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Abstract: Instantaneous frequency (IF) is a fundamental feature in multicomponent signals analysis
and its estimation is required in many practical applications. This goal can be successfully reached
for well separated components, while it still is an open problem in case of interfering modes. Most of
the methods addressing this issue are parametric, that is, they apply to a specific IF class. Alternative
approaches consist of non-parametric time filtering-based procedures, which do not show robustness
to destructive interference—the most critical scenario in crossing modes. In this paper, a method for
IF curves estimation is proposed. The case of amplitude and frequency modulated two-component
signals is addressed by introducing a spectrogram time-frequency evolution law, whose coefficients
depend on signal IFs time derivatives, that is, the chirp rates. The problem is then turned into
the resolution of a two-dimensional linear system which provides signal chirp rates; IF curves are
then obtained by a simple integration. The method is non-parametric and it results quite robust to
destructive interference. An estimate of the estimation error, as well as a numerical study concerning
method sensitivity and robustness to noise are also provided in the paper.

Keywords: partial differential equations; multicomponent signals; instantaneous frequency estima-
tion; chirp rate estimation; ridge curves recovery; interfering AM-FM signals; non-separable modes;
overlapping components

1. Introduction

Instantaneous frequency (IF) estimation is of great interest in many applications
dealing with non-stationary signals, such as radar and Micro Doppler systems [1–3],
seismic signals [4], some kinds of gravitational waves [5,6], audio [7] and human speech
signals [8], animal sounds [9] and biomedical signals [10]. Practical applications deal
with multicomponent signals (MCS), that is, the superposition of individual waveforms,
characterized by specific time-dependent frequency content, that is, IF, as well as time-
dependent amplitude, namely the instantaneous amplitude (IA) [11]. The correct analysis
of MCS requires signal modes separation, that also allows for IFs estimation. Conversely,
in many decomposition schemes, IFs estimation is a required step for the recovery of the
individual modes by the observed mixture.

It is worth pointing out that IFs detection becomes a very challenging task if signal
modes interfere with each other. That is why most of IF estimators in the literature are
limited to non interfering components. The existing strategies addressing this issue can be
grouped into two approaches: the former analyzes the target signal directly in the time
domain, such as Empirical Mode Decomposition and its improvements [12–14], or in the
frequency domain [15,16]. As an example, de-chirping technique aims at removing the
“non-stationary term” of a signal so that a narrowband filter can be used for extracting the
target component [17–19]. In brief, the first approach consists of less or more advanced
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filtering procedures, performed in the time or the frequency domain. Conversely, the
second approach analyzes the signal in the joint time-frequency (TF) plane, that is, it is
based on TF analysis.

Even though methods belonging to the first class do not suffer from eventual dis-
tortions introduced by the adopted device (TF transform), they commonly show some
sensitivity to noise and result computationally demanding.

TF analysis provides efficient and adaptive tools for processing amplitude and fre-
quency modulated (AM-FM) noisy signals [11,20,21]. In addition, the combination with
energy-based transforms, such as Hough, Radon and Inverse Radon transform, has led
to efficient IF detectors, designed for linear FM [22–24], polynomial FM [25], sinusoidal
FM signals [26] and, recently, also for non linear FM MCS [27]. In case of monocompo-
nent signals, as well as MCS with separable components, signal TF distributions (TFDs),
for instance spectrogram, Smoothed Wigner Ville Distribution or Adaptive Directional
TFD [28,29], reveal IFs as their maxima curve (ridge points). As a consequence, many
approaches derive IFs from TFDs ridges [30–33].

For the same reason, in some methods TFD is regarded as an image, whose peaks are
tracked and their local connectivity is exploited to estimate IF [34,35]. This is also the basic
idea of Viterbi algorithm-based methods [36,37]. As main advantage, the formulation of
these methods is simple but they are generally computationally expensive and sensitive
to noise. Furthermore, peaks tracking-based procedures suffer from the so-called switch
problem, that is, the assignment of a detected ridge point to the wrong component. It limits
their application to well separated modes (i.e., non interfering).

In this framework, some recently published works address this issue by the introduc-
tion of a generalized Viterbi algorithm. The latter provides an optimization step aimed at
promoting the direction of the estimated IF curve [38,39], or its local monotonicity [40]. A
similar peaks-detection and tracking procedure can be found in [41]. Following the same
idea, Ridge Path Regrouping Method (RPRM) offers a less expensive alternative to Viterbi
algorithm, although more sensitive to noise [42,43]. It is worth noticing that interference
can highly affect the observed peaks’ position, resulting in incorrect estimation. For this
reason, more advanced procedures try to compensate for interference effects by means of
some optimization techniques [32,42].

A powerful IF estimator suitable for wideband non linearly FM signals has been
proposed in [44]. In this work, the decomposition problem (and thus IFs estimation) is
turned into best signal demodulation (i.e., the removal of signal non-stationarity), by
minimizing the bandwidth of the demodulated signal. This method does not require
TF analysis (it belongs to the first class of approaches) and it is suitable for close or
even crossing modes. In addition, it is non parametric, that is, not limited to a specific
signal class, as commonly done in the literature, where IFs separation is achieved by
estimating the parameters of a predetermined IF model [3,9,18,26,45–54]. Since parametric
methods usually involve multi-dimensional searches in the parameter space, they result
computationally expensive, that is why a non-parametric approach is more advantageous.
The method introduced in [44] is very efficient in dealing with crossing modes that interfere
with each other in additive way, that is, when the observed energy of the mixture increases.
Unfortunately, it shows some sensitivity to the presence of destructive interference, that is,
when the observed energy decreases where the two modes overlap.

It is worth observing that the above-mentioned limitation is shared by many others
approaches, such as reassignment method [55], synchrosqueezing [56,57] and syncroex-
tracting transform [58,59]. This happens because the greater the loss of resolution in a TFD,
the worst the accuracy. Methods introduced in [60,61] aim at overcoming this limitation.
The same shortcoming is expected in RPRM, as it assumes that the observed peaks in
signal TFD reflect IF shape as a whole. Unfortunately, this is not always the case. It is
also worth pointing out that interference kind (additive or destructive) depends on signal
modes characteristics. The latter can be more or less emphasized in a TFD, but it remains
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signal dependent. As a matter of fact, the variational method proposed in [44], although
TF analysis-free, suffers from the same limitation, as it will be shown later.

