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Abstract: Let G = (V, E) be a graph; a set D ⊆ V is a total dominating set if every vertex v ∈ V has,
at least, one neighbor in D. The total domination number γt(G) is the minimum cardinality among
all total dominating sets. Given an arbitrary graph G, we consider some operators on this graph;
S(G), R(G), and Q(G), and we give bounds or the exact value of the total domination number of these
new graphs using some parameters in the original graph G.

Keywords: domination theory; total domination; graph operators

1. Introduction

The study of the mathematical and structural properties of operators in graphs was
initiated in Reference [1]. This study is a current research topic, mainly because of its
multiple theoretical and practical applications (see References [2–6]). Motivated by the
previous investigations, we work here on the total domination number of some graph
operators. Other important parameters have also been studied in this type of graphs (see
References [7,8]).

We denote by G = (V, E) a finite simple graph of order n = |V| and size m = |E|. For
any two adjacent vertices u, v ∈ V, uv denotes the corresponding edge, and we denote
N(v) = {u ∈ V : uv ∈ E} and N[v] = N(v) ∪ {v}. We denote by ∆, δ the maximum and
minimum degree, respectively. For a non-empty subset D ⊆ V, and any vertex v ∈ V, we
denote by ND(v) the set of neighbors of v in D, that is, ND(v) = {u ∈ D : uv ∈ E}, and
dD(v) = |ND(v)|. The subgraph of G induced by a set of vertices D ⊆ V is denoted by
G[D], and we denote by G− D the graph in which its set of vertices is V \ D and in which
its set of edges is {uv ∈ E : u, v ∈ V \ D}.

A set D ⊆ V is a total dominating set if every vertex v ∈ V has, at least, a neighbor
in D. The total domination number γt(G) is the minimum cardinality among all total
dominating sets. The domination theory has been studied in [9–16], and a generalization
of this concept, namely, the total k-domination number, has been studied, for instance, in
References [17–20].

The study of the mathematical properties of the line graph was initiated in 1932 with
Whitney’s seminal work [21]. It should be noted that this research has served as a basis for
multiple investigations (see, for instance, References [22–24]).

For any graph G = (V, E): The line graph of a graph G, denoted by L(G), is the graph
in which its vertices correspond to the edges of G such that two vertices are adjacent if and
only if the corresponding edges in G have a common vertex (see Figure 1).

For any graph G = (V, E): The subdivision operator, denoted by S(G), acts on G by
replacing each of its edge by a path of length two (see Figure 2).

For any graph G = (V, E): The operator R(G) acts on G by adding a new vertex
corresponding to each edge of G and by joining each new vertex to the end vertices of the
edge corresponding to it (see Figure 3).
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Figure 1. In (a) a graph G, in (b) graph L(G).

Figure 2. In (a) a graph G, in (b) graph S(G).

Figure 3. In (a) a graph G, in (b) graph R(G).

Finally, for any graph G = (V, E): The operator Q(G) acts on G by inserting a new
vertex into each edge of G and by joining every pair of these new vertices which lie on
adjacent edges of G (see Figure 4).

Figure 4. In (a) a graph G, in (b) graph Q(G).

In this work, we give bounds and some exact values for the total domination number
in these graph operators.
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2. Results
2.1. Total Domination Number in the Graph S(G)

We will use the following notation. If G = (V, E), where V = {v1, . . . , vn}, then
S(G) = (V′, E′), where V′ = V ∪ {vi,j : vivj ∈ E, i < j} and E′ = {vivi,j, vjvi,j : vivj ∈
E, i < j}. To avoid writing all the time i < j, we will consider vi,j = vj,i.

The independence number of a graph G, denoted by α(G), is the cardinality of the
largest independent vertex set in G. A matching in a graph G is a set of edges such that
every edge in the set does not have any common vertex with any other edge in the set. A
perfect matching is a matching such that every vertex in the graph belongs to an edge in
the set.

Theorem 1. Let G be a graph with order n, then

n ≤ γt(S(G)) ≤
⌊

3n− α(G)

2

⌋
.

