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Abstract: In this work we consider explicit Two-derivative Runge-Kutta methods of a specific type
where the function f is evaluated only once at each step. New 7th order methods are presented with
minimized dispersion and dissipation error. These are two methods with constant coefficients with 5
and 6 stages. Also, a modified phase-fitted, amplification-fitted method with frequency dependent
coefficients and 5 stages is constructed based on the 7th order method of Chan and Tsai. The new
methods are applied to 4 well known oscillatory problems and their performance is compared with
the methods in that of Chan and Tsai.The numerical experiments show the efficiency of the derived
methods.

Keywords: Two-derivative Runge-Kutta methods; dispersion; dissipation; orbital problems
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1. Introduction

We consider systems of first order ODEs of the form

y′(x) = f (x, y(x)), x ∈ [x0, X], y(x0) = y0 (1)

whose solutions have oscillatory or periodic behaviour. The well known Runge-Kutta
(RK) methods are used to solve this problem for more than a century. Chan and Tsai [1]
considered methods where only the first derivative of f (x, y(x)) (or second derivative of
y) is involved; these methods are called Two-Derivative Runge-Kutta (TDRK) methods.
The idea dates back to 1972 [2] where Kastlunger and Wanner introduced Runge-Kutta
processes with multiple nodes. These methods use evaluations of f (x, y(x)) and its deriva-
tives of f (x, y(x)) at the intermediate points. The advantage of TDRK methods is that
they attain higher order with fewer stages than RK methods. Several authors considered
numerical integration of ODEs using methods with properties such as high dispersive
or dissipative order, phase-fitted, amplification-fitted, trigonometrically fitted methods,
some recent articles are [3–23]. These methods have either constant or variable (frequency
dependent) coefficients and are suitable for the numerical integration of systems with
periodic or oscillatory behavior of the solution.

Recently TDRK methods with special properties have been considered in order to
integrate ODEs with periodic or oscillatory behavior of the solution. These are methods
with either constant or variable (frequency dependent) coefficients.

Fang et al. [24] present trigonometrically-fitting conditions for TDRK methods of
the special type where the function f is evaluated only once at each step and constructed
Trigonometrically-Fitted (TFTDRK) methods. Considering the general case of TDRK meth-
ods that use several f evaluations at each step the authors in [25] derived trigonometrically-
fitting conditions generalizing the conditions given in [24]. Also considering the general
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case the authors in [26] present 5th order TDRK methods with constant coefficients and
in [27] constructed modified TFTDRK methods.

Ahmad et al. [28] presented a phase-fitted and amplification-fitted TDRK method of
higher order 6 with 4 stages. Fang et al. in [29] constructed two 6th order TDRK methods
with 4 stages and increased phase-lag and dissipation order for the Schrödinger equation.
The authors in [30] present 5th order TDRK methods with 3 and 4 stages with minimum
dispersion and dissipation error. Also in [31] they present TDRK methods of order 6 with
4 stages.

In this work we construct special explicit TDRK methods of algebraic order 6 and 7,
dispersion order 8 to 12, dissipation order 7 and 9 using 4, 5 and 6 stages, as well as, a
phase-fitted and amplification fitted method. In Section 2 we summarize some results on
TDRK methods, Section 3 is devoted to the construction of the new methods. Numerical
results are presented in Section 4 using four well known test problems.

2. Background Theory
2.1. Two-Derivative Runge-Kutta Methods

A TDRK method with s stages is of the form

Yi = yn + h
s

∑
j=1

aij f (xn + cjh, Yj) + h2
s

∑
j=1

âijg(xn + cjh, Yj)

yn+1 = yn + h
s

∑
i=1

bi f (xn + cih, Yi) + h2
s

∑
i=1

b̂ig(xn + cih, Yi) (2)

where y′′(x, y(x)) = g(x, y(x)) = fx(x, y(x)) + fy(x, y(x)) f (x, y(x)), and h is the step size.
The associated Butcher tableau is

c A Â

bT b̂T

where A and Â are square matrices of size s, b and b̂, c are vectors of length s.