This paper aims at proposing an effective IF detector suitable for AM-FM two-
component signals with close, overlapped and even crossing modes. In this last critical case,
a certain robustness to destructive interference is achieved. First, a spectrogram evolution
law, whose coefficients depend on signal amplitudes and phases derivatives, is introduced.
The latter allows for the definition of a two-dimensional linear system, whose solution
provides IFs derivatives, namely the chirp rates. Finally, IFs are achieved by integration,
up to a constant.

Method sensitivity to the involved points needed to define the linear system, as well
as robustness to moderate noise, are studied. A comparison to the methods introduced
in [27,44] is also provided. The presented method is designed for AM-FM signals and
it does not require additional assumptions concerning the signal class, resulting non
parametric. It can be used as initialization of the method in [44], as well as a guide line for
all peaks tracking-based procedures addressing overlapping components [42]. Finally, the
proposed method may be extended to MCS with N > 2 modes if the interference regions
are known in advance, as it will be discussed in the sequel.

The paper is organized as follows. Section 2 presents the mathematical background
useful to introduce the problem and the proposed method; some experimental results and
comparative studies are provided in Section 3 and, finally, Section 4 draws the conclusions.

2. Materials and Methods
2.1. Spectrogram of AM-FM Signals

According to [11], AM-FM MCS are defined by Equation (1):

f (t) =
N

∑
k=1

fk(t) =
N

∑
k=1

ak(t)eiφk(t) , (1)

where N is the number of components, fk ∈ L2(R) denotes the k−th mode, characterized
by its phase φk, its amplitude ak (IA) and phase time-derivatives φ′k(t), that is, mode IF.
Signal phases, IAs and IFs are assumed to be smooth time-varying functions.

The Short-Time Fourier Transform (STFT) of f , with respect to a real and symmetric
analysis window g ∈ L2(R), is

Sg
f (u, ξ) =

+∞∫
−∞

f (t)g(t− u)e−iξt dt, ∀ (u, ξ) ∈ R×R+. (2)

Spectrogram is defined as STFT squared modulus, that is, P(u, ξ) = |Sg
f (u, ξ)|2.

According to [62], if the STFT of a single mode f (t) = a(t) cos φ(t) is computed by a
normalized window g whose support is

[
− 1

2 , 1
2

]
, then the STFT computed by the dilated

window gs(t) = 1√
s g
( t

s
)
, with s > 0, can be expressed by Equation (3):

Sg
f (u, ξ) =

√
s

2
a(u)ei(φ(u)−ξ·u)[ĝ(s(ξ − φ′(u)) + ε(u, ξ)

)]
, (3)

where ∗̂ stands for the Fourier Transform of ∗ and ε(u, ξ) denotes a corrective term, which
is negligible if a(t) and φ′(t) have small relative variations over the support of the window
g. Under this assumption, a simple spectrogram expression can be derived from Equation (3),
that is,

P(u, ξ) =
s
4

a2(u)ĝ2(s(ξ − φ′(u))
)
. (4)

Equation (4) shows that spectrogram reaches its maximum along the curve (u, φ′(u)),
u ∈ supp{ f }, defined as the ridge curve or IF curve. Equation (3) also provides a model
for the spectrogram of MCS, as shown in the sequel. Without loss of generality, let us
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consider the spectrogram of a two-component signal f (t) = a1(t) f1(t) + a2(t) f2(t), as the
one depicted in Figure 1a. By STFT linearity and taking into account Equations (3) and (4),
spectrogram can be written as

P(u, ξ) = |Sg
f1
(u, ξ) + Sg

f2
(u, ξ)|2 = P1(u, ξ) + P2(u, ξ) + 2

√
P1P2 cos(φ2(u)− φ1(u)), (5)

with Pk = Pk(u, ξ) = |Sg
fk
(u, ξ)|2 =

s a2
k(u)
4 ĝ2(s(ξ − φ′k(u))), k = 1, 2.
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Figure 1. (a) Spectrogram of a two-component frequency modulated (FM) signal with constant amplitudes. (b) Instantaneous
frequencies (IFs) curves. (c) Spectrogram section at a time location u belonging to the separability region: spectrogram
profile (solid line) perfectly matches the profiles of spectrograms concerning the individual modes (dotted lines). (d)
Spectrogram section at a time location u in the non-separability region: spectrogram profile (solid line) does not match the
profiles of spectrograms concerning the individual modes (dotted lines) on the whole support. Maxima points locations are
deviated. (e) Maxima points extracted from (a). (f) Spectrogram isolevel curves.
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For a fixed u, modes are well separated if the following separability condition holds
true, that is,

|φ′1(u)− φ′2(u)| ≥ ∆ω, (6)

where ∆ω is the window frequency bandwidth [62]. In this case, for each ξ belonging to P1
support, that is, ξ : |ξ − φ′1(u)| <

∆ω
2 , it follows |ξ − φ′2(u)| > ∆ω

2 . Bandwidth definition
thus yields to ĝ(ξ − φ′2(u)) ≈ 0 and then Equation (5) reduces to

P(u, ξ) ≈ P1(u, ξ), ∀ξ : |ξ − φ′1(u)| <
∆ω

2
, (7)

that is, mode f1 does not affect f2 in the TF domain, and viceversa, as in the case shown in
Figure 1c.

Unfortunately, if the condition in Equation (6) is not met, the two modes have close or
even overlapping supports both in time and frequency, resulting in non-negligible cross-
terms. In particular, for a fixed u belonging to the non-separability region, spectrogram
may reach its maximum value at a frequency point different from both the ridge points of
the single modes, as in the case shown in Figure 1d. For this reason, IF detectors/enhancers
relying on spectrogram maxima are unreliable, especially in case of crossing IFs such that
their TFDs show a lack of resolution at the non-separability region, as for the spectro-
gram shown in Figure 1. As it can be observed, the detected maxima in (e) do not well
approximate IF curves in (b) at the region where they get closer and intersect.

If spectrogram energy increases at the non separability region, with respect to the
overall energy of the two isolated contributions, that is, P1 and P2, interference is said to be
additive. It is referred as destructive in the opposite case. It is worth noticing that, although
spectrogram is accounted for, this taxonomy depends on the cosine sign in Equation (5),
that is, on signal characteristics.

