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Abstract: Inspired by the concept of regular local rings in classical algebra, in this article we ini-
tiate the study of the regular parameter elements in a commutative local Noetherian hyperring.
These elements provide a deep connection between the dimension of the hyperring and its primary
hyperideals. Then, our study focusses on the concept of regular local hyperring R, with maximal
hyperideal M, having the property that the dimension of R is equal to the dimension of the vectorial
hyperspace M

M2 over the hyperfield R
M . Finally, using the regular local hyperrings, we determine the

dimension of the hyperrings of fractions.

Keywords: Krasner hyperring; prime/maximal hyperideal; length of hypermodules; regular local
hyperring; parameter elements

1. Introduction

A regular local ring is known as a Noetherian ring with just one maximal ideal gen-
erated by n elements, where n is the Krull dimension of the ring. This is equivalent with
the condition that the ring R has a system of parameters that generate the maximal ideal,
called regular system of parameters or regular parameter elements [1]. In commutative
algebra, the theory of regular local rings plays a fundamental role and it has been de-
veloped since the late 30s and early 40s of the last century, thanks to the studies of two
great mathematicians, Wolfgang Krull and Oscar Zariski. This happened just some years
after that Frederic Marty introduced hypergroups as a generalization of groups in such
a way that the single-valued group operation was extended to a hyperoperation, i.e., to
a multi-valued operation. It is important to stress the fact that not all the properties of
the group, such as the existence of the neutral element and the inverse, have been exactly
transferred to the hypergroups, meaning that it is not obligatory that a hypergroup contains
a neutral element or inverses. These requirements were requested later on, for so called
canonical hypergroups, that were defined as the additive parts of the Krasner hyperrings
and hyperfields [2,3].

The hyperring is a hypercompositional structure endowed with one hyperoperation,
namely the addition, and one binary operation, namely the multiplication, satisfying
certain properties. Krasner [2] introduced the concept of hyperring for the first time in
1957 and investigated its applicability to the theory of valued fields. There are some
other types of hyperrings: if the multiplication is a hyperoperation and the addition is
a binary operation, we talk about the multiplicative hyperrings, defined by Rota [4]. If
both, the addition and the multiplication, are hyperoperations with the additive part being
a canonical hypergroup, then we have superrings [5], which were introduced by Mittas
in 1973 [6]. Until now, the most well known and studied type of hyperrings is the Kras-
ner hyperring, that has a plentitude of applications in algebraic geometry [7,8], tropical
geometry [9], theory of matroids [10], schemes theory [11], algebraic hypercurves [12,13],
hypermomographies [14]. In addition, the theory of hypermodules was extensively inves-
tigated by Massouros [15]. In this article, the free and cyclic hypermodules are studied
and several examples are provided such as the one obtained as a quotient of a P-module
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over a unitary ring P. Recently, Bordbar and his collaborators in [16–18] have introduced
the length and the support of hypermodules and studied some properties of them, that
are used also in this paper. Moreover, the connection between the hyperrings/hyperfields
theory and geometry is very clearly explained by Massouros in [19]. This paper is a pylon
in the current literature on algebraic hypercompositional algebra, because it describes the
development of this theory (with a lot of examples and explanation of the terminology)
from the first definition of hypergroup proposed by F. Marty to the hypergroups endowed
with more axioms and used now a days.

In this paper, the theory of regular local rings is applied in the context of commutative
Noetherian Krasner hyperrings, with only one maximal hyperideal, namely the local
hyperrings. We first define the regular parameter elements in an arbitrary commutative
local hyperring of finite dimension. These elements come up from the nice and deep
relation existing between the dimension of a local hyperring with maximal hyperideal M
and the set of the generators of its M-primary hyperideals (see Theorem 4). More precisely,
since in a local hyperring R with maximal hyperideal M, the dimension of the ring R is
equal with the height of the hyperideal M, i.e., dimR = htR M as stated in Corolarry 1, we
can say that the regular parameter elements are a consequence of the investigation of the
height of M and the set of the generators for M-primary hyperideals in R. The other main
objective of Section 3 is expressed by the result regarding the dimension of the quotient
hyperrings (see Proposition 5). In Section 4, using the local hyeprring R with maximal
hyperideal M and the structure of the quotient hyperring, we introduce the hypermodule
M
M2 over the hyperrings R and R

M , respectively. Since R
M is a hyperfield, we conclude that

M
M2 is a vectorial hyperspace over the hyperfield R

M , as a direct consequence of Theorem 6.
Moreover, the investigation on the relation between the dimension of the hyperring R
(equivalently, the height htR M of the maximal hyperideal M) and the dimension of the
vectorial hyperspace M

M2 conducts us to the definition of the regular local hyperrings. They
are exactly local Noetherian hyperrings with the property that the maximal hyperideal M
can be generated by d elements, where d is the dimension of the hyperring. This follows
from the main result of this section, i.e., Theorem 7, saying that the dimension of a local
Noetherian hyperring R is the smallest number of elements that generate an M-primary
hyperideal of R. Finally we apply these results in the class of the hyperrings of fractions,
i.e., hyperrings of the form RP = S−1R, where S = R \ P, with P a prime hyperideal of S, is
a multiplicatively closed subset of R. We prove that the height of the prime hyperideal P is
equal to the height of the hyperideal S−1P in the hyperring of fractions SP (see Theorem 8).
Final conclusions and some future works on this topic are gathered in the last section of
the paper.

