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Abstract: In this paper, we propose a new weak second-order numerical scheme for solving stochastic
differential equations with jumps. By using trapezoidal rule and the integration-by-parts formula of
Malliavin calculus, we theoretically prove that the numerical scheme has second-order convergence
rate. To demonstrate the effectiveness and the second-order convergence rate, three numerical
experiments are given.
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1. Introduction

Many studies are interested in the Lévy process such as the classical stochastic dif-
ferential equations (SDEs). SDEs have been widely applied to economics and finance [1].
Nowadays, stochastic differential equations with jumps (SDEwJs) are paid more attention
by many scholars (see [2–4]). As is known, the geometrical and Ornstein–Uhlenbeck (O-U)
models are very important in finance, e.g., American option pricing about asset price follows
the geometrical model and can be a jump diffusion process (see [4,5]). Chockalingam and
Muthuraman [6] studied pricing options when asset prices jump. Li and Zhang [7] employed
additive subordination to construct pure jump models for volatility index. Dang, Nguyen
and Sewell [8] considered the pricing of Asian options under models that incorporate both
regime-switching and jump-diffusions. The O-U process is used to calculate the short term
interest rate, and it can also used to account for the mean reversion of prices in modeling
commodity processes (see [9]). In this paper, we consider the SDEwJs of the following form:

Xt = X0 +
∫ t

0
a(s, Xs)ds +

∫ t

0

∫
E

b(s, e, Xs−)Ñ(de, ds) (1)

with initial value X0 ∈ Rq. Here, E = Rq \ {0} is equipped with its Borel field E, Ñ(de, ds)
is compensated poisson measure, and the operators a : [0, t] × Rq → Rq and b : [0, t] ×
E × Rq → Rq are the drift coefficient and the jump coefficient, respectively.

Qualitative theory of the existence and uniqueness of the solution for SDEwJs is
studied in [10]. Generally, most of SDEwJs do not have explicit solutions and hence
require numerical solutions. It is important to apply appropriate numerical schemes in
practice. About numerical solutions of SDEwJs, Platen and Bruti-Liberati [9] systematically
introduced the weak schemes and strong schemes with respect to SDEwJs. There are
Euler–Maruyama schemes [11], Milstein schemes [12], and jump-adapted schemes [13,14]
for solving SDEwJs. Higham and Kloeden [15] presented and analyzed two implicit
methods for SDEs and proved in [16] that implicit methods share the same finite time
strong convergence rate as the explicit Euler scheme. Hu and Gan [17] studied numerical
stability of balanced methods for solving SDEwJs.

Mil’shtein [18] studied the second-order accuracy integration of stochastic differential
equations. Similarly, for the higher order numerical methods of SDEwJs, Gardoń [19]
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proposed the order 1.5 approximation for solutions of jump-diffusion equations. There
are [9] the weak or strong order 2.0 Taylor schemes and jump-adapted order 2.0 Taylor
schemes. Moreover, the higher order of Runge–Kutta methods for jump-diffusion differen-
tial equations can be found in [20]. However, these numerical schemes include multiple
stochastic integrals, which are difficult to accurately compute and simulate. Therefore,
the simplified weak order 2.0 scheme does not contain the multiple stochastic integrals;
particularly, it is convenient and easily calculated for solving SDEwJs in multi-dimensional
case. Liu and Li [21] proposed the weak stochastic Taylor order 2.0 (WST2) scheme of
SDEwJs with three-point distribution random variables, obtained the convergence rate of
the Itô–Taylor scheme, i.e. using the Itô–Taylor expansion and product rule.

In this paper, we propose a new simplified numerical scheme by using the compound
Poisson process with a sequence of pairs (τk, ξk) of jump time τk and marks ξk, where
(τk, ξk) are uniformly distributed in the square [0, 1] × [0, 1]. We rigorously prove and
obtain its weak second-order convergence rate by using the Malliavin stochastic analysis.

The important contributions of this paper can now be highlighted as follows:

• Our new scheme is simplified without multiple integrals, employs the compound
Poisson process with uniformly distribution, and can be easily used to compute the
pure jump stochastic models.