Proof. Let D be a minimum total dominating set in S(G). If v ∈ V(G) does not belong
to D, then NG(v) ⊆ D, that means, V(G) \ D is an independent set in G. On one hand,
since every vertex vi ∈ V(G) \ D must be dominated by D, there exists j 6= i such that
vi,j ∈ D. Therefore,

|D| ≥ |V(G) ∩ D|+ |V(G) \ D| = n.

If we denote t = α(G), we will find a total dominating set D in S(G) with cardi-
nality |D| ≤ 3n−α(G)

2 . Let A = {v1, v2, . . . , vt} be an independent set in G, and we take
V(G) \ A ⊆ D. Let M1 = {v1vt+1, v2vt+2, . . . , vrvt+r} be the biggest matching we can get in
the graph with one vertex of each edge in A. Consider the sets M′1 = {vi,t+i : vivt+i ∈ M1}
and N′1 = {vr+1,t+l1 , vr+2,t+l2 , . . . , vt,t+lt−r : vr+kvt+lk ∈ E(G)}.

Now, we consider the biggest matching using vertices in {vt+r+1, vt+r+2, . . . , vn}, which
we suppose is M2 = {vt+r+1vt+r+2, vt+r+3vt+r+4, . . . , vt+r+2p−1vt+r+2p}, and consider the
set M′2 = {vt+r+i,t+r+i+1 : vt+r+ivt+r+i+1 ∈ M2}. The set {vt+r+2p+1, . . . , vt+r+2p+s}, with
s = n− (t+ r+ 2p), is an independent set and it does not have any connection with vertices
in {vr+1, vr+2, . . . , vt} (since otherwise there would be at least one edge vk1 vk2 ∈ M1, for
some r < k1 ≤ t and t + r + 2p < k2 ≤ n, which contradicts the maximality of M1).
Consider the set N′2 = {vt+r+2p+1,i1 , vt+r+2p+2,i2 , . . . , vt+r+2p+s,is : vt+r+2p+jvij ∈ E(G)}.

In this case, we can take D = (V(G) \ A) ∪M′1 ∪M′2 ∪ N′1 ∪ N′2.
Notice that D is a total dominating set in S(G) and, since s + t− r ≤ t because of the

maximality of A, its cardinality satisfies

|D| = (n− t) + r + p + (t− r) + s = n + p + s ≤ n +
r + 2p + s

2

= n +
n− t

2
=

3n− t
2

.

The lower bound given in Theorem 1 is attained in any tree (see Reference [14]) and
cycles with order n 6= 4k + 1, and the upper bound is attained when G is a star or a
complete graph.

The following corollary might be useful when we do not know the independence number.

Corollary 1. Let G be a graph with order n, which is not a complete graph, then

γt(S(G)) ≤
⌊

3n
2

⌋
− 1.
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It is known (see Reference [13]) that

γt(Pn) = γt(Cn) =

{ n
2 + 1 if n ≡ 2 (mod 4)⌈ n

2
⌉

otherwise.

Since S(Cn) = C2n, the total domination number of the transformation of this graph
is γt(S(Cn)) = n + 1 when n ≡ 1 (mod 2) [if n ≡ 3 (mod 4), then 2n = 2 (mod 4)], and
γt(S(Cn)) = n otherwise.

Proposition 1. For a wheel Wn with n vertices, we have

γt(S(Wn)) = 2 + γt(P2n−3).

Proof. Let V(Wn) = {v1, v2, . . . , vn}, where v1 is the center of the wheel. If D0 is a
minimum total dominating set in the path with vertices v2,3, v3, v3,4, v4, . . . , vn, vn,2, then
D = {v1, v1,2} ∪ D0 is a total dominating set in S(Wn), so

γt(S(Wn)) ≤ 2 + γt(P2n−3).

Let D be a minimum total dominating set in S(Wn) such that v1, v1,2 ∈ D. Since this
set must contain a total dominating set in the path in which its vertices are v2,3, v3, v3,4, v4,
. . ., vn, vn,2, then |D| ≥ 2 + γt(P2n−3). If v1 does not belong to a total dominating set D′,
then v2, v3, v4, . . . , vn must belong to D′. Moreover, as {v2, v3, v4, . . . , vn} is an independent
set, we need

⌈
n−1

2

⌉
more vertices, and then |D′| > 2 + γt(P2n−3).