Regardless of the interference effect, there are some curves other than the ridge one
that convey the same information and that are less affected by cross-terms [45,60]. As
proven in [61,63], the spectrogram P(u, ξ) of a monocomponent signal f (t) = a(t) cos φ(t)
satisfies the following advection equation

∂P(u, ξ)

∂u
+ φ′′(u)

∂P(u, ξ)

∂ξ
− 2a′(u)

a(u)
P(u, ξ) = 0, ∀ u ∈ supp{ f }, (8)

whose characteristic curves Cc,φ are

ξ(u) = φ′(u) + c, (9)

with c = ξ0 − φ′(u0) and (u0, ξ0) is a point in the TF plane.
It is worth observing that Equation (8) is a linear advection equation, whose char-

acteristic curves, as in Equation (9), are shifted copies of the ridge curve, which is also a
characteristic curve, that is, C0,φ. It means that IF information is not limited to the ridge
curve, but it can be found in any characteristic curve. In addition, the introduced curves
allow to formally characterize those points less influenced by interference, by means of the
weakened separability condition (WSC), which is recalled below.

Definition 1 ([60]). Two modes with IFs φ′1(u) and φ′2(u) are separated at time location u if there
exists at least one curve in Cc1,φ1 , that is, ξ1(u) = φ′1(u) + c1, such that |ξ1(u)− φ′2(u)| ≥ ∆ω;
or viceversa.

Remark 1. Two modes not separated at time location u in the classical sense, that is, |φ′1(u)−
φ′2(u)| = ε ≤ ∆ω, can be weakly separated in the sense specified by Definition 1, see spectrogram
external sides in Figure 1d. Indeed, by assuming, for instance, ξ < φ′1(u) < φ′2(u), then
∃ c1 ∈ R, c1 < 0 such that ξ = φ′1(u) + c1, that is, ξ ∈ ξ1(u) ∈ Cc1,φ1 . As a consequence,
|ξ − φ′2(u)| = |φ′1(u) + c1 − φ′2(u)| = | − ε + c1| ≥ ∆ω ⇔ −c1 ≥ ∆ω − ε. By looking again
at Equation (5) and by the same argument which led to Equation (7), it follows that
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P(u, ξ) ≈ P1(u, ξ), ∀ξ ∈ Cc1,φ1 . (10)

In case of a constant amplitude signal, that is, a′(u) = 0, ∀ u ∈ supp{ f }, from
Equation (8) it follows that spectrogram is a constant function along its characteristic
curves. As a result, spectrogram isolevel curves lie on the characteristic curves and,
operatively, any distribution thresholding provides IF, up to a constant. Figure 1f depicts
some characteristic curves obtained by thresholding the spectrogram shown in Figure 1a.
As it can be observed, higher levels are more influenced by cross-terms, while lower levels
reveal IF shapes. Unfortunately, this argument can not be applied to time-varying signals,
as the term 2a′(u)

a(u) P(u, ξ) in Equation (8) is non zero, as in the example provided in Figure 2.
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Figure 2. (a) Spectrogram of a two-component FM signal with time-varying amplitudes. (b) Isolevel curves.

2.2. The Proposed Method

This paper aims at estimating the IFs of AM-FM two-component signals. For constant
amplitude signals, the latter may be estimated, up to a constant, from the characteristic
curves of Equation (8), that can be easily derived from spectrogram isolevel curves. Un-
fortunately, in case of time-varying amplitudes, the characteristic curves of Equation (8)
can not be obtained by a simple spectrogram thresholding. However, Equation (8) still
is informative for our purposes. Indeed, it can be regarded as a linear equation into the
unknown x1 = φ′′(u) and x2 = 2a′(u)

a(u) , u ∈ supp{ f }. It is worth noticing that the latter

do not depend on variable ξ. By evaluating Equation (8) at ξ : ∂P(u,ξ)
∂ξ = 0, (i.e., the ridge

point, as a single mode is now considered), one can easily obtain the ratio 2a′(u)
a(u) . More in

general, the following linear system can be defined:(
Pξ(u, ξ1) −P(u, ξ1)

Pξ(u, ξ2) −P(u, ξ2)

)φ′′(u)

2a′(u)
a(u)

 =

(
−Pu(u, ξ1)

−Pu(u, ξ2)

)
, (11)

where Pξ(u, ξ j) := ∂P(u,ξ)
∂ξ

∣∣
ξ=ξ j

and Pu(u, ξ j) := ∂P(u,ξ)
∂u

∣∣
ξ=ξ j

denote spectrogram partial

derivatives evaluated at points ξ j, j = 1, 2.
For each fixed u ∈ supp{ f }, if ξ1 and ξ2 are selected so that the corresponding

vectors (Pξ(u, ξ j),−P(u, ξ j)), j = 1, 2, are linearly independent, then the linear system in
Equation (11) has a unique solution, whose first entry provides φ′′(u), that is, signal chirp
rate (CR). The corresponding IF can be then estimated by integration, up to a constant.

Once the case of a single mode has been presented, let us address the two-component
one in the following Proposition.
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Proposition 1. Let f (t) = a1(t) cos φ1(t) + a2(t) cos φ2(t) be a two-components signal and let
us set ĝk = ĝ(s(ξ − φ′k(u))), where g is the analysis window with length s > 0, ak = ak(u)
and φk = φk(u), k = 1, 2, ∆φ = φ1 − φ2, and (∗)′ denotes the time derivative of (∗). Then, the
spectrogram P(u, ξ) satisfies the following evolution law

∂P(u, ξ)

∂u
+ φ′′1

∂P(u, ξ)

∂ξ
− s

2

[
a1a′1 ĝ2

1 + a2a′2 ĝ2
2 + ĝ1 ĝ2(a′1a2 + a′2a1) cos ∆φ

]
+

s
2

a1a2 ĝ1 ĝ2∆φ′ sin ∆φ +
s2

2
∆φ′′ ĝ′2

[
a2 ĝ2

2 − a1a2 ĝ1 cos ∆φ
]
= 0. (12)

Proof. The proof can be found in the Appendix A.

For each fixed u, Equation (12) is a non-linear equation in the unknown variables
a(d1)

k (u), φ
(d2)
k (u), d1 = 0, 1, d2 = 0, 1, 2 and k = 1, 2, that is, the signal amplitudes, phases

and their derivatives. If enough frequency points are considered, the latter can be estimated
by solving a non-linear system. However, this is not the strategy of the presented paper.
The concept of weakened separability is exploited, instead. Precisely, if evaluated along
the characteristic curves satisfying the WSC, Equation (12) reduces to Equation (11) (see
Remark 1 and [60,61]), which is thus accounted for, also in the two-component case.

For the single case, by selecting two different ξ values, namely ξ1, ξ2 at a fixed u,
according to Equation (11), the following linear system allows for the estimation of both

φ′′1 (u) and 2a′1(u)
a1(u)

, that is, φ′′1 (u)P1ξ(u, ξ1)− 2 a′1(u)
a1(u)

P1(u, ξ1) = −P1u(u, ξ1)

φ′′1 (u)P1ξ(u, ξ2)− 2 a′1(u)
a1(u)

P1(u, ξ2) = −P1u(u, ξ2)
(13)

where P1ξ :=
∂P1(u,ξ j)

∂ξ and P1u :=
∂P1(u,ξ j)

∂u .