• Using a new proof method, i.e. the trapezoidal rule and integration-by-parts formula
of Malliavin calculus theory, we rigorously prove that the new scheme has second-
order convergence rate.

• We give three experiments to demonstrate the effectiveness and the accuracy of our
new scheme, which are consistent with our theoretical results.

Some notations to be used later are listed as follows:

• Ck
b is the set of functions ψ:x ∈ Rq → R with uniformly bounded partial derivatives

∂k1
x ψ for 1 ≤ k1 ≤ k.

• Ck
p(Rq,R) is the set of k times continuously differentiable functions which, together

with their partial derivatives of order up to k, have at most polynomial growth.
• C is a generic constant depending only on the upper bounds of derivatives of a, b, and

g, and it can be different from line to line.

The paper is organized as follows. In Section 2, we introduce some needed prelim-
inaries. In Section 3, we propose a new numerical scheme and obtain its second-order
convergence error estimate. In Section 4, three numerical examples are given to verify the
theoretical results.

2. Preliminaries

Let there be a filtered probability space (Ω, F ,P) with the filtration {Ft}t≥0, and
assume the filtration {Ft}t≥0 satisfies the usual hypotheses of completeness, i.e., F0 con-
tains all sets of P-measure zero, and maintains right continuity, i.e., Ft = Ft+. Moreover,
the filtration is assumed to be Poisson random measure N(A, t) on E × [0, t], where
E = R \ {0} is equipped with its Borel field E. Let λ(de) be a σ-finite measure on (E , E)
satisfying λ(de) := γ(e)de with γ(e) ≥ 0 for all e ∈ E and λ(de) := 0 for e /∈ E , and
λE =

∫
E γ(e)de < ∞. The compensated Poisson random measure can be represented by

Ñ(de, dt) = N(de, dt)− λ(de)dt.

2.1. Itô–Taylor Expansion

Assumption 1. Assume that the coefficient functions of Equation (1) satisfy the linear growth conditions

|a(t, x)| ≤ C(1 + |x|),
∫
E
|b(t, e, x)|2λ(de) ≤ C(1 + |x|2).
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For Equation (1) and x ∈ Rq, we define operators L0 ϕ, L1
e ϕ from [0, T] × Rq to R

L0 ϕ(t, x) =
∂ϕ(t, x)

∂t
+

q

∑
j=1

∂ϕ(t, x)
∂xj

aj(t, x)

+
∫
E

(
ϕ(t, x + b(t, e, x))− ϕ(t, x)−

q

∑
j=1

b(t, e, x)
∂ϕ(t, x)

∂xj

)
λ(de),

L1
e ϕ(t, x) =ϕ

(
t, x + b(t, e, x)

)
− ϕ(t, x), e ∈ E .

Then, the Itô formula can be presented as:

ϕ(t, Xt) = ϕ(0, X0) +
∫ t

0
L0 ϕ(s, Xs)ds +

∫ t

0

∫
E

L1
e ϕ(s, Xs)Ñ(de, ds). (2)

Lemma 1. (Itô isometry formula) If the stochastic process θ(t, e) is Ft-adapted, then

E
[( ∫ T

0

∫
E

θ(t, e)Ñ(de, dt)
)2
]
= E

[ ∫ T

0

∫
E

θ2(t, e)λ(de)dt
]
. (3)

By Itô–Taylor expansion, we can get a higher order of SDEwJs. However, before we
consider the order of approximation, we have to introduce a few additional definitions and
notations. We call a row vector α = (j1, j2, ..., jl) with ji ∈ {0, 1, ..., d} for i ∈ {1, 2, ..., l} a
multi-index of length l : l(α) ∈ {1, 2, ..., d} and denote by v the multi-index of length zero
(l(v) := 0). LetM be the set of all multi-indices, i.e.,

M = {(j1, j2, ..., jl) : ji ∈ {0, 1, ..., d}, i ∈ {0, 1, ..., l} f or l = 1, 2, ...} ∪ {v}.

Assume the hierarchical set

Γl =
{

α ∈ M : l(α) ≤ l
}

,

and the corresponding remainder set

B(Γl) =
{

α ∈ M : l(α) = l + 1
}

.