2.2. Special TDRK Methods

Chan and Tsai [1] considered explicit methods of a specific type where the function f
is evaluated only once at each step

Yi = yn + hci f (xn, yn) + h2
s

∑
j=1

âijg(xn + cjh, Yj)

yn+1 = yn + h f (xn, yn) + h2
s

∑
i=1

b̂ig(xn + cih, Yi) (3)

the associated Butcher tableau is
c Â

b̂T

where c1 = 0 and Â is strictly lower triangular with âij = 0 if i ≤ j.
This is a method of the form (2) with A and b

ai1 = ci, aij = 0 for j = 2, . . . , s, i = 1, . . . , s

b1 = 1, bi = 0 for i = 2, . . . , s

Let C be a diagonal matrix with diagonal the vector c and e = (1, 1, . . . , 1) a vector of
size s. The order conditions for order up to seven are given in [1] based on Butcher’s the
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algebraic theory of trees [32] (see also Hairer [33]). The order conditions for order 2, 3 and
4 are

b̂Te =
1
2

, b̂TCe =
1
6

, b̂TC2e =
1
12

(4)

the order conditions for orders 5, 6 and 7 are

(order 5) b̂TC3e =
1

20
, b̂T ÂCe =

1
120

,

(order 6) b̂TC4e =
1

30
, b̂TCÂCe =

1
180

, b̂T ÂC2e =
1

360
, (5)

(order 7) b̂TC5e =
1

42
, b̂TC2 ÂCe =

1
252

, b̂TCÂC2e =
1

504
, b̂T ÂC3e =

1
840

, b̂T Â2C2e =
1

5040
.

As in the case of RK methods simplifying assumptions for TDRK methods are

A Ck−1 e + (k− 1)Â Ck−2 e =
Ck e

k
(6)

The first is the row condition A e = C e, the second is Â e = (C2 e)/2 and the third is
Â C e = (C3 e)/6.

2.3. Stability, Dispersion and Dissipation

The stability function of a TDRK method is

R(z) = 1 + zbT
(

I − zA− z2 Â
)−1

e + z2b̂T
(

I − zA− z2 Â
)−1

e (7)

We follow the theoretical framework of Van der Houwen and Sommeijer [34] in
order to analyze the behavior of numerical methods for oscillatory problems. In [34] the
definitions of dispersion (or phase-lag) error φ(v) and the dissipation (or amplification)
error α(v) are given via the stability on the imaginary axis.

φ(v) = v− arg R(iv), α(v) = 1− | R(iv) | (8)

where v = wh and w is the frequency of the specific problem.
The first is the error in the phase of the numerical solution and the second is the error

in the numerical damping.
A TDRK method is said to have dispersion order p and dissipation order q if

φ(v) = cφvp+1 + O(vp+3) and α(v) = cαvq+1 + O(vq+3).

For explicit TDRK methods the real and the imaginary part of the stability function
R(iv) are polynomials in v2 of degree s

R(iv) = As(v2) + ivBs(v2),

therefore φ(v) and α(v) can be written as

φ(v) = v− arctan
(

v
Bs(v2)

As(v2)

)
and α(v) = 1−

√
A2

s (v2) + v2B2
s (v2).

3. Construction of the New Methods
3.1. Methods with 4 Stages

Chan and Tsai [1] have shown that 6th order can be attained, they present 3 such
methods. The authors in [31] presented two 6th order methods with 4 stages and optimized
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dispersion and dissipation order. Here we present again the construction of these methods
and we shall use them later for the numerical experiments.

If we apply the second simplifying assumption (6) and solve for â21, â32, â43 the
remaining unknowns are 10 the cis, the b̂is and â31, â41, â42.

We start by solving the linear system equations b̂TCie = 1/((i + 1)(i + 2)) for i =
0, 1, 2, 3 for the b̂i

b̂1 =
−3 + c3(5− 10c4) + 5c4 + 5c2(1− 2c4 + c3(−2 + 6c4))

60c2c3c4
,

b̂2 =
3− 5c4 + 5c3(−1 + 2c4)

60c2(c2 − c3)(c2 − c4)
, b̂3 =

3− 5c4 + 5c2(−1 + 2c4)

60c3(c3 + c2)(c3 − c4)
, b̂4 =

−3 + c2(5− 10c3) + 5c3

60c4(c2 − c4)(c4 − c3)
.