Proposition 2. For the complete graph Kn, we have

γt(S(Kn)) =

⌈
3n
2

⌉
− 1.

Proof. We denote V(Kn) = {v1, . . . , vn}. First at all, if n is an even number, the set
{v1,2, v2, v3, v3,4, v4, . . . , vn−1, vn−1,n, vn} is a total dominating set, and, if n is an odd number,
the set {v1,2, v2, v3, v3,4, v4, . . . , vn−2, vn−2,n−1, vn−1, vn, v1,n} is a total dominating set. Then,

γt(S(Kn)) ≤
⌈

3n
2

⌉
− 1.

Now, let D be a minimum total dominating set in S(Kn). If there exists vi /∈ D, then,
to dominate vs,i with s 6= i, it is necessary to have vs ∈ D for every s 6= i. As vi must be
dominated by D, there exists j 6= i such that vi,j ∈ D. Since vs ∈ D for every s 6= i, and
it is an independent set in S(Kn), for every two of those vertices, we need another vertex
in D connecting them. Therefore, |D| ≥ n + n−2

2 = 3n
2 − 1. Finally, if {v1, . . . , vn} ⊆ D,

since that is an independent set in S(Kn), D must contain, at least, n
2 more vertices, so

|D| ≥ n + n
2 ≥

⌈ 3n
2
⌉
− 1.

2.2. Total Domination Number of R(G)

We will use the following notation. If G = (V, E), where V = {v1, . . . , vn}, then
R(G) = (V′, E′), where V′ = V ∪ {vi,j : vivj ∈ E} and E′ = E∪ {vivi,j, vjvi,j : vivj ∈ E} (we
will consider vi,j = vj,i).

A total dominating set D of a graph G is called a total co-independent dominating set
if the set of vertices V \ D is a non-empty independent set. The minimum cardinality of
any total co-independent dominating set is the total co-independent domination number,
and it is denoted by γt,coi(G).
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Theorem 2. For any graph G with order n ≥ 3, we have

γt(R(G)) = γt,coi(G).

Proof. If D is a total co-independent dominating set in G, it is a total dominating set in G
and any edge contains a vertex of D, and then it is a total dominating set in R(G). Therefore,

γt(R(G)) ≤ γt,coi(G).

Now, let D be a minimum total dominating set in R(G). If vi,j ∈ D for some 1 ≤
i < j ≤ n, then we have that vi ∈ D or vj ∈ D. If, for instance, vi ∈ D, we can take
D′ = (D \ {vi,j}) ∪ {vj}, which is also a minimum total dominating set in R(G). Doing
that with any vertex vi,j ∈ D, we obtain a total dominating set D′ ⊆ V in both graphs
R(G) and G such that any edge in E contains a vertex of D′, so D′ is a total co-independent
dominating set of G. Therefore,

γt,coi(G) ≤ |D′| = |D| = γt(R(G)).

The following two results are directly obtained from References [15,16].

Proposition 3. Let G be a graph with order n and independence number α(G). Then,

n− α(G) ≤ γt(R(G)) ≤ 2(n− α(G)).

Proposition 4. Let G be a graph with order n, size m, minimum degree δ, and maximum degree
∆. Then,

max
{

nδ

∆ + δ− 1
,

2m + nδ

3∆ + δ− 2

}
≤ γt(R(G)) ≤ n− 1.

Moreover, γt(R(G)) = n− 1 if and only if G is Kn, P3, C4, or C5.

Let us show new upper bounds giving some conditions on the graph. A leaf in a
graph G = (V, E) is a vertex v ∈ V such that d(v) = 1. A support vertex in G is a non-leaf
vertex adjacent to a leaf. A hair in G is an edge uv ∈ E such that d(u) = 2 and d(v) = 1.

Proposition 5. If l(G) is the number of leaves of a graph G with order n, and there exists a vertex
v, such that it is not a leaf, nor a support vertex, nor adjacent to any hair, then

γt(R(G)) ≤ n− l(G)− 1.