For the time interval [0, T], first we take uniform partitions in temporal domains:

0 = t0 < · · · < tN−1 < tN = T

with ∆t = tn+1 − tn for n = 0, 1, ..., N − 1. Given a multi-index α ∈ M with l(α) > 1, we
write −α and α− for the multi-index inM by deleting the first and last component of α,
respectively. Denote by Iα[gα(·, X·)]tn ,tn+1 the multiple Itô integral recursively defined by

Iα[gk,α(·, X·)]tn ,tn+1 =

{∫ tn+1
tn

Iα−[gk,α(·, X·)]tn ,sds, l ≥ 1, jl = 0,∫ tn+1
tn

Iα−[gk,α(·, X·)]tn ,sl dÑsl , l ≥ 1, jl = 1,
(4)

where the Itô coefficient functions gk,α are defined by

gk,α =

{
gk,(0) = ak, gk,(i) = bk, l = 1.
L1

e bk,−α, l > 1.
(5)

For α = (1, 1, 1), we define

Iλα

(0,0,0)[H(·, X.)]tn ,tn+1 =
∫ tn+1

tn

∫
E

∫ s3

tn

∫
E

∫ s2

tn

∫
E

H(s1, Xs1)λ(de)ds1λ(de)ds2λ(de)ds3.
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Then, we have the Itô–Taylor expansion

Xn
k,tn+1

= Xn
k + ∑

α∈Γ2\{v}
gk,α(tn, Xn)Iα[1]tn ,tn+1 + ∑

α∈B(Γ2)

Iα[gk,α(·, Xn
· )]tn ,tn+1 . (6)

2.2. The Weak Schemes for Solving SDEwJs

The simple numerical method for the approximate solution of the SDEwJs is the Euler
scheme. Thus, we introduce the Euler scheme for solving SDEwJs. Thanks to Itô–Taylor
expansion, we can obtain weak convergence schemes for solving SDEsJs as follows.

Scheme 1. (Euler Scheme) (See [9]) Assume the initial condition X0. For 0 ≤ n ≤ N − 1, we have

Xn+1 = Xn + a(tn, Xn)∆t + b(tn, Xn)∆Ñn (7)

where ∆Ñn = Ñtn+1 − Ñtn and ∆t = tn+1 − tn.

When accuracy and efficiency are required, it is important to construct numerical
methods with higher order of convergence. With respect to weak second-order scheme,
Liu and Li [21] proposed the weak stochastic Taylor (WST2) scheme and approximated the
Poisson jump measure by using three point distribution.

Scheme 2. (WST2 Scheme) Assume the initial condition X0. For 0 ≤ n ≤ N − 1, we have

Xn+1 =Xn + a(tn, Xn)∆t +
Tn

∑
k=1

b(tn, enk, Xn) +
1
2

L̃0a(tn, Xn)(∆t)2

+
1
2

Tn

∑
k=1

(
L1

e a(tn, Xn) + L̃0b(tn, enk, Xn)
)
∆t +

1
2

L1
e b(tn, enk, Xn)(T2

n − Tn),

(8)

where L̃0 = ∂
∂t +

q
∑

j=1
aj(t, x) ∂

∂xj
, {enk} are independently distributed in a measurable space E with

geometric probability law λ(de)
λE

and Tn obeys three-point distribution, which has the following
probability law:

P{Tn = 0} = 1− λE∆t +
1
2
(λE∆t)2, P{Tn = 1} = λE∆t− (λE∆t)2, P{Tn = 2} = 1

2
(λE∆t)2.

Then, Buckwar and G. Riedler [20] proposed the Runge–Kutta second-order implicit
scheme for solving SDEwJs.

Scheme 3. (Runge–Kutta Scheme) Assume the initial condition X0. For 0 ≤ n ≤ N− 1, we have

Xn+1 = Xn +
1
2

a
(
tn, Sn

1
)
∆t +

1
2

a
(
tn+1, Sn

2
)
∆t + b(tn, Xn)∆Ñn, (9)

Sn
1 = Xn, Sn

2 = Xn +
1
2

a
(
tn, Sn

1
)
∆t +

1
2

a
(
tn+1, Sn

2
)
∆t, (10)

where ∆Ñn = Ñtn+1 − Ñtn and ∆t = tn+1 − tn.