Then we solve the remaining 3 equations of order 6 for â31, â41 and â42.
Finally from b̂TC4e = 1/30 we derive c2.

The coefficients c3 and c4 are used to increase the dispersion and the dissipation order.
The following methods are derived, the first has phase-lag order 10 and dissipation order
7, this method has been also given in [29] as a 5th order method. The second method has
phase-lag order 8 and dissipation order 9.

0

2
9

2
81

3
7

9
1372

117
1372

3
4

945
11,264

12141
146,432

8379
73,216

79
1080

2187
9880

2401
21,060

704
7695

0

1
4

1
32

4
7

−16
343

72
343

7
9

21,427
157,464

18,886
177,147

84,721
1,417,176

43
560

704
2565

2401
28,080

2187
34,580

The phase-lag and the dissipation (8) of these method are

φ(v) = − v11

1,496,880
+ O(v13), α(v) =

v8

362,880
+ O(v10)

φ(v) =
v9

362,880
+ O(v11), α(v) =

v10

403,200
+ O(v12)

The stability functions (7) are

R(z) =
7

∑
k=0

zk

k!
+

z8

40,320
and R(z) =

7

∑
k=0

zk

k!
+

z8

45,360

The methods presented in [1] are of 6th phase-lag order and 7th dissipation order:

φ(v) = − 1
22,680

v7 + O(v9), α(v) = − 1
25,920

v8 + O(v10)

φ(v) = − 1
5040

v7 + O(v9), α(v) = − 1
5760

v8 + O(v10)

3.2. Methods with 5 Stages
3.2.1. Method with Constant Coefficients

Chan and Tsai in [1] presented two 7th order methods with 5 stages. In this section
we also consider methods with 5 stages, and follow the next procedure to derive a method
of order 7.
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1. Using second simplifying assumption (6) we eliminate âi,i−1 for i = 2, 3, 4, 5.
2. Using third simplifying assumption (6) (except for the second component) we elim-

inate âi,i−2 for i = 3, 4, 5. We have to set b̂2 = 0. Under this assumption the second
condition for orders 5, 6 and 7 follow from the first condition.

3. We solve the linear system equations

b̂TCie =
1

(i + 1)(i + 2)
, i = 0, 1, 2, 3

for the b̂i and derive

b̂1 =
−3 + c4(5− 10c5) + 5c5 + 5c3(1− 2c5 + c4(−2 + 6c5))

60c3c4c5
,

b̂3 =
3− 5c5 + 5c4(−1 + 2c5)

60c3(c3 − c4)(c3 − c5)
, b̂4 =

3− 5c5 + 5c3(−1 + 2c5)

60c4(c4 + c3)(c4 − c5)
, b̂5 =

−3 + c3(5− 10c4) + 5c4

60c5(c3 − c5)(c5 + c4)
.

4. We solve the 3rd condition of order 6 for â41.

5. We solve the 3rd and 4th conditions of order 7 for â51 and â52.
6. We solve b̂TCie = 1

(i+1)(i+2) for i = 4, 5 and the last condition of order 7 for c3, c4, c5.

7. Finally we determine c2 to minimize the next term of the amplification error
c2 = (5 + 3

√
2)/28

0

5−3
√

2
28

43+30
√

2
1568

3−
√

2
7

27+86
√

2
2058

2(51+10
√

2)
1029

3+
√

2
7

759−512
√

2
2058

2(−195+142
√

2)
987

2234−1615
√

2
16,121

1 −11+7
√

2
2

−14(−49+54
√

2)
141

−197+243
√

2
282

11
6 +
√

2

1
15 0 51+10

√
2

240
51−10

√
2

240
1

120

The stability function is

R(z) =
8

∑
k=0

zk

k!
+

8 + 19
√

2
9,948,960

z9 +
22 + 17

√
2

79,591,680
z10

the phase-lag and the dissipation are

φ(v) =
(425 + 228

√
2)v9

119,387,520
+ O(v11) and α(v) =

(133 + 75
√

2)v10

44,217,600
+ O(v12)
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3.2.2. Method with Variable Coefficients