2. Preliminaries

In this section we collect some fundamental results regarding hyperrings, but for more
details we refer the readers to [16–18]. Throughout the paper, R denotes a Krasner hyperring,
unless stated otherwise and we call it by short a hyperring. It was introduced by Krasner [2]
as follows.

Definition 1. A (Krasner) hyperring is a hyperstructure (R,+, ·) where

1. (R,+) is a canonical hypergroup, i.e.,

(a) (a, b ∈ R⇒ a + b ⊆ R),
(b) (∀a, b, c ∈ R) (a + (b + c) = (a + b) + c),
(c) (∀a, b ∈ R) (a + b = b + a),
(d) (∃0 ∈ R)(∀a ∈ R) (a + 0 = {a}),
(e) (∀a ∈ R)(∃ − a ∈ R) (0 ∈ a + x ⇔ x = −a),
(f) (∀a, b, c ∈ R)(c ∈ a + b⇒ a ∈ c + (−b)).

2. (R, ·) is a semigroup with a bilaterally absorbing element 0, i.e.,

(a) (a, b ∈ R⇒ a · b ∈ R),
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(b) (∀a, b, c ∈ R) (a · (b · c) = (a · b) · c),
(c) (∀a ∈ R) (0 · a = a · 0 = 0).

3. The product distributes from both sides over the sum

(a) (∀a, b, c ∈ R) (a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a).
Moreover, if (R, ·) is commutative, i.e.,

4. (∀a, b ∈ R) (a · b = b · a),
the hyperring is called commutative.

Definition 2. If every nonzero element in a hyperring R with multiplicative identity 1 is invert-
ible, i.e.,

(i) (∀a ∈ R)(∃a−1 ∈ R) (a · a−1 = 1R),

then R is called a hyper f ield.

Definition 3. A nonempty set I of a hyperring R is called a hyperideal if, for all a, b ∈ I and
r ∈ R, we have a− b ⊆ I and a · r ∈ I. A proper hyperideal M of a hyperring R is called a maximal
hyperideal of R if the only hyperideals of R that contain M are M itself and R. A hyperideal P of
a hyperring R is called a prime hyperideal of R if, for every pair of elements a and b of R, the fact
that ab ∈ P, implies either a ∈ P or b ∈ P. In addition, a nonzero hyperring R having exactly one
maximal hyperideal is called a local hyperring.

Definition 4. A hyperring homomorphism is a mapping f from a hyperring R1 to a hyperring R2
with units elements 1R1 and 1R2 , respectively, such that

1. (∀a, b ∈ R) ( f (a +R1 b) = f (a) +R2 f (b)).
2. (∀a, b ∈ R) ( f (a ·R1 b) = f (a) ·R2 f (b)).
3. f (1R1) = 1R2 .

Definition 5. Let f : R → S be a hyperring homomorphism, I be a hyperideal of R and J be a
hyperideal of S.

(i) The hyperideal < f (I) > of S generated by the set f (I) is called the extension of I and it is
denoted by Ie.

(ii) The hyperideal f−1(J) = {a ∈ R | f (a) ∈ J} is called the contraction of J and it is denoted
by Jc. It is known that, if J is a prime hyperideal in S, then Jc is a prime hyperideal in R.

Definition 6. A prime hyperideal P of R is called a minimal prime hyperideal over a hyperideal I
of R if it is minimal (with respect to inclusion) among all prime hyperideals of R containing I. A
prime hyperideal P is called a minimal prime hyperideal if it is a minimal prime hyperideal over the
zero hyperideal of R.

Definition 7. A hyperring R is called Noetherian if it satisfies the ascending chain condition
on hyperideals of R: for every ascending chain of hyperideals I1 ⊆ I2 ⊆ I3 ⊆ . . . there exists
N ∈ N such that In = IN , for every natural number n ≥ N (this is equivalent to saying that
every ascending chain of hyperideals has a maximal element). A hyperring R is called Artinian
if it satisfies the descending chain condition on hyperideals of R: for every descending chain of
hyperideals I1 ⊇ I2 ⊇ I3 ⊇ . . . there exists N ∈ N such that In = IN , for every natural
number n ≥ N (this is equivalent to saying that every descending chain of hyperideals has a
minimal element).