In addition, the discrete-time approximations considered are divided into regular and
jump-adapted schemes. Regular schemes employ time discretizations that do not include
the jump times of the Poisson jump measure and Jump-adapted time discretizations include
these jump times. Platen and Bruti-Liberati [9] proposed the following jump-adapted weak
second-order scheme.

Scheme 4. (Jump-adapted weak 2-order Scheme) Assume the initial condition X0. For 0 ≤
n ≤ M − 1, we consider a jump-adapted time discretization 0 = t0 < t1 < · · · < tM = T,



Mathematics 2021, 9, 224 5 of 14

which is constructed by a superposition of jump times {τ1, τ2, · · ·} of the compensated Poisson
measure Ñ(de, dt) and equidistant time discretization with step size ∆t, as given in Section 2.1.
For convenience, we set Xtn = Xn in this section and define

Xn+1
− = lim

s↑tn+1
Xs,

in the almost sure limit. We have the weak second-order scheme

Xn+1 = Xn+1
− + b(tn, Xn+1

− )∆Ñn (11)

with
Xn+1
− = Xn + a(tn, Xn)∆t +

1
2

L0a(tn, Xn)(∆t)2, (12)

where ∆Ñn = Ñtn+1 − Ñtn and ∆t = tn+1 − tn (0 ≤ n ≤ M− 1).

Remark 1. Comparing the above methods to solve SDEwJs, the coefficients of Runge–Kutta implicit
scheme for solving SDEwJs are not easily determined; the WST2 scheme in [21] needs to consider
the probability law of three point distribution and Poisson jump marks, and Jump-adapted weak
second-order scheme needs to consider time discretizations that include these jump times.

2.3. Malliavin Stochastic Calculus

Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H .
The norm of an element h ∈ H is denoted by ‖h‖H . Let the operator Dk be the Malliavin
derivative of order k with respect to the lévy process. A random variable F is Malliavin
differentiable if and only if F ∈ D1,2, where the space D1,2 ⊂ L2(P) is defined by completion
with respect to the norm ‖ · ‖1,2. The Malliavin derivative of Poisson process (see [22] for
details) has the following definition:

Dα
s1...sl ,e = D(j1,...,jl)

s1...sl ,e = Dj1
s1,e · · · D

jt
sl ,e

with especially D0
si ,e = 1 for 1 ≤ i ≤ l.

Lemma 2. Let F ∈ D1,2 and θ(t, e) ∈ D1,2 for 0 ≤ t ≤ T. Then, we have the duality formula

E
[

F
∫ T

0

∫
E

θ(t, e)Ñ(de, dt)
]
= E

[ ∫ T

0

∫
E

θ(t, e)Dt,eFλ(de)dt
]
, and

Dt,e

∫ T

0
θ(s, e)dÑs = θ(t, e) +

∫ T

t
Dt,eθ(s, e)dÑs.

Example 1. Choose F =
∫ T

0

∫
E f (t, e)Ñ(de, dt), with the deterministic integral f ∈ L2(Ñ × λ).

Then, F = I1( f ) and hence
Dt,eF = f (t, e).

In particular, if F = η(T) :=
∫ T

0

∫
E eÑ(de, dt), then

Dt,eη(T) = e.

Lemma 3. (Chain rule) Let F, G ∈ D1,2, then FG ∈ D1,2 and

Dt,e(FG) = FDt,eG + GDt,eF + Dt,eFDt,eG.

By induction, it follows that, if F ∈ D1,2, then

Dt,e(Fn) = (F + Dt,eF)n − Fn.
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Let F ∈ D1,2 and ϕ be a real continuous function on E . Suppose ϕ(F) ∈ L2(P) and
ϕ(F + Dt,eF) ∈ L2(P × Ñ × λ). Then, ϕ(F) ∈ D1,2 and

Dt,e ϕ(F) = ϕ(F + Dt,eF)− ϕ(F). (13)

Example 2. Assume ∆Ñn =
∫ tn+1

tn

∫
E Ñ(de, dt) = Ñtn+1

− Ñtn
. Using Itô formula on (Ñt −

Ñtn)
2 yields ∫ tn+1

tn

∫ t

tn
dÑsdÑt =

1
2
(
(∆Ñn)

2 − λE∆t− ∆Ñn
)
.

