective Banach lattices.
This development of convexity theory has motivated the geometric study of the duals and
preduals of injective Banach lattices.

In [41] (Corollary 1) Fremlin proved that a Banach lattice X is isomorphic to an L-space
if and only if every continuous linear operator from X to l1 is order bounded. To formulate
the Boolean version of this result, we define the Boolean counterpart of the Banach lattice
l1. Suppose that Q is the Stone representation space of B and X is a Banach lattice. Denote
by C#(Q, X) the set of cosets of continuous vector-functions u : dom(u) ⊂ Q→ X such that
Q \ dom(u) is a meager set in Q and the continuous extension u of the pointwise norm
q 7→ ‖u(q)‖ to the whole of Q belongs to the Banach lattice C(Q) of continuous functions.
Vector-functions u and v are equivalent if u(q) = v(q) for all q ∈ dom(u) ∩ dom(v). If ũ is
the coset of u then we define ũ := u and ‖ũ‖ :=

∥∥ ũ
∥∥

∞. The set C#(Q, X) is naturally
endowed with the structure of a B-complete Banach lattice; see 2.5. Moreover, C#(Q, l1) is
an injective Banach lattice whose Boolean valued representation is l1 within V(B). Now,
interpreting the Fremlin characterization of L-spaces in the model V(B), we arrive at the
following result.

Theorem 9. For a B-cyclic Banach lattice X the following are equivalent:
(1) There is a countable partition of unity (πn)n∈N in B such that πnX is lattice πnB-

isomorphic to an injective Banach lattice for every n ∈ N.
(2) Every continuous B-linear operator from X to C#(Q, X) is order bounded.

If the dual X′ of a Banach lattice X is injective, then the pair (X, X′) with the conven-
tional duality pairing admits a nice Boolean valued representation as a dual pair (X , X ′)
with X ′ injective in an appropriate Boolean valued universe V(B); see [11] (Theorem 3.8
and Corollary 3.9). Nevertheless, there is a striking asymmetry in these dualities: If a
Banach lattice X is injective, then the duality between X and X′ is not representable as
Boolean valued duality between X and X ′; see Theorem 6. The reason is that for a
dual space X′ the Boolean algebra of M-projections is isomorphic to the complete Boolean
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algebra of L-projections on X, whilst the collection of M-projections on X may be too scarce;
see [42] (Theorems I.1.10 and V.4.6).

Theorem 7 can be viewed as a version for injective Banach lattices of Grothendieck’s
result stating that a Banach space is an AL-space provided that its dual is isomorphic to a
Banach space of continuous functions on a locally compact space vanishing at infinity (see [43]
(Theorem 27.4.1)); in other words, L1 is the only predual of L∞ (see [35] ([Theorem 1)). As can
be seen, the proof consists of a combination of Boolean valued representation and some results
of the standard structure theory of Banach lattices. Another version of Grothendieck’s result
for injective Banach lattices in terms of the B-dual X# (Definition 7) can be obtained by the
direct Boolean valued interpretation [9] (Theorem 5.12).
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