Definition 8. Let R be a hyperring with unit element 1. An R-hypermodule M is a commutative
hypergroup (M,+) together with a map R×M −→ M defined by

(a, m) 7→ a ·m = am ∈ M (1)

such that for all a, b ∈ R and m1, m2 ∈ M we have:



Mathematics 2021, 9, 243 4 of 13

1. (a + b)m1 = am1 + bm1.
2. a(m1 + m2) = am1 + am2.
3. (ab)m1 = a(bm1).
4. a0M = 0Rm1 = 0M.
5. 1m1 = m1, where 1 is the multiplicative identity in R.

Moreover, if R is a hyperfield, then M is called a vectorial hyperspace [20].

The next few results concern the concept of the radical of a hyperideal [16].

Definition 9. The radical of a hyperideal I of a hyperring R, denoted by r(I), is defined as

r(I) = {x | xn ∈ I, for some n ∈ N}.

It can be proved that the radical of I is the intersection of all prime hyperideals of R containing I.
In addition, a hyperideal P in a hyperring R is called primary if P 6= R and the fact that xy ∈ P
implies either x ∈ P or y ∈ r(P).

Lemma 1. Let I be a hyperideal of the hyperring R, where r(I) is a maximal hyperideal of R. Then
I is a primary hyperideal of R.

Proposition 1. Let R be a Noetherian hyperring, M a maximal hyperideal of R and let P be a
hyperideal of R. Then the following statements are equivalent:

1. P is primary.
2. r(P) = M.
3. Mn ⊆ P ⊆ M, for some n ∈ N.

Definition 10. Let R be a commutative hyperring. An expression of the type

P0 ⊂ P1 ⊂ . . . ⊂ Pn (2)

(note the strict inclusions), where P0, . . . , Pn are prime hyperideals of R, is called a chain of prime
hyperideals of R; the length of such a chain is the number of the “links" between the terms of the
chain, that is, 1 less than the number of prime hyperideals in the sequence.

Thus, the chain in (2) has length n. Note that, for a prime hyperideal P, we consider
P to be a chain, with just one prime hyperideal of R, of length 0. Since R is non-trivial, it
contains at least one prime hyperideal, so there certainly exists at least one chain of prime
hyperideals of R of length 0.

Definition 11. The supremum of the lengths of all chains of prime hyperideals of R is called the
dimension of R, denoted by dimR.

Definition 12. Let P be a prime hyperideal of a commutative hyperring R. The height of P, denoted
by htRP, is defined to be the supremum of the lengths of all chains

P0 ⊂ P1 ⊂ . . . ⊂ Pn

of prime hyperideals of R, for which Pn = P, if this supremum exists, and it is ∞, otherwise.

We conclude this preliminary section recalling the notion of vectorial hyperspace.

Definition 13 ([20]). Let V be a vectorial hyperspace over a hyperfield F. A linear combination
of vectors v1, v2, . . . , vn is a set of the form ∑n

i=1 rivi. Moreover, for a vectorial hyperspace V
over a hyperfield F and A ⊆ V, A is called linearly independent if for every finite set of vectors
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{v1, v2, . . . , vn} ⊆ A, 0 ∈ ∑n
i=1 rivi implies ri = 0 for 1 ≤ i ≤ n. If A is not linearly independent

then A is called linearly dependent.

Definition 14 ([20]). Let V be a vectorial hyperspace over F. The set A ⊆ V is called a spanning
set if each vector of V is contained in a linear combination of vectors from A. We say V is the
span of A and write V = Span[A]. In addition, a basis for a vectorial hyperspace V is a subset B
of V such that B is both spanning and linearly independent set. A vectorial hyperspace is finite
dimensional if it has a finite basis. Moreover, the number of the elements in an arbitrary basis of a
vectorial hyperspace is called the dimension of the vectorial hyperspace, denoted here by vdimV.

Note that we denote the dimension of the vectorial hyperspace by vdimV (where “v”
stays for “vectorial”) in order to not confuse it with the dimension of a hyperring, denoted
here as dimR.

3. Regular Parameter Elements in Local Hyperrings

In this section, we introduce the notion of the regular parameter elements in a local
hyperring and by using representative examples, we present some of their properties
connected with the length and the dimension of the related vectorial hyperspace.

Definition 15. A unitary hyperring R is called principal hyperideal hyperdomain when it has no
zero divisors and all its hyperideals are generated by a single element.