We also derive a phase-fitted and amplification-fitted method by modifying the first
7th order 5 stages method in [1]. Asking for φ(v) = 0 and α(v) = 0 we modify the
coefficients b̂1 and b̂5 as follows

b̂1 =
v3 (k1 + k2 cos(v) + k3 sin(v))

6720 d

b̂5 =
91 (v (5400− 848 v2 + 35 v4)− 5400 sin(v))

675 d

where

d = v3
(

728− 140 v2 + 15 v4
)

k1 = (236,376 + 21,812 v2 − 13,985 v4 + 800 v6)

k2 = −6720 v (728− 140 v2 + 15 v4)

k3 = −960 (−5096 + 2548 v2 − 245 v4 + 15 v6)

The Taylor expansions of the coefficients b̂1 and b̂5 are

b̂1 =
71

960
+

v6

158,760
− 31v8

51,891,840
− 107v10

1,311,710,400
− 323,129v12

48,343,086,792,000
+

29,534,363v14

68,376,461,958,604,800
+ O

(
h16
)

b̂5 =
13

1350
− v6

362,880
− 131v8

259,459,200
− 2867v10

70,832,361,600
+

82,717v12

1,570,995,456,000
+

7,318,085,461v14

5,470,116,956,688,384,000
+ O

(
h16
)

The order conditions now become

b̂T e = 1
2 + v6

282,240 + O(v8) b̂T C5 e = 1
42 −

v6

362,880 + O(v8)

b̂T C e = 1
6 −

v6

362,880 + O(v8) b̂T C2 Â C e = 1
252 −

v6

1,886,976 + O(v8)

b̂T C2 e = 1
12 −

v6

362,880 + O(v8) b̂T C Â C2 e = 1
504 −

v6

3,773,952 + O(v8)

b̂T C3 e = 1
20 −

v6

362,880 + O(v8) b̂T Â C3 e = 1
840 −

5v6

26,417,664 + O(v8)

b̂T Â C e = 1
120 −

v6

1,886,976 + O(v8) b̂T Â2 C e = 1
5040 −

v6

17,611,776 + O(v8)

b̂T C4 e = 1
30 −

v6

362,880 + O(v8)

b̂T C Â C e = 1
180 −

v6

1,886,976 + O(v8)

b̂T Â C2 e = 1
360 −

v6

3,773,952 + O(v8)

We see that the modified method reduces to the original method as v→ 0.

3.3. Methods with 6 Stages

As we have seen in the construction of the 7th order method using 5 stages there is only
one free parameter c2 which we determine by nullifying the next term of the amplification
error. In order to have more flexibility for further optimization of the method we consider
6 stages. We impose the first two simplifying assumptions and follow the procedure:

1. Using second simplifying assumption eliminate âi,i−1 for i = 2, 3, 4, 5, 6.
2. Choose c2 = 0.2, c3 = 0.4, c4 = 0.6, c5 = 0.8, c6 = 1.
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3. Solve the linear system equations

b̂TCie =
1

(i + 1)(i + 2)
, i = 0, 1, . . . , 5

for the b̂i for i = 1, . . . , 6.
4. Solve the remaining conditions for âi,j, i = 3, 4, 5, j = 1, . . . , i− 2 and â64.

The phase-lag order of this method is 8 and the dissipation order is 7. We find the
remaining coefficients â61, â62, â63 requiring the method to have phase-lag and dissipation
order 12 and 9. The resulting method is:

0

1
5

1
50

2
5 − 1

50
1

10

3
5

39
550

1
55

1
11

4
5 − 7793

51,975
2428
3465 − 664

3465 − 37
945

1 916,633
3,384,612 − 10,753

282,051 − 250,717
564,102

49,789
76,923

105
1628

61
1008

475
2016

25
504

125
1008

25
1008

11
2016

The stability function is

R(z) =
9

∑
k=0

zk

k!
+

z10

4,435,200
+

z11

39,916,800
+

z12

399,168,000

the phase-lag and the dissipation are

φ(v) = − 191
15,567,552,000

v13 + O
(

v15
)

, α(v) = − 1
19,958,400

v10 + O
(

v14
)

.