Proof. If L = {u ∈ V : d(u) = 1}, then the set D = V \ (L ∪ {v}) is a total dominating
set in G. Since v is neither a support vertex nor adjacent to any hair, and L ∪ {v} is an
independent set, we have that D is a total co-independent dominating set in G. Therefore,

γt(R(G)) ≤ |D| = n− l(G)− 1.

The upper bound in Proposition 5 is attained, for instance, if we take any graph G
with minimum degree δ ≥ 2, and we add a leaf to every vertex in G except one.

Proposition 6. Let G be a graph with order n, minimum degree δ ≥ 2 and independence number
α(G). Then, γt(R(G)) ≤ n− δ + 1 if and only if α(G) ≥ δ− 1.
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Proof. On one hand, if α(G) ≥ δ− 1, and we take an independent set A = {v1, v2, . . . , vδ−1},
every vertex v ∈ V \ A satisfies dV\A(v) ≥ 1, and then V \ A is a total co-independent
dominating set in G, so γt(R(G)) ≤ n− δ + 1.

On the other hand, if α(G) ≤ δ− 2, by Proposition 3, we have

γt(R(G)) ≥ n− α(G) ≥ n− δ + 2.

Corollary 2. Let G be a graph with order n, minimum degree δ ≥ 2, and independence number
α(G). The following conditions hold:

(1) if α(G) = δ− 1, then γt(R(G)) = n− α(G).

(2) if α(G) ≥ δ, then γt(R(G)) ≤ n− δ + 1.

Theorem 3. Let G be a graph with order n, minimum degree δ, and maximum degree ∆. If
n ≥ (δ− 3)∆ + δ + 2, then

γt(R(G)) ≤ n− δ + 1.

Proof. Let v1 be any vertex in the graph such that δ(v1) = δ, and we take any vertex
v2 ∈ V \ {v1} adjacent to N(v1). Note that {v1, v2} is an independent set, and |N[v1] ∪
N[v2]| ≤ δ + 1 + ∆.

Now, since G is a connected graph, there exists v3 ∈ V \ {v1, v2} adjacent to N(v1) ∪
N(v2), and then we have that {v1, v2, v3} is an independent set, and |N[v1] ∪ N[v2] ∪
N[v3]| ≤ δ + 1 + 2∆.

We can continue this process to obtain an independent set A = {v1, v2, . . . , vδ−1}.
Using Corollary 2, we conclude that

γt(R(G)) ≤ n− δ + 1.

The upper bound given in Theorem 3 is attained, for instance, if we consider a
complete graph G1 with 5 vertices v1, . . . , v5, a (2r − 2)-regular graph G2 with vertices
u1, u2, . . . , u2r (r ≥ 3), and the graph G = (V, E) with order n = 2r + 5 such that
V = V(G1) ∪V(G2) and E = E(G1) ∪ E(G2) ∪ {v1u1, v2u2}. In such a case, α(G) = 3,
δ(G) = 4, ∆(G) = 2r− 1, n = (δ(G)− 3)∆(G) + δ(G) + 2, and γt(R(G)) = n− δ(G) + 1.

Using the results shown in Reference [16], we know that, for the cycle Cn, the wheel
Wn, and the complete graph Kn with n vertices, we have

γt(R(Cn)) =

⌈
2n
3

⌉
,

γt(R(Wn)) =

⌈
n + 1

2

⌉
,

γt(R(Kn)) = n− 1.

2.3. Total Domination Number of Q(G)

We will use the following notation. If G = (V, E), where V = {v1, . . . , vn}, then
Q(G) = (V′, E′), where V′ = V ∪ {vi,j : vivj ∈ E} and E′ = {vivi,j, vjvi,j : vivj ∈ E} ∪
{vi,jvj,k : vivj, vjvk ∈ E} (we will consider vi,j = vj,i). The line graph L(G) is the graph
in which its set of vertices is {vi,j : vivj ∈ E} and in which its set of edges is {vi,jvj,k :
vivj, vjvk ∈ E}.