M. Krasner had the great idea to construct hyperrings and hyperfields as quotients of
rings and fields, respectively, called by him quotient hyperrings and quotient hyperfields, while
this construction is known in literature as Krasner’s construction [3]. The importance of these
hyperrings and hyperfields in Krasner’s studies is very clear explained by G. Massouros
and Ch. Massouros in [19], as well as their different names given by some authors [7–11],
with the risk of creating confusions. Therefore, in order to keep the original terminology,
we recommend to read the papers of Nakasis [21] and Massouros [15,22,23].

Example 1 ([3,21]). Let (R,+, ·) be a ring and G a normal subset of R (which means that rG = Gr
for every r ∈ R) such that (G, ·) is a group and the unit element of G is a unit element of R. Define
an equivalence relation ∼= on R as follows: r ∼= s if and only if rG = sG. Then, the equivalence
class represented by r is P(r) = {s ∈ R | sG = rG} = rG. Define now a hyperoperation ⊕ on the
set of all equivalence classes R/G as follows: P(r)⊕ P(s) = {P(t) | P(t) ∩ (P(r) + P(s)) 6= ∅}
= {tG | ∃g1, g2 ∈ G such that t = rg1 + sg2} = {tG | tG ⊆ rG + sG}, and define a binary
operation on R/G as rG · sG = rsG(P(r) · P(s) = P(rs)). Then, (R/G,⊕, ·) forms a hyperring.
Moreover, if we choose R to be a field, then we get that (R/G,⊕, ·) is a hyperfield.

Notice that the condition on the normality of G can be substituted with a more general one, i.e.,
rGsG = rsG, for every r, s ∈ R∗, which is practically equivalent to the normality of G only when
the multiplicative semigroup is a group, so only when R is a field, as Massouros proved in [22].

Proposition 2. Let R be a principal hyperideal hyperdomain and let p ∈ R − {0}. Then the
following statements are equivalent:

(i) pR is a maximal hyperideal of R.
(ii) pR is a non-zero prime hyperideal of R.

Proof. (i) −→ (ii) This implication is clear because p 6= 0 and every maximal hyperideal
of a hyperring is also a prime hyperideal.

(ii) −→ (i) Since pR is a prime hyperideal of R, i.e., p is not a unit element of R, we
have pR ⊂ R. Let I be a hyperideal of R such that pR ⊆ I ⊂ R. Since R is a principal
hyperideal hyperdomain, there exists an element a ∈ R such that I = aR. In addition, a can
not be a unit element because I is a proper hyperideal. Since R is a unitary hyperring, it
follows that p ∈ I and so p = ab for some b ∈ R. Since pR is a prime hyperideal, it follows
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that p is irreducible and because a is not a unit, we have that b is a unit element of R. Thus,
pR = aR = I and therefore pR is a maximal hyperideal.

Example 2 ([16]). Consider the set of integers Z and its multiplicative subgroup G = {−1, 1}.
Based on Example 1, the Krasner’s construction Z

G is a principal hyperideal hyperdomain. In
addition, the prime (also maximal) hyperideals of Z

G have the form < pG >, where p is a prime
number. In Z

G we have < 0Z >⊂< 2Z > a chain of prime hyperideals of length 1. Since every
nonzero prime hyperideal of Z

G is maximal, there does not exist a chain of prime hyperideals of Z
G of

length 2, therefore dim Z
G = 1.

Remark 1. Let R be a non-trivial commutative hyperring. By [16], every prime hyperideal of R is
contained in a maximal hyperideal of R (and every maximal hyperideal is prime). Moreover, every
prime hyperideal of R contains a minimal prime hyperideal. It follows that dimR is equal to the
supremum of lengths of chains P0 ⊂ P1 ⊂ . . . ⊂ Pn of prime hyperideals of R, with Pn a maximal
and P0 a minimal prime hyperideal. Indeed, if we have an arbitrary chain of prime hyperideals of R
with length h, like P′0 ⊂ P′1 ⊂ . . . ⊂ P′h, then it is bounded above by the length of a special chain as
it follows. If P′0 is not a minimal prime hyperideal, then another prime hyperideal can be inserted
before it. On the other hand, if P′h is not a maximal hyperideal of R, then another prime hyperideal
can be inserted above it. Thus, if dimR is finite, then

dimR = sup{htR M | M is a maximal hyperideal o f R}

= sup{htRP | P is a prime hyperideal o f R}.

As a consequence, we have the following result.

Corollary 1. If R is a local commutative hyperring with the maximal hyperideal M, then dimR =
htR M.

The first property on the height of a hyperideal is highlighted in the next result.

Theorem 1 ([16]). Let R be a commutative Noetherian hyperring and let a ∈ R be a non-unit
element. Let P be a minimal prime hyperideal over the principal hyperideal 〈a〉 of R. Then,
htRP ≤ 1.