A similar system can be written for φ′′2 (u) and 2a′2(u)
a2(u)

. In particular, it holds

φ′′1 (u) = −
P1u(u, ξ1)P1(u, ξ2)− P1u(u, ξ2)P1(u, ξ1)

P1ξ(u, ξ1)P1(u, ξ2)− P1ξ(u, ξ2)P1(u, ξ1)
. (14)

By using the same equation even for two-component signals, the following estimation
for φ′′1 (u) would be provided

φ̃1
′′
(u) = −Pu(u, ξ1)P(u, ξ2)− Pu(u, ξ2)P(u, ξ1)

Pξ(u, ξ1)P(u, ξ2)− Pξ(u, ξ2)P(u, ξ1)
, (15)

where P has been considered in place of P1. It is worth observing that the latter assumption
is valid for points (u, ξ j) belonging to the weak separability region, as in Definition 1.
Unfortunately, it does not hold true if, at a fixed time location u, that region results empty
or whenever finite difference approximations are used for the partial derivatives of the
spectrogram. As a result, the estimation error has to be computed in dependence on the
frequency points ξ1 and ξ2, as done in the next section.

2.2.1. Estimation Error

In this section we are interested in the estimation error for φ′′1 (u) in the region Ω where
even both the separability condition and the WSC do not hold. As it will be pointed out later,
the same estimation still hold in the region of weakened separability whenever numerical
approximation is used for spectrogram derivatives. On the contrary, as mentioned in the
previous section, outside Ω the problem resembles the case of a monocomponent signal
and then the error is negligible or zero.

The estimation errors for φ′′1 (u) and IF computation are provided in the following
Proposition under proper conditions concerning the selection of frequency points ξ1 and ξ2.
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Proposition 2. Let φ̃′′1 (u) be the estimation for φ′′1 (u) using the method in Equation (15), with
|ξ1 − ξ2| ≤ ρ, with ρ ∈ R+ and small enough. Let φ̃′1(u) be the estimation for φ′1(u) that is
obtained by integrating φ̃′′1 (u) and let set ε(u, ξ) = P(u,ξ)−P1(u,ξ)

P1(u,ξ) . Hence, by neglecting the second
order terms in the central finite differences approximation for Pξ(u, ξ), Pu(u, ξ), P1ξ(u, ξ), and
P1u(u, ξ), for each u ∈ Ω it holds

φ′′1 (u)− φ̃′′1 (u) ≈
εu(u, ξ1)

1 + ε(u, ξ1)

P1(u, ξ1)

P1ξ(u, ξ1)
(16)

with ξ1 : εξ(u, ξ1) = 0, while

φ′1(u)− φ̃′1(u) ≈
∫ u

u0

εu(τ, ξ1(τ))

1 + ε(τ, ξ1(τ))

P1(τ, ξ1(τ))

P1ξ(τ, ξ1(τ))
dτ, (17)

with u0 : ε(u0, ξ1) = 0, and where P1ξ := ∂P1(u,ξ)
∂ξ .

Proof. The proof is in the Appendix A.

It is worth observing that the error on the chirp rate, that is, φ′′1 (u), strongly and
directly depends on the error on P1(u, ξ) estimation through P(u, ξ), that is, ε(u, ξ) due to
the presence of cross terms. In particular, the latter can present an oscillating behaviour,
due to the presence of the term cos(∆φ(u)) in ε(u, ξ) definition.

Remark 2. Spectrogram partial derivatives can be approximated from the observed data by using
central finite differences, that is,

Pu(u, ξ) =
P(u + hu, ξ)− P(u− hu, ξ)

2 hu
, (18)

Pξ(u, ξ) =
P(u, ξ + hξ)− P(u, ξ − hξ)

2 hξ
, ∀ u ∈ supp{ f }, ∀ ξ > 0, (19)

where hu and hξ denote the discretization steps, respectively in time and frequency.
For each fixed u, two frequency points ξ j, j = 1, 2 are needed to define the linear system

as in Equation (11). In the case of a single mode, as well as separated components, any pair of
frequency points can be employed. On the contrary, a more careful selection is required for close and
overlapping components. In order to prevent instabilities due to the presence of cross-terms, it is
convenient to uniformly select ξ j, j = 1, 2 (i.e., they do not depend on the specific u) such that they
satisfy the WSC, as in Definition 1. Taking into account Equation (10), P(u, ξ) as a function of
variable ξ is close to the spectrogram section of the single component (cross-terms are negligible).
As a result, the approximation of Pkξ , k = 1, 2 by Pξ is more accurate, as in the case shown in
Figure 3a. Conversely, it generally holds

P(u± δ, ξ) 6≈ Pk(u± δ, ξ), k = 1, 2, ∀ δ > 0, (20)

that is, P(u, ξ), as a function of variable u, does not satisfy any separability condition, as shown
in Figure 3b. Then, the approximation of Pku, k = 1, 2, through finite differences is less robust
(cross-terms are not negligible). It is worth pointing out that the lack of separability in Equation (20)
may affect any derivative estimates, even in the WSC region and Proposition 2 still holds.
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Figure 3. (a) Frequency derivative (estimated by central finite differences) at fixed u of spectrogram section in Figure 1d
(solid line) compared to the derivatives of the single profiles (dotted lines). Matching is observed for those points lying on
the external sides, that is, where the weakened separability condition (WSC) is satisfied. (b) Time derivative (estimated by
central finite differences) of the spectrogram in Figure 1a (solid line) at fixed ξ, compared to the derivative of the single
profiles (dotted lines). Profiles significantly differ on the whole support.

2.2.2. Chirp Rate Regularization

As discussed in the previous section and shown in Proposition 2, φ′′k (u), k = 1, 2 (sig-
nal CRs) estimation at the non-separability region is more delicate as the cross terms cannot
be completely neglected. However, the estimation error can be reduced by considering
the local mean of the estimated CRs φ̃′′k (u), k = 1, 2 by taking advantage of its oscillating
behaviour. More precisely, CR can be defined as

CRk,mean(u) =
1

2 s

∫ u+s

u−s
φ̃′′k (τ) dτ, k = 1, 2, (21)

where s > 0 denotes the window size. On the contrary, when modes are well separated, CR
estimate is more stable. Therefore, by denoting the crossing point as ucross, the following
function is considered as global CR approximation, that is,

CRk(u) =

{
CRk,mean(u), u ∈ I = [ucross − s, ucross + s]
φ̃′′(u), otherwise,

(22)

that is regularized by convolution, as follows

CRk(u) = CRk ∗ ρ(u) =
∫ +∞

−∞
ρ(τ)CRk(u− τ) dτ, k = 1, 2, (23)

with ρ(u) = 1√
2πε2 exp(− u2

2ε ), ε > 0.
Finally, IFs are estimated by integrating CRk, k = 1, 2, up to a constant. The first order

rectangle quadrature scheme is adopted in this paper. The selection of the crossing point is
discussed in the next section.