A set D ⊆ V is a k-tuple dominating set if every vertex v ∈ V satisfies |N[v] ∩ D| ≥ k.
The k-tuple domination number γ×k(G) is the minimum cardinality among all k-tuple domi-
nating sets. For more information about this parameter, see, for instance, References [19,20].
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Proposition 7. For any graph G, there exists a minimum total dominating set D in Q(G) such
that all its vertices belong to V(L(G)). Moreover, this set is 2-tuple dominating set in L(G).

Proof. We know that V(Q(G)) = V(G) ∪V(L(G)). Let D be a minimum total dominating
set in Q(G), and we suppose vi ∈ D. We denote NG(vi) = {vi1 , . . . , vir}. If r = 1, then
vi,i1 ∈ D. Taking any neighbor vj of vi1 , we have that D′ = (D \ {vi}) ∪ {vi1,j} is a total
dominating set in Q(G).

If r ≥ 2, and we suppose that vi,i1 ∈ D, the set D′ = (D \ {vi}) ∪ {vi,i2} is a total
dominating set in Q(G). Moreover, if vr,s /∈ D′ for some r 6= s, since vr and vs must
be dominated by D′, there exists vl and vt adjacent to vr and vs, respectively, such that
vr,l , vs,t ∈ D′, and then every vertex in V(L(G)) \D′ is dominated by two vertices in D′.

Corollary 3. For any graph G with size m,

γ×2(L(G)) ≤ γt(Q(G)) ≤ m.

It can be checked that γ×2(L(Pn)) = γt(Q(Pn)) for any path Pn with n vertices, but
there are infinitely many graphs such that γ×2(L(G)) < γt(Q(G)). For instance, if we take
k paths with five consecutive vertices vi

1, vi
2, vi

3, vi
4, vi

5, for i ∈ {1, . . . , k}, j extra vertices
u1, u2, . . . , uj and the edges usvi

3 for every i ∈ {1, . . . , k} and s ∈ {1, . . . , j}, the graph G
obtained satisfies γ×2(L(G)) + j = γt(Q(G)). We obtain the same if we change any path
with five vertices by a cycle with three vertices.

Given a graph G, we denote by p3(G) the maximum number of independent paths
with three vertices we can get in G, that is, without vertices in common.

Theorem 4. Let G be a graph with order n. Then,

γt(Q(G)) = n− p3(G).

Proof. Let p3(G) = r, and let {v1, v2, v3}, {v4, v5, v6}, . . . , {v3r−2, v3r−1, v3r} be the corre-
sponding sets of vertices of the independent paths. We will choose a total dominating set
D in Q(G) such that |D| ≤ n− p3(G). We take v1,2, v2,3, v4,5, v5,6, . . . , v3r−2,3r−1, v3r−1,3r in
D. Now, if we have an edge vivj with i, j > 3r, there exists ki ∈ {1, 2, . . . , 3r} such that
vivki

∈ E, or there exists k j ∈ {1, 2, . . . , 3r} such that vjvkj
∈ E. Then, we take vki ,i, vi,j or

vkj ,j, vi,j in D.
Finally, if i > 3r and vivj /∈ E for any j > 3r, there exists ki ∈ {1, 2, . . . , 3r} such that

vivki
∈ E, and then we take vki ,i in D. It can be checked that D is a total dominating set

with cardinality 2r + n− 3r = n− r. Consequently,

γt(Q(G)) ≤ n− p3(G).

Now, we will prove that γt(Q(G)) ≥ n− p3(G) by induction in the number of vertices.
If G is a connected graph with order n ∈ {3, 4}, it is clear that p3(G) = 1 and γt(Q(G)) =
n− 1. Then, we suppose that the inequality is true for any graph with order smaller than
n, and let us prove the inequality for any graph with n vertices. We consider a graph G
with n vertices and, by Proposition 7, a minimum total dominating set D in Q(G) such that
D ⊆ V(L(G)).

We suppose that v1,2, v2,3 ∈ D, then, if v1v3 ∈ E, we have that v1,3 /∈ D.