Now we can extend Theorem 1 to the case when P is a minimal prime hyperideal over
a hyperideal I generated not by one element, but by n elements.

Theorem 2 ([16]). Let R be a commutative Noetherian hyperring. Suppose that I is a proper
hyperideal of R generated by n elements and P is a minimal prime hyperideal over I. Then,
htRP ≤ n.

Lemma 2. In a commutative Noetherian hyperring R, let I be a hyperideal and P a prime hyperideal
of R, such that I ⊆ P and htR I = htRP. Then, P is a minimal prime hyperideal over I.

Proof. Suppose that P is not a minimal prime hyperideal over I. Then, by Remark 1, there
exists a prime hyperideal Q of R which is minimal and I ⊆ Q ⊂ P. Thus, htR I ≤ htRQ <
htRP, obtaining a contradiction. So P is a minimal prime hyperideal over I.

The next theorem states the conditions under which there exists a proper hyperideal
of height n and generated by n elements.

Theorem 3 ([17]). Let R be a commutative Noetherian hyperring and P a prime hyperideal of R,
with htRP = n. Then there exists a proper hyperideal I of R having the following properties:

(i) I ⊆ P.
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(ii) I is generated by n elements.
(iii) htR I = n.

We have now all the elements to determine the dimension of a commutative local
Noetherian hyperring.

Theorem 4. Suppose that R is a commutative local Noetherian hyperring, having M as its unique
maximal hyperideal. Then, dimR is equal to the smallest number of elements of R that generate an
M-primary hyperideal. In other words,

dimR = min{i ∈ N, ∃a1, a2, . . . , ai ∈ R,
i

∑
j=1

Raj is an M− primary hyperideal}.

Proof. Let

d = min{i ∈ N, ∃ a1, a2, . . . , ai ∈ R,
i

∑
j=1

Raj is an M− primary hyperideal}.

By using Corollary 1 and Theorem 2, we have dimR = htR M ≤ d, because an M-
primary hyperideal must have M as its minimal prime hyperideal. On the other hand, by
using Lemma 2 and Theorem 3, there exists a hyperideal P of R which has M as a minimal
prime hyperideal and which can be generated by dimR = htR M elements. In addition,
every prime hyperideal of R is contained in M. Hence, M must be the only one associated
prime hyperideal of P. Thus, P is an M-primary hyperideal.

As a result that there exists an M-primary hyperideal of R which can be generated by
dimR elements, we have d ≤ dimR. Therefore, d = dimR and this completes the proof.

Definition 16. Let R be a local hyperring of dimension d, with M as its unique maximal hyperideal.
By regular parameter elements of R we mean a set of d elements of R that generate an M-primary
hyperideal of R.

Remark 2. Based on Theorem 4, we conclude that each local hyperring of dimension at least
1 possesses a set of regular parameter elements.

Example 3. On the set R = {0, 1, 2} define the hyperaddition + and the multiplication · by the
following tables

+ 0 1 2
0 0 1 2
1 1 R 1
2 2 1 M

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

Then, R is a commutative local Noetherian hypering and M = {0, 2} is the only maximal hyperideal
of R. Thus, dimR = htR M and M is an M-primary hyperideal. One can check that htR M = 0, so
dimR = 0. Therefore this hyperring has no regular parameter elements.

Proposition 3. Let R be a local hyperring of dimension d, with the unique maximal hyperideal M,
and let a1, a2, . . . , ad be a set of regular parameter elements for R. For any n1, n2, . . . , nd ∈ N, we
have that an1

1 , an2
2 , . . . , and

d form a set of regular parameter elements for R, too.

Proof. The proof is straightforward.
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Proposition 4. Let f : R → S be a surjective homomorphism of commutative hyperrings. Sup-
pose that Q1, Q2, . . . , Qn, P1, P2, . . . , Pn are hyperideals of R, all of which containing Ker f , with
r(Qi) = Pi, for i = 1, 2, . . . , n. Then

I = Q1 ∩Q2 ∩ . . . ∩Qn

is a (minimal) primary decomposition of I if and only if

Ie = Qe
1 ∩Qe

2 ∩ . . . ∩Qe
n

with r(Qe
i ) = Pe

i for i = 1, 2, . . . , n is a (minimal) primary decomposition of Ie.

Proof. The proof is straightforward.

We can conclude that I is a decomposable hyperideal of R (meaning that it has a
primary decomposition) if and only if Ie is a decomposable hyperideal of S. Moreover, if

I = Q1 ∩Q2 ∩ . . . ∩Qn

where r(Qi) = Pi, for i = 1, 2, . . . , n, then we call the set {P1, P2, . . . , Pn}, the set of the
associated prime hyperideals related to I and denoted by assR I. Using Proposition 4, for the
hyperideal Ie of S the related associated prime hyperideals form the set

assS Ie = {Pe | P ∈ assR I} = {Pe
1 , Pe

2 , . . . , Pe
n}.