2.2.3. Crossing Point Detection

The so-called switch problem, that is, the assignment of an estimated IF point to
the wrong IF curve can be prevented by the knowledge of crossing point position. The
latter allows us to correctly switch modes role when estimating the chirp rates. The
crossing point can be estimated by considering to characteristic curves at low level and
by computing the distance between those curves for increasing time. More precisely,
let us assume φ′1(u0) > φ′2(u0), where u0 is an initial point and let us consider the set
{(u, ξ) : P(u, ξ) = K, min P(u, ξ) < K < max P(u, ξ)}, that provides
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ξ1(u) = φ′1(u) + c1(u), c1(u) > 0, (24)

ξ2(u) = φ′2(u)− c2(u), c2(u) > 0, ∀ u ≥ u0. (25)

If signal amplitudes are slow-varying and K is sufficiently low, the term 2a′(u)
a(u) P(u, ξ)

in Equation (8) can be neglected and c1, c2 in Equations (24) and (25) do not depend on the
time variable. As a result, Equations (24) and (25) indicate two characteristic curves on
spectrogram lateral sides, thus less affected by eventual cross terms. Their distance is

d(u) = φ′1(u)− φ′2(u) + c1 + c2, (26)

which reaches its minimum when φ′1(u) = φ′2(u), that is, at the crossing point.

3. Results and Discussion

The proposed method has been tested on several two-component signals with different
frequency and amplitude modulations. This section presents the more significant results.

Synthetic signals of length n = 512 are considered and a Chebyshev analysis window
of length s = 44 and side-lobe magnitude factor r ∈ [80, 100]dB is used for STFT computa-
tion, unless otherwise specified. In general, an analysis window with smooth decay to zero
is recommended in order to prevent instabilities in the estimations.

As presented in the previous section, the proposed procedure allows for IF estimation,
up to a constant. The latter can be derived directly from spectrogram, by selecting a peak
located at the separability region. To this aim, the thresholded spectrogram is processed
columnwise and the number of detected peaks, as a function of time, is computed. The
initial point u0 is chosen as the first instant providing two peaks and sufficiently apart from
TF boundary, in order to prevent instabilities.

The first test is aimed at evaluating method effectiveness in case of well separated
components. A two-component signal with polynomial phases and gaussian amplitudes
is considered in Figure 4. The corresponding spectrogram is shown in (a) and the initial
time point for integration is depicted in (b). (c) shows a generic spectrogram section and
the points, on the external sides, selected to define the linear system in Equation (11). The
estimated CRs are plotted in (d) and the corresponding estimated IFs can be found in (e).
Finally, (f) shows the IFs curves achieved by the classical peak detector algorithm. As it can
be observed, the two methods provide similar results.

The second test, illustrated in Figure 5, concerns a FM two-component signal with
intersecting modes, that interfere with each other additively. The spectrogram is shown
in (a). As it can be observed, some boundary effects occur, therefore the very initial
times have not been employed in the procedure, in order to prevent instabilities in the
final estimate. The crossing point, detected by minimizing the distance function as in
Equation (26), is depicted in (b). A generic spectrogram section is shown in (c), with
emphasized points used for defining the linear system. The estimated CRs are depicted
in (d) and the final result is shown in (e). As it can be noticed by comparison with (f), the
proposed method outperforms the classical peak detector algorithm at the non-separability
region. Figure 6 aims at evaluating the sensibility of the proposed method to the frequency
points ξ1, ξ2 selection. With reference to the spectrogram shown in Figure 5a, (a) emphasizes
two points lying on a lower characteristic curve. This choice results in IFs estimation shown
in (b). As it can be observed, the result is comparable to the one in Figure 5e, except for some
instabilities at the left-hand boundary side. Indeed, the lower the characteristic the more the
boundary effects. Figure 6c shows two frequency points on the lateral spectrogram sides
which are closer to spectrogram maxima. The corresponding IFs estimation is provided in
(d). As it can be observed, the result is less accurate.

Figure 7 refers to a FM two-component signal with intersecting modes and destructive
interference. As shown in (a), spectrogram resolution is significantly reduced at the non-
separability region. The distance function, as defined in Equation (26), and the crossing



Mathematics 2021, 9, 247 11 of 26

point estimated as its minimum are depicted in (b). A generic spectrogram section with
emphasized points for defining the linear system is shown in (c). The estimated CRs are
depicted in (d) and the final IFs estimation, provided by the proposed approach, is shown
in (e). The latter can be compared to the result given by the classical peaks detector method
in (d). As it can be observed, the proposed method better improves IF curves resolution at
the non separability region.
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Figure 4. (a) Spectrogram of a two-component amplitude and frequency modulated (AM-FM) signal whose modes are well
separated, with gaussian amplitudes. (b) Number of detected maxima from (a) and initial point for integration (round
marker). (c) Spectrogram section. The star markers indicate spectrogram values at the frequency points ξ1, ξ2 employed for
defining the linear system, as in Equation (11). (d) Estimated chirp rates (solid line) and their local mean (dotted line). (e)
Estimated IFs. (f) Ridge curves estimated from spectrogram maxima.
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Figure 5. (a) Spectrogram of a two-component signal with crossing modes (additive interference). (b) Distance function as
defined in Equation (26) and detected crossing point (star). (c) Spectrogram section. The star markers indicate spectrogram
values at the frequency points ξ1, ξ2 employed for defining the linear system, as in Equation (11). (d) Estimated chirp rates
compared to the true ones. (e) Estimated IFs. (f) Ridge curves estimated from spectrogram maxima.
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Figure 6. (a) Section of the spectrogram in Figure 5a. The star markers indicate spectrogram values at the frequency points
ξ1, ξ2, close to the external bandwidth boundary, employed for defining the linear system, as in Equation (11), whose
solution leads to IFs estimation (b). (c) The frequency points ξ1, ξ2 are selected close to spectrogram maxima, giving the
estimated IFs (d).
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Figure 7. (a) Spectrogram of a two-component signal with crossing modes (destructive interference). (b) Distance function as
defined in Equation (26) and detected crossing point (star). (c) Spectrogram section. The star markers indicate spectrogram
values at the frequency points ξ1, ξ2 for defining the linear system, as in Equation (11). (d) Estimated chirp rates compared
to the true ones. (e) Estimated IFs. (f) IF curves estimated from spectrogram maxima.