According to Lemma 3, by chain rule (13), taking Malliavin derivatives with respect to ∆Ñn
and (∆Ñn)2, we obtain

Dt,e∆Ñn = 1, Dt,e(∆Ñn)
2 = 2∆Ñn + 1, Dt,eDs,e(∆Ñn)

2 = 2, Ds,e

∫ tn+1

tn

∫ t

tn

dsdÑt = s− tn.

3. Main Results

For simple representation, we assume Xn
k,tn+1

:= Xtn ,Xn

k,tn+1
, which is the kth component

of Xtn ,Xn

tn+1
. It follows from Itô–Taylor formula and trapezoidal rule that

Xn
k,tn+1

=Xn
k +

∫ tn+1

tn
ak(s, Xn

s )ds +
∫ tn+1

tn

∫
E

bk(s, Xn
s )Ñ(de, ds) = Xn+1

k + Rn+1
k , (14)

where

Rn+1
k =L1

e ak
[ ∫ tn+1

tn

∫ t

tn
dÑsdt− 1

2
∆Ñn∆t

]
+ L0bk

[ ∫ tn+1

tn

∫ t

tn
dsdÑt −

1
2

∆t∆Ñn
]
+ ∑

α∈B(Γ2)

Iα[gk,α(·, Xn
· )]tn ,tn+1 .

(15)

Here, we write ak for ak(tn, Xn) and bk for bk(tn, Xn). Then, we have the following scheme.

Scheme 5. Assume the initial condition X0. For 0 ≤ n ≤ N − 1, we solve Xn+1 with its kth
component Xn+1

k by

Xn+1
k =Xn

k + ak∆t + bk∆Ñn +
1
2

L0ak(∆t)2 +
1
2
(

L1
e ak + L0bk

)
∆t∆Ñn

+
1
2

L1
e bk((∆Ñn)

2 − λE∆t− ∆Ñn),
(16)

where ∆Ñn = Ñtn+1 − Ñtn and ∆t = tn+1 − tn.

Remark 2. Unlike jump-adapted scheme, Scheme 5 employs regular time discretization, and it is
a simplified scheme, which does not involve multiple stochastic integrals. If the jump coefficient
function b = b(t, Xt, e), we generate the compound Poisson process

∫ tn+1

tn

∫
E

b(s, Xn, e)N(de, ds) =
Ntn+1

∑
k=Ntn+1

b(τk, Xn, ξk)

for simulating compensated Poisson process, where the pairs (τk, ξk) are uniformly distributed in
the square [0, 1] × [0, 1]. We found that Scheme 5 has a little impact of the random generation of
the compound Poisson process in Example 3. From the numerical experiments, comparing with the
three point distribution in WST2 Scheme in [17], our scheme can be implemented in programming
and costs less run time. Scheme 5 is an explicit scheme different from Runge–Kutta implicit scheme
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in [20]. Moreover, in the next subsection, using the integration-by-parts formula of Malliavin
calculus, we theoretically prove that our scheme has second-order convergence rate.

3.1. Local Weak Convergence Theorem

In this section, using Malliavin stochastic analysis and Itô–Taylor expansion, we obtain
the local weak order-2.0 convergence of our new weak second-order scheme.

Theorem 1. (Local weak convergence) Suppose Xn
tn+1

and Xn+1 (0 ≤ n ≤ N − 1) satisfy
Equation (1) and Scheme 5, respectively. Under Assumption 1, if the functions a, b ∈ Ck

p(Rq,R)
and g ∈ C3

b , then ∣∣E[g(Xn
tn+1

)− g(Xn+1)|Ftn

]∣∣ ≤ C(1 + |Xn|r)(∆t)3,

where r ∈ N+ is a generic constant which can vary from line to line.

Proof. Using multi-dimensional Taylor formula, for ease of proof, we have

Jn = E
[
g(Xn

tn+1
)− g(Xn+1)|Ftn

]
= Jn

1 + Jn
2 ,

where

Jn
1 = E

[ q

∑
k=1

∂

∂xk
g(Xn+1)(Xn

k,tn+1
− Xn+1

k )|Ftn

]
,

Jn
2 =

1
2

∫ 1

0
E
[( q

∑
k=1

(Xn
k,tn+1

− Xn+1
k )

∂

∂xk

)2g
(
Xn+1 + µ(Xn

tn+1
− Xn+1)

)∣∣Ftn

]
dµ.