Corollary 2. Let I be a proper hyperideal of the commutative hyperring R. Using the canonical
hyperring homomorphism from R to the quotient R

I , we conclude that if J is a hyperideal of R such
that I ⊆ J, then J is a decomposable hyperideal of R if and only if J

I is a decomposable hyperideal of
R
I , and we have

ass R
I
(

J
I
) = {P

I
: P ∈ assR J}.

Theorem 5 ([17]). Let R be a commutative Noetherian hyperring, P a prime hyperideal of R and I
a proper hyperideal of R generated by n elements, such that I ⊆ P. Then:

ht R
I

P
I
≤ htRP ≤ ht R

I

P
I
+ n.

Proposition 5. Let R be a local commutative hyperring of dimention d with its maximal hyperideal
M, and let a1, a2, . . . , at ∈ M. Then,

dimR− t ≤ dim R/(a1, a2, . . . , at) ≤ dimR.

Moreover, dimR/(a1, a2, . . . , at) = dimR− t if and only if a1, a2, . . . , at are all distinct elements
and form a set of regular parameter elements of R.

Proof. Using Corollary 1, we have dimR = htR M and therefore

dimR/(a1, a2, . . . , at) = htR/(a1,a2,...,at)M/(a1, a2, . . . , at).

By using Theorem 5, we conclude that

dimR− t ≤ dim R/(a1, a2, . . . , at) ≤ dimR.

Now let can : R→ R/(a1, a2, . . . , at) be the canonical hyperring homomorphism such
that can(r) = r + (a1, a2, . . . , at). Set M = M

(a1,a2,...,at)
.

Suppose that dimR/(a1, a2, . . . , at) = d − t. Then, t ≤ d, and by using Theorem 4,
there exist at+1, at+2, . . . , ad ∈ R/(a1, a2, . . . , at), where aj = aj + (a1, a2, . . . , at) for j =
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t + 1, . . . , d, such that (at+1, at+2, . . . , ad) is an M-primary hyperideal of R/(a1, a2, . . . , at).
Therefore, at+1, at+2, . . . , ad ∈ M. Thus,

(a1, a2, . . . , at, at+1, . . . , ad)

(a1, a2, . . . , at)

is an M-primary hyperideal of R/(a1, a2, . . . , at). By using Proposition 4 and Corollary 2,
we conclude that (a1, a2, . . . , ad) is an M-primary hyperideal of R. It now follows from
Theorem 4, that a1, a2, . . . , ad are all distinct and {a1, a2, . . . , ad} is a set of regular parameter
elements of R. Therefore, a1, a2, . . . , at are all distinct and form a set of regular parameter
elements of R.

Now suppose that t ≤ d and there exist at+1, . . . , ad ∈ M such that

a1, a2, . . . , at, at+1, . . . , ad

form a set of regular parameter elements of R. Thus, (a1, a2, . . . , ad) is an M-primary
hyperideal of R. Therefore, by using Proposition 4 and Corollary 2, (at+1, at+2, . . . , ad)
is an M-primary hyperideal of R/(a1, a2, . . . , at). Thus, by using Theorem 4, we have
d− t ≥ dimR. But, it follows from the first part that d− t ≤ dimR, and so the proof is
complete.

4. Regular Local Hyperrings

The aim of this section is to define the regular local hyperrings. For doing this, we will
first prove that, in a local Noetherian hyperring R with the unique maximal hyperideal
M, the R-hypermodule M

M2 is a vectorial hyperspace over the hyperfield R
M . Then we will

establish a relation between the dimension of the hyperring R and the dimension of the
vectorial hyperspace M

M2 . Finally, we will present a new characterization of the dimension
of the hyperring of fractions.

Definition 17 ([18]). Let M be a hypermodule over the commutative hyperring R, N be a subhy-
permodule of M and I ⊆ M with I 6= 0. We define the hyperideal

(N :R I) = {r ∈ R | r · x ∈ N f or all x ∈ I}.

For any element m ∈ M, we denote (N :R m) instead of (N :R {m}). In addition, in the special
case when N = 0, the hyperideal

(0 :R I) = {r ∈ R | r · x = 0 f or all x ∈ I}

is called the annihilator of I and is denoted by AnnR(I). Moreover, for any element m ∈ M, we
call the hyperideal (0 :R m) the annihilator of the element m.

Example 4. Let us continue with Example 3, where R is an R-hypermodule and its hyperideal M
is a subhypermodule. We have

AnnR(M) = (0 :R M) = {r ∈ R | r ·m = 0 f or all m ∈ M} = M.