Figures 8 and 9 concern different combinations of the following modes:

f1(t) = cos(π/3 n(t + 0.1)2 + (π + 30)t),

f2(t) = sin(0.26 πn(0.9− t)4 − 150t),

f3(t) = sin(0.25 πn(0.9− t)4 − 150t),

modulated by the amplitudes

a11(t) = 0.5(t + 1), a21(t) =
√

1− t,

a12(t) = 2
√

t, a22(t) = t + 0.5, t ∈ [0, 1].

Figure 8 refers to the signal

f12(t) = a11(t) f1(t) + a21(t) f2(t), (27)

whose modes interfere with each other additively. The corresponding result provided
by the proposed method is shown in (b). As it can be noticed, IFs estimation is quite
accurate, although some instabilities occur at the right-hand boundary side. This is due to
the presence of spectrogram values close to zero, which affects derivatives approximation
and thus the final result. Anyway, the achieved result outperforms the one given by the
peak detector (c), as well as the one provided by the Radon Spectrogram-based method
introduced in [27]—it is worth observing that method in [27] is designed for constant
amplitude FM signals.

In Figure 9, destructive interference is addressed by considering the signal

f13(t) = a12(t) f1(t) + a22(t) f3(t). (28)

In this case, the achieved IFs estimation is less accurate, but still better than the ones
given by the state-of-the-art methods shown in (c) and (d), especially if one focuses on the
non-separability region, that is, close to the crossing point.

Figure 10 considers different combination of the modes

h1(t) = cos(0.5 n t4 + 500t),

h2(t) = cos(n(1− t)2 + 120(1− t)),
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modulated by the amplitudes

b11(t) = 0.1, b21 = 0.25 t,

b12(t) =
√

t, b22 = exp(−2(t− 0.4)2), t ∈ [0, 1].

With reference to the same Figure, the left-hand side refers to

h11(t) = b11(t)h1(t) + b21(t)h2(t), (29)

while the right-hand side refers to

h12(t) = b12(t)h1(t) + b22(t)h2(t). (30)

As it can be noticed, the proposed method is able to recover IF curves at the non-
separability region. Some instabilities occur at TF boundaries, due to the presence of
spectrogram value close to zero.

Some results concerning noisy signals are shown in Figure 11. The latter can be
compared respectively to Figures 8b, 9c and 10d. As it can be observed, the proposed
method is robust to moderate noise.
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Figure 8. (a) Spectrogram of the AM-FM two-component signal as in Equation (27). (b) IF curves
provided by the proposed method. (c) IF curves estimated from spectrogram maxima. (d) IF curves
estimated by applying the Radon Spectrogram-based method in [27].
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Figure 9. (a) Spectrogram of the AM-FM two-component signal as in Equation (28). (b) IF curves
provided by the proposed method. (c) IF curves estimated from spectrogram maxima. (d) IF curves
estimated by applying the Radon Spectrogram-based method in [27].
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(e) (f)

Figure 10. (a) Spectrogram of the AM-FM two-component signal as in Equation (29). (b) Spectrogram
of the AM-FM two-component signal as in Equation (30). (c) IF curves of (a) provided by the
proposed method. (d) IF curves of (b) provided by the proposed method. (e) IF curves estimated
from spectrogram maxima in (a). (f) IF curves estimated from spectrogram maxima in (b).
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Figure 11. (a) Spectrogram of the signal in Equation (27), embedded in AWG noise at SNR = 16 dB and
(b) IF curves provided by the proposed method. (c) Spectrogram of the signal in Equation (29), embedded
in AWG noise at SNR = 20 dB and (d) IF curves provided by the proposed method. (e) Spectrogram of
the signal in Equation (30), embedded in AWG noise at SNR = 18 dB and (f) IF curves provided by the
proposed method.
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The following FM signals

g1(t) = cos(0.5 n t3 + 1000t) + cos(0.8 n (1− t)2 + 500(1− t)) (31)

g2(t) = cos(0.5 n t4 + 600t) + cos(1.5 n (1− t)2 + 100(1− t)), (32)

with t ∈ [0, 1], sampled at frequency n = 2000 are accounted for in Figure 12. A Chebyshev
analysis window of length s = 116 and side-lobe magnitude factor r = 400 dB is used
for STFT computation. Our results are compared to the ones obtained by applying the
method introduced in [44,64]. As it can be observed, the proposed approach is clearly
advantageous in dealing with destructive interference.

Finally, Figure 13 refers to the complex signal

g(t) = exp[i(20π cos(4πt)− 1500t)] + exp
[
i
(

0.95πnt2 + 170t
)]

, (33)

where i denotes the imaginary unit. The signal spectrogram computed with a window of
length s = 44 is shown in Figure 13a, while s = 22 has been used for Figure 13c. As it can
be noticed, a narrow window in time is preferable for our purposes, as it provides a more
spread spectrogram and then IFs estimation is more accurate.
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Figure 12. (a) Spectrogram of the two-component FM signal as in Equation (31) (destructive interference), (b) IF curves
provided by the method proposed in [44] and (c) IF curves provided by the proposed method. (d) Spectrogram of the
two-component signal as in Equation (32) (additive interference), (e) IF curves provided by the method proposed in [44]
and (f) IF curves provided by the proposed method.
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Figure 13. (a) Spectrogram of the complex two-component FM signal as in Equation (33), computed with a window of length
s = 44. (b) IF curves provided by the proposed method applied to (a). (c) Spectrogram of the complex two-component
FM signal as in Equation (33), computed with a window of length s = 22. (d) IF curves provided by the proposed method
applied to (c).

Some Remarks

1. The proposed method requires two-component signals and prior knowledge of the
presence of a non-separability region. A method for detecting the non-separability
region, as the one proposed in [65], can be used as a preprocessing step, in case of
constant amplitude signals. Furthermore, weakly amplitude modulation is assumed,
as in most approaches.

2. It is worth underlying that the proposed method could be easily generalized to
MCS with N > 2 modes if the TF non-separability regions are known and they
are sufficiently separated. Indeed, under these assumptions, the analysis of a more
complex signal reduces to the analysis of a two-component signal locally. This point
will be investigated in-depth in future studies.

3. The proposed model allows for IFs estimation, up to an integration constant, whose
accuracy can affect the final result, as previously shown. However, it is worth point-
ing out that this error often causes the recovery of a characteristic different from
the ridge, but still a characteristic. As a result, it contains significant information
concerning IF. The integration constant can be directly estimated from spectrogram
ridges belonging to the separability region. Also in this case, a prior TF localization of
the non-separability region would solve the problem.

4. The proposed procedure requires two frequency points for defining the linear system
as in Equation (11), for each fixed u. The sensitivity to their selection has been nu-
merically investigated. As shown in Figures 5 and 6, involving too low characteristic
curves can affect the final accuracy due to boundary effects, while characteristic at
higher levels are generally more subjected to interference, resulting in inaccurate
IFs estimate. For this reason, a good compromise can be achieved by selecting two
frequency points close to the one where spectrogram concavity changes, as done in
the presented simulations.

5. As shown in the experimental results, the proposed method is robust to additive
interference and cross-terms. The presence of spectrogram values close to zero, which
occurs in case of strong amplitude modulation as well as destructive interference,
could result in instabilities in the derivatives approximation, that can affect the
final IFs estimation. However, it is worth highlighting that the proposed approach
outperforms the state-of-the-art method in dealing with the critical case of destructive
interference, as shown in Figures 7 and 12. In addition, the proposed method has
shown robustness to moderate noise.

6. Spectrogram is widely used in practical applications because of its simplicity and com-
putational benefit. It is well-known that, in case of MCS, spectrogram of close modes
suffers from the presence of cross-terms that can affect each estimation concerning the
signal. For this reason, more advanced and adaptive kernels with attenuated cross-
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terms, such as S-Transform or Locally Adaptive TF distribution, are often preferred
in the literature. However, it is worth noticing that many real-life measurements,
such as the ones concerning human gait classification and detection, precisely deal
with spectrograms. That is why spectrogram processing is still of interest, today. In
addition, cross-terms do not represent a limitation for the presented method, but a
tool for estimating IF.

4. Conclusions

This paper has proposed a non-linear time-frequency evolution law for the spectro-
gram of a frequency and amplitude modulated two-component signal, which is employed
for instantaneous frequencies (IFs) estimation. Based on the concept of weakened sepa-
rability, the latter equation can be reduced to the one referred to a single mode, whose
coefficients linearly depend on signal IFs time derivatives, namely the chirp rates (CRs).
Approximating spectrogram derivatives and replacing them in the evolution law yields to
a linear system with signals CRs as unknown variables. As a result, CRs can be detected by
simply solving a two-dimensional linear system and IFs can be estimated by numerical
integration. The experimental results presented in the paper have confirmed method
effectiveness in dealing with amplitude modulated two-component signals with interfering
modes. A comparative study with some of the state-of-the-art methods has been also
provided, showing the benefits of the proposed method in processing modes affected by
destructive interference.

IF curves estimation provided by the proposed method can be adopted as starting
point for all variational methods dealing with interfering modes and requiring an initial-
ization step. In addition, since it provides CRs estimation, the introduced procedure can be
useful in reallocation techniques that involve high-order phase time derivatives.

As main advantage, the presented approach is non-parametric. However, IF law may
be obtained by fixing the IF class and by interpolating the result provided by the proposed
method.

As future developments, the method could be employed also for instantaneous am-
plitudes estimation. In addition, future studies will be aimed at defining an automatic
procedure for interference region detection, in order to extend the proposed method to
general multicomponent signals, having more than two modes. The applicability of the
presented approach to time-frequency distributions different from the spectrogram will be
also investigated.
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Abbreviations
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AM Amplitude Modulated
CR Chirp Rate
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IF Instantaneous Frequency
MCS Multicomponent Signal(s)
RPRM Ridge Path Regrouping Method
STFT Short-Time Fourier Transform
TF Time-Frequency
TFD Time-Frequency Distribution
WSC Weakened Separability Condition

Appendix A

Proof of Proposition 1. By Equation (3) with negligible corrective terms and by STFT
linearity, it follows

|Sg
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where ai = ai(u), ĝi = ĝi(s(ξ − φ′i(u))), i = 1, 2 and ∆φ = φ2(u)− φ1(u). As a result, the
spectrogram is
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then Equation (12) holds true.

Proof of Proposition 2. In the following, Equation (16) is proved. Equation (17) is then
obtained by a straightforward integration. Without loss of generality, we set s = 1 in
Equations (4) and (5).

In the separability region, ∆φ′(u) ≈ 0, hence by using the Taylor expansion for P2,
we get

P2(u, ξ) =
a2

2
4

ĝ2(ξ − φ′2(u)) =
a2

2
4

ĝ2(ξ − φ′1(u)− ∆φ′(u)) =

=
a2

2
4

ĝ2(ξ − φ′1(u))− 2
a2

2
4

ĝ(ξ − φ′1(u))ĝ′(ξ − φ′1(u))∆φ′(u) + o(∆φ′2(u)) =

=
a2

2
a2

1
P1(u, ξ)−

a2
2

a2
1

P1ξ(u, ξ)∆φ′ + o(∆φ′2(u)).

As a result, by neglecting the second order terms, we have

P2(u, ξ) =
a2

2(u)
a2

1(u)
P1(u, ξ)η(u, ξ),

with

η(u, ξ) = 1−
P1ξ(u, ξ)

P1(u, ξ)
∆φ′(u), (A1)

and then Equation (5) becomes
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ε(u, ξ) =
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2
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√
η(u, ξ) cos(∆φ(u)). (A2)

It is worth observing that, for u : ∆φ′(u) = 0, ε(u, ξ) = ε(u), that is, it is independent
of the variable ξ; as a result

P(u, ξ) = P1(u, ξ)(1 + ε(u)),

Pξ(u, ξ) = P1ξ(u, ξ)(1 + ε(u)),

Pu(u, ξ) = P1u(u, ξ)(1 + ε(u)) + P1(u, ξ)εu(u),

and, taking into account Equation (15),

φ̃′′1 (u) = −
Pu(u, ξ1)P(u, ξ2)− Pu(u, ξ2)P(u, ξ1)

Pξ(u, ξ1)P(u, ξ2)− Pξ(u, ξ2)P(u, ξ1)
= −P1u(u, ξ1)P1(u, ξ2)− P1u(u, ξ2)P1(u, ξ1)

P1ξ(u, ξ1)P(u, ξ2)− P1ξ(u, ξ2)P(u, ξ1)
+

− 1
1 + ε(u)

P1(u, ξ1)εu(u)P1(u, ξ2)− P1(u, ξ2)εu(u)P1(u, ξ1)

P1ξ(u, ξ1)P(u, ξ2)− P1ξ(u, ξ2)P(u, ξ1)
= φ′′1 (u).

The estimation still is correct, independently of ξ1 and ξ2.
On the contrary, if u is such that ∆φ′(u) 6= 0, ε(u, ξ) is not independent of ξ and then

P(u, ξ) ≈ P1(u, ξ)(1 + ε(u, ξ)),

Pξ(u, ξ) ≈ P1ξ(u, ξ)(1 + ε(u, ξ)) + P1(u, ξ)εξ(u, ξ),

Pu(u, ξ) = P1u(u, ξ)(1 + ε(u, ξ)) + P1(u, ξ)εu(u, ξ).
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However, it is possible to properly select ξ1 and ξ2 in order to make this contribution
almost negligible. More precisely, ξ1 and ξ2 have to be such that η(u, ξ) ≈ 1 or εξ(u, ξ) ≈ 0.
In particular, if ξ1 and ξ2 are such that εξ(u, ξ) ≈ 0, we have the following estimation for
φ′′1 (u), that is,

−φ̃′′1 (u) = −φ′′1 (u) +
P1(u, ξ1)P1(u, ξ2)

(
εu(u,ξ1)

1+ε(u,ξ1)
− εu(u,ξ2)

1+ε(u,ξ2)

)
P1ξ(u, ξ1)P1(u, ξ2)− P1ξ(u, ξ2)P1(u, ξ1)

.

It is worth observing that,
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)
= 0,

that is, ηξ(u, ξ) = 0 or 1 + a1(u)
a2(u)

1√
η(u,ξ)

cos(∆φ(u)) = 0.

In the first case, by observing that

ηξ(u, ξ) = −∆φ′(u)
P1ξξ(u, ξ)P1(u, ξ)− P2
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P2
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we have
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In the second case
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In particular, the condition in Equation (A4) provides the following form for ε(u, ξ)

ε(u, ξ) = ε(u) =
a2

2(u)
a2

1(u)
a2

1(u)
a2
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cos2(∆φ(u))− 2

a2(u)
a1(u)
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cos2(∆φ(u)) = − cos2(∆φ(u)). (A6)

Under these conditions, that is, ε(u, ξ) ≈ ε(u), we can also write the estimation for
φ′′1 (u) whenever the finite difference approximation is used for Pξ and Pu in Equation (14) .
More precisely, by denoting with δ and ρ the discretization steps respectively for u and ξ
variables, we have

Pξ(u, ξ) =
P(u, ξ + ρ)− P(u, ξ − ρ)

2ρ
+ o(ρ2) = (1 + ε(u))

P1(u, ξ + ρ)− P1(u, ξ − ρ)

2ρ
+ o(ρ2). (A7)

while

Pu(u, ξ) =
P(u + δ, ξ)− P(u− δ, ξ)

2δ
+ o(δ2) =

=
P1(u + δ, ξ)(1 + ε(u + δ))− P1(u− δ, ξ)(1 + ε(u− δ))

2δ
+ o(δ2) =

=
P1(u + δ, ξ)− P1(u− δ, ξ)

2δ
+

P1(u + δ, ξ)ε(u + δ)− P1(u− δ, ξ)ε(u− δ)

2δ
+ o(δ2).
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Since ε(u + δ) ≈ ε(u) + εu(u)δ and ε(u − δ) ≈ ε(u) − εu(u)δ, the last term in the
previous section can be rewritten as

ε(u)
P1(u + δ, ξ)− P1(u− δ, ξ)

2δ
+ εu(u)δ

P1(u + δ, ξ) + P1(u− δ, ξ)

2δ
=

P1(u + δ, ξ)− P1(u− δ, ξ)

2δ
+ εu(u)P1(ũ, ξ), ũ ∈ [u− δ, u + δ],

where the intermediate value theorem has been applied to the last term. As a result,

Pu(u, ξ) = (1 + ε(u))
P1(u + δ, ξ)− P1(u− δ, ξ)

2δ
+ εu(u)P1(ũ, ξ) + o(δ2). (A8)

By using Equations (A8) and (A7) and neglecting the second order error terms, Equa-
tion (15) can be rewritten as follows

−φ̃′′1 (u) =
(1 + ε(u))2

(1 + ε(u))2

P1(u+δ,ξ1)−P1(u−δ,ξ1)
2δ P1(u, ξ2)− P1(u+δ,ξ2)−P1(u−δ,ξ2)

2δ P1(u, ξ1)
P1(u,ξ1+ρ)−P1(u,ξ1−ρ)

2ρ P1(u, ξ2)− P1(u,ξ2+ρ)−P1(u,ξ2−ρ)
2ρ P1(u, ξ1)

+

+
εu(u)

1 + ε(u)
P1(ũ, ξ1)P1(u, ξ2)− P1( ˜̃u, ξ2)P1(u, ξ1)

P1(u,ξ1+ρ)−P1(u,ξ1−ρ)
2ρ P1(u, ξ2)− P1(u,ξ2+ρ)−P1(u,ξ2−ρ)

2ρ P1(u, ξ1)
.

By setting P1(u, ξ2) ≈ P1(u, ξ1) + P1ξ(u, ξ1)(ξ2 − ξ1) and ξ2 − ξ1 = ρ, and reminding
Equation (A7), we have

−φ̃′′1 (u) = −φ′′1 (u) +
εu(u)

1 + ε(u)
(P1(ũ, ξ1)− P1( ˜̃u, ξ2))P1(u, ξ1) + P1(ũ, ξ1)P1ξ(u, ξ1)ρ

(P1ξ(u, ξ1)− P1ξ(u, ξ2))P1(u, ξ1) + ρP2
1ξ(u, ξ1)

.

By assuming ũ ≈ ˜̃u ≈ u, we get

−φ̃′′1 (u) = −φ′′1 (u) +
εu(u)

1 + ε(u)
ρP1ξ(u, ξ1)P1(u, ξ1)

(P1ξ(u, ξ1)− P1ξ(u, ξ2))P1(u, ξ1) + ρP2
1ξ(u, ξ1)

=

= −φ′′1 (u) +
εu(u)

1 + ε(u)
ρ

1− P1ξ (u,ξ2)

P1ξ (u,ξ1)
+ ρ

P1ξ (u,ξ1)

P1(u,ξ1)

.

For ξ2 close to ξ1 it holds P1ξ(u, ξ1) ≈ P1ξ(u, ξ2) and then Equation (16) follows.
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