(17)

Assume Xn
k,tn+1

is the kth component of explicit solution Xn
tn+1

. Then, it follows from
the Itô–Taylor expansion (6) that

Xn
k,tn+1

= Xn
k + ∑

α∈Γ2\{v}
gk,α(tn, Xn)Iα[1]tn ,tn+1 + ∑

α∈B(Γ2)

Iα[gk,α(·, Xn
· )]tn ,tn+1

= Xn
k + ak∆t + bk∆Ñn + L0ak

∫ tn+1

tn

∫ t

tn

dsdt + L1
e ak

∫ tn+1

tn

∫ t

tn

dÑsdt

+ L0bk

∫ tn+1

tn

∫ t

tn

dsdÑt + L1
e bk

∫ tn+1

tn

∫ t

tn

dÑsdÑt + ∑
α∈B(Γ2)

Iα[gk,α(·, Xn
· )]tn ,tn+1 .

(18)

Note that the fact
∫ tn+1

tn

∫ t
tn

dsdt = 1
2(∆t)2 and

∫ tn+1
tn

∫ t
tn

dÑsdÑt =
1
2
(
(∆Ñn)2 − λE∆t−

∆Ñn
)
; subtracting (16) from (18) yields

Xn
k,tn+1

− Xn+1
k = L0bk

[ ∫ tn+1

tn

∫ t

tn

dsdÑt −
1
2

∆t∆Ñn

]
+ L1

e ak

[ ∫ tn+1

tn

∫ t

tn

dÑsdt− 1
2

∆Ñn∆t
]
+ ∑

α∈B(Γ2)

Iα[gk,α(·, Xn
· )]tn ,tn+1 .

(19)

By the duality formula in Lemma 2 and from Equation (19), we deduce

Jn
1 = E

[ q

∑
k=1

∂

∂xk
g(Xn+1)(Xn

k,tn+1
− Xn+1

k )|Ftn

]
=

q

∑
k=1

3

∑
i=1

εi
g,xk

, (20)
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where

ε1
g,xk

= L0bkE
[ ∂

∂xk
g(Xn+1)

( ∫ tn+1

tn

∫ t

tn
dsdÑt −

1
2

∆t∆Ñn
)∣∣Ftn

]
,

ε2
g,xk

= L1
e akE

[ ∂

∂xk
g(Xn+1)

( ∫ tn+1

tn

∫ t

tn
dÑsdt− 1

2
∆Ñn∆t

)∣∣Ftn

]
,

ε3
g,xk

= ∑
α∈B(Γ2)

E
[ ∂

∂xk
g(Xn+1)Iα[gk,α(·, Xn

· )]tn ,tn+1

∣∣Ftn

]
.

By taking Malliavin deriavtive with respect to Xn+1
k we obtain

Dt,eXn+1
k = bk +

1
2
(L1

e ak + L0bk)∆t + L1
e bk∆Ñn, (21)

which by combining chain rule (13) gives

Dt,e
∂

∂xk
g(Xn+1) =

∂

∂xk
g(Xn+1 + Dt,eXn+1)− ∂

∂xk
g(Xn+1) := φ(tn, Xn, ∆t, ∆Ñn)

for tn < t ≤ tn+1, where φ(tn, Xn, ∆t, ∆Ñn) is a function not depending only on t.

ε1
g,xk

= L0bk

( ∫ tn+1

tn

∫
E

∫ t

tn

E
[
Dt,e

∂

∂xk
g(Xn+1)|Ftn

]
dsλ(de)dt

− 1
2

∆t
∫ tn+1

tn

∫
E
E
[
Dt,e

∂

∂xk
g(Xn+1)|Ftn

]
λ(de)dt

)
= L0bkE

[
φ(tn, Xn, ∆t, ∆Ñn)|Ftn

]( ∫ tn+1

tn

∫
E

∫ t

tn

dsλ(de)dt− 1
2

∆t
∫ tn+