Moreover, for m = 2 we have

(0 :R 2) = {r ∈ R | r · 2 = 0} = {0, 2}.

Proposition 6. Let M be a hypermodule over the commutative hyperring R and I be a hyperideal
of R such that I ⊆ AnnR(M). Then, M is a hypermodule over R

I .

Proof. Suppose that r, r′ ∈ R such that r + I = r′ + I. We have r − r′ ⊆ I ⊆ AnnR(M),
and so (r− r′)m = 0 for any arbitrary element m ∈ M. Thus, rm = r′m. Hence, we can
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define a mapping R
I ×M −→ M such that (r + I, m) −→ rm. It is a routine to check that

M has an R
I -hypermodule structure.

Proposition 7. Let R be a local hyperring with its maximal hyperideal M and consider the
hyperfield F = R

M . Let N be a finitely generated R-hypermodule. Then the R-hypermodule N
MN has

a natural structure as a hypermodule over R
M as an F-vectorial hyperspace.

Moreover, let n1, n2, . . . , nt ∈ N. Then the following statements are equivalent.

(i) N is generated by n1, n2, . . . , nt.
(ii) The R-hypermodule N

MN is generated by n1 + MN, n2 + MN, . . . , nt + MN.
(iii) The F-vectorial hyperspace N

MN is generated by n1 + MN, n2 + MN, . . . , nt + MN.

Proof. Since the R-hypermodule N
MN is annihilated by M, i.e., M ⊆ AnnR(

N
MN ), by using

Proposition 6, it has a natural structure as hypermodule over R
M . In addition, since F = R

M
is a hyperfield, N

MN is also an F-vectorial hyperspace.
It is clear that (i) implies (ii).
The R-hypermodule and F-vectorial hyperspace structures of N

MN are related by
the formula

r(n + MN) = (r + M)(n + MN)

for all r ∈ R and n ∈ N. Thus, the equivalence of statements (ii) and (iii) is clear.

It remains to prove that (ii) implies (i). Assume that (ii) holds, so the R-hypermodule
N

MN is generated by the elements

n1 + MN, n2 + MN, . . . , nt + MN.

Let G = Rn1 + Rn2 + . . . + Rnt. First, we will show that N = G + MN. Let n ∈ N. Then
there exist r1, r2, . . . , rt ∈ R such that

n + MN = r1(n1 + MN) + r2(n2 + MN) + . . . + rt(nt + MN).

Hence, n− ∑n
i=1 rini ∈ MN. It follows that N ⊆ G + MN. On the other side, it is clear

that G + MN ⊆ N. Thus, we have N = G + MN. Now by using Corollary 2.9 in [16], we
conclude that N = G, so N is generated by the elements n1, n2, . . . , nt.

Theorem 6. The F-vectorial hyperspace N
MN in Proposition 7 has finite dimension and the number

of the elements in each minimal generating set for the R-hypermodule N is equal to vdimF
N

MN .

Proof. Since N is a finitely generated R-hypermodule, it follows from Proposition 7 that
N

MN is a finitely generated F-vectorial hyperspace. Therefore, its dimension is finite.
Let {n′1, n′2, . . . , n′p} be a minimal generating set for N. By Proposition 7, we know that

the set
{n′1 + MN, n′2 + MN, . . . , n′p + MN}

is a generating set for the F-vectorial hyperspace N
MN and since {n′1, n′2, . . . , n′p} is a minimal

generating set for N, it follows that no proper subset of {n′1 + MN, n′2 + MN, . . . , n′p + MN}
generates N

MN . Thus, the set {n′1 + MN, n′2 + MN, . . . , n′p + MN} is a basis for the F-
vectorial hyperspace N

MN and so vdimF
N

MN = p.

Note that the R-hypermodule M
M2 is annihilated by M. If R is a Noetherian hyperring,

then by Proposition 6, M
M2 has a natural structure as a vectorial hyperspace over the

hyperfield R
M . In addition, using Proposition 7, the dimension of the vectorial hyperspace

M
M2 is equal to the number of the elements in an arbitrary minimal generating set for M.
Therefore, we have the following result.
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Theorem 7. Let R be a local Noetherian hyperring with maximal hyperideal M. Then,

dimR ≤ vdim R
M

M
M2 .

Proof. The inequality is clear because M is an M-primary hyperideal of the hyperring R
and as mentioned before vdim R

M

M
M2 is the number of the elements of an arbitrary minimal

generating set for M. Based on Theorem 4, dimR is the smallest number of elements that
generate an M-primary hyperideal of R.

Definition 18. Let R be a local Noetherian hyperring with maximal hyperideal M. Then, R is
called a regular hyperring when dimR = vdim R

M

M
M2 .

Remark 3. For a local Noetherian hyperring R with one maximal hyperideal M and dimR = d,
we have the following statements:

(i) The dimension of the R
M -vectorial hyperspace M

M2 is the number of the elements in each minimal
generating set for the hyperideal M. By using Theorem 4, at least d elements are needed to
generate M, and R is a regular hyperring when the hyperideal M can be generated by exactly
d elements.

(ii) Suppose that R is a regular hyperring and a1, a2, . . . , ad ∈ M. By using Proposition 7, the
elements a1, a2, . . . , ad generate M if and only if a1 + M2, a2 + M2, . . . , ad + M2 in M

M2 form
a basis for this R

M -vectorial hyperspace, equivalently if and only if a1 + M2, a2 + M2, . . . , ad +
M2 form a linearly independent set.

We conclude this section with a new characterization of the dimension of the hy-
perring of fractions RP = S−1R, where S = R \ P, with P a prime hyperideal of S, is a
multiplicatively closed subset of R. As proved in [16,17], RP is a local Noetherian hyperring.
First, we recall the main properties of the hyperring of fractions.

Proposition 8 ([16]). Let S be a multiplicatively closed subset of a hyperring R.

(i) Every hyperideal in S−1R is an extended hyperideal.
(ii) If I is a hyperideal in R, then Ie = S−1R if and only if I ∩ S = ∅.
(iii) A hyperideal I is a contracted hyperideal of R if and only if no element of S is a zero divisor in

R/I.
(iv) The prime hyperideals of S−1R are in one-to-one correspondence with the prime hyperideals of

R that don’t meet S, with the correspondence given by P↔ S−1P.

Theorem 8. Let S be a multiplicatively closed subset of R and P be a prime hyperideal of R such
that P ∩ S = ∅. Then, htRP = htS−1RS−1P.

Proof. By Proposition 8, it follows that S−1P is a prime hyperideal of S−1R. Let

P0 ⊂ P1 ⊂ . . . ⊂ Pn = P

be a chain of prime hyperideals of R. Again by Proposition 8, it follows that

Pe
0 ⊂ Pe

1 ⊂ . . . ⊂ Pe
n

is a chain of prime hyperideals of S−1R with Pe
n = Pe = S−1P, and therefore htRP ≤

htS−1RS−1P. On the other side, if

Q0 ⊂ Q1 ⊂ . . . ⊂ Qn
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is a chain of prime hyperideals of S−1R with Qn = Pe, then using Propositions 8, we
get that

Qc
0 ⊂ Qc

1 ⊂ . . . ⊂ Qc
n

is a chain of prime hyperideals of R with Qc
n = Pec = P. So we have htS−1RS−1P ≤ htRP.

Therefore, it follows that htRP = htS−1RS−1P.

Combining the previous results, we get now the following important consequence.

Corollary 3. For a prime hyperideal P of a commutative hyperring R, it follows that

htRP = htRP S−1P = dim(RP).

In the following we will illustrate the previous results by several examples.

Example 5. Let R be a commutative Noetherian hyperring. Suppose that there exists a prime
hyperideal P of R with htP = n and that can be generated by n elements a1, a2, . . . , an. Consider
the localisation hyperring RP, that is a local hyperring. According with Theorem 8 and Corollary 3,
it has dimension n. Since the dimension of localization hyperring RP is n, the maximal hyperideal
of this hyperring, i.e.,

PRP = (
n

∑
i=1

Rai)RP =
n

∑
i=1

RP
ai
1

,

can be generated by n elements, that are also regular parameter elements, it follows that RP is a
regular hyperring.

Example 6. Let p be a prime number. Based on Example 2, we have htZpZ = 1. Since pZ is a
prime hyperideal of Z which can be generated by one element, it follows from Example 5 that ZpZ is
a regular hyperring of dimension 1 and p is a regular parameter element.

Example 7. Let R be a principal hyperideal hyperdomain which is not a hyperfield, and let M be a
maximal hyperideal of R. By using Proposition 2, M is a prime hyperideal of R and also principal
hyperideal with height 1. Using Example 5, it follows that RM is a regular hyperring of dimension 1.

5. Conclusions

In this paper, we have to define the regular parameter elements in a commutative
local Noetherian hyperring R with maximal hyperideal M and present some properties
related to them. After investigating some results concerning the quotient hypermodule M

M2

over the hyperfield R
M , our study has focused on regular local hyperrings. We have studied

the relation between the dimension of a commutative local Noetherian hyperring and the
dimension of the vectorial hyperspace M

M2 over the hyperfield R
M .

Our future work will include new results regarding the regular local hyperrings. In
particular we will investigate whether they are hyperdomains or not. In addition, we will
study the properties of the hyperideals generated by a subset of the regular parameter
elements and the relation between the length of these hyperideals and the dimension of
the hyperring.
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