Claim 1. If there exists three vertices vj, vj+1, vj+2 ∈ V(G) such that vivj, vjvj+1, vj+1vj+2 ∈
E(G) and vi,j ∈ D for some i ∈ {1, 2, 3} and 4 ≤ j ≤ n − 2, then there exists another
minimum total dominating set D′ ⊆ V(L(G)) such that v1,2, v2,3 ∈ D′ but vi,j /∈ D′.
Proof of Claim 1. Without loss of generality, we suppose that i = 3 and j = 4. If there exist
two vertices vt, vr ∈ (V(G) ∩ (N(v4) \ {v3})) such that v4,t, v4,r ∈ D, then D′ = D \ {v3,4}
is a total dominating set in Q(G), a contradiction. If there exists vt ∈ (V(G) ∩ (N(v4) \
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{v3})) such that v4,t /∈ D, then D′ = (D \ {v3,4}) ∪ {v4,t} is a total dominating set in
Q(G). Therefore, we suppose that δG(v4) = 2 and v4,5 ∈ D. If there exists vt ∈ (V(G) ∩
(N(v5) \ {v4})) such that v5,t ∈ D, then D′ = D \ {v3,4} is a total dominating set in Q(G),
a contradiction.

Consequently, D′ = (D \ {v3,4}) ∪ {v5,6} is a total dominating set in Q(G) with the
same cardinality.

Let us observe that

G− {v1, v2, v3} = G′1 ∪ · · · ∪ G′r ∪ G′′r+1 ∪ · · · ∪ G′′r+s ∪ G′′′r+s+1 ∪ · · · ∪ G′′′r+s+t,

where G′i , G′′i , G′′′i are connected graphs with orders 1,2 or more than 3, respectively. If we
denote by H3 = G′′′r+s+1 ∪ · · · ∪ G′′′r+s+t and H = G−V(H3), by Claim 1, we can suppose
that D = (D ∩V(Q(H))) ∪ (D ∩V(Q(H3))).

Claim 2. |D ∩V(Q(H))| = n(H)− 1.
Proof of Claim 2. Since H is a graph with a path with three vertices, isolated vertices
connected to this path, isolated segments connected to this path, and we have two vertices
of D to dominate this path, we know that D needs to have one more vertex for any isolate
vertex and two more vertices for any isolated segment, so |D ∩V(Q(H))| = n(H)− 1.

Finally, since D ∩V(Q(H3)) is a total dominating set in Q(H3), by induction, we have

|D| = |D ∩V(Q(H))|+ |D ∩V(Q(H3))| ≥ n(H)− 1 + γt(Q(H3))

≥ n(H)− 1 + n(H3)− p3(H3) = n− (p3(H3) + 1) ≥ n− p3(G).

Corollary 4. Let G be a graph of order n. Then,⌈
2n
3

⌉
≤ γt(Q(G)) ≤ n− 1.

A Hamiltonian path in a graph is a path that visits every vertex of the graph exactly once.

Proposition 8. If G is a graph with order n, and it has a Hamiltonian path, then

γt(Q(G)) =

⌈
2n
3

⌉
.

Corollary 5. For the cycle Cn, the wheel Wn, and the complete graph Kn with n vertices, we have

γt(Q(Cn)) = γt(Q(Wn)) = γt(Q(Kn)) =

⌈
2n
3

⌉
.

Remark 1. There is not a general inequality for γt(R(G)) and γt(Q(G)). For instance, for the star
graph Sn with n vertices and the complete graph Kn, we have

γt(R(Sn)) = 2 < n− 1 = γt(Q(Sn)),

and

γt(Q(Kn)) =

⌈
2n
3

⌉
< n− 1 = γt(R(Kn)).

3. Conclusions

Domination theory in graphs has been consolidated as an important area of study
within Discrete Mathematics, due to its multiple theoretical and applied applications. This
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research opens a door to analyze the properties of the different parameters associated to
the Domination Theory in the studied unitary operators (S(G), R(G), and Q(G)).

It should be noted that the mathematical properties of some parameters associated
with the Domination Theory (number of alliances, domination number, total domination
number, etc.) have been studied essentially on two unitary operators (named line and
complement). In the above direction, this research continues with the study of an important
parameter of the Domination Theory (total domination number) when unitary operators
(S(G), R(G), and Q(G)) act on graphs. In particular, we find optimal bounds, and, in some
cases, we give closed formulas for the number of total domination when certain operators
act on the graph.
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