4. Numerical Results

The methods used to illustrate the efficiency of the new method are

• CTs4o6 the 6th order method with 4 stages in [1] (second method)
• CTs5o7 the 7th order method with 5 stages in [1] (first method)
• NEWs4o6B the new optimized 6th order method with 4 stages in Section 3.1 (second

method)
• NEWs5o7 the new optimized 7th order method with 5 stages in Section 3.2.1
• NEWs6o7 the new optimized 7th order method with 6 stages in Section 3.3
• PFs5 the new phase-fitted and amplification-fitted method 5 stages in Section 3.2.2
• RKNs4 the 5th order Runge-Kutta-Nyström method with 4 stages ([33], p. 285)
• optRKNs4 the optimized Runge-Kutta-Nyström method with 4 stages, algebraic order

4 and phase-lag order 8 ([35]).

The problems used are

• The harmonic oscillator
• The inhomogeneous oscillatory problem that can be found in [36]
• The oscillatory linear system studied by Franco in [37]
• The almost periodic orbit problem studied by Stiefel and Bettis [38]
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4.1. Problem 1

The harmonic oscillator

y′′1 = −y1, y1(0) = 1, y′1(0) = 0

y′′2 = −y2, y2(0) = 0, y′2(0) = 1

The exact solution is

y1(x) = cos(x) y2(x) = sin(x).

In Figure 1 we present the maximum absolute error of the solution in the interval
[0, 1000]. For this problem we use w = 1. The fitted method has maximum absolute error
less than 10−14 and for this reason it is not in the figure. The 3 methods with minimized
phase-lag and amplification error have clearly superior performance compared with the
methods in [1].

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12

function evaluations

−
lo

g
1

0
(m

a
x
(a

b
s
(e

rr
o

r)
))

Harmonic Oscillator [0,1000] 

 

 

CTs4o6

NEWs4o6B

CTs5o7

NEWs5o7

News6o7

RKNs4

optRKNs4

Figure 1. Problem 1 (Harmonic Oscillator) [0, 1000].

4.2. Problem 2

The inhomogeneous oscillatory problem

y′′ = −100y + 99 sin (x), y(0) = 1, y′(0) = 11.

The exact solution is y(x) = cos (10x) + sin (10x) + sin (x). For this problem we use
w = 10. In Figure 2 we present the maximum absolute error of the solution in the interval
[0, 100]. Results again show the high accuracy of the fitted method, performance of all
methods tested is similar to that for Problem 1.

4.3. Problem 3

The oscillatory linear system

y′′1 + 13y1 − 12y2 = 9 cos (2x)− 12 sin (2x), y1(0) = 1, y′1(0) = −4

y′′2 − 12y1 + 13y2 = −12 cos (2x) + 9 sin (2x), y2(0) = 0, y′2(0) = 8.

The exact solution is

y1(x) = sin (x)− sin (5x) + cos (2x),

y2(x) = sin (x) + sin (5x) + sin (2x).
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For this problem we use w = 5. In Figure 3 we present the maximum absolute error
of the solution in the interval [0, 100], we see that the new methods produce less absolute
error.

4.4. Problem 4

The almost periodic orbit problem studied by Stiefel and Bettis [38]:

y′′1 = −y1 + 0.001 cos(x), y1(0) = 1, y′1(0) = 0

y′′2 = −y2 + 0.001 sin(x), y2(0) = 0, y′2(0) = 0.9995

The exact solution is

y1(x) = cos(x) + 0.0005x sin(x), y2(x) = sin(x)− 0.0005x cos(x).

For this problem we use w = 1. In Figure 4 we present the maximum absolute error of
the solution in the interval [0, 1000].
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Figure 2. Problem 2 (Inhomogeneous Oscillatory Problem) [0, 100].
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CTs4o6

NEWs4o6B

CTs5o7

NEWs5o7

NEWs6o7

PFs5

RKNs4

optRKNs4

Figure 3. Problem 3 (Oscillatory Linear System) [0, 100].
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Figure 4. Problem 4 (Stiefel-Bettis) [0, 1000].

5. Conclusions

In this work two new methods are presented of order 7 with 5 and 6 stages and mini-
mized dispersion and dissipation error, as well as a modified phase-fitted, amplification-
fitted method with frequency dependent coefficients and 5 stages. The new methods have
been tested on 4 oscillatory problems. The numerical results show that the new methods
attain higher accuracy at the same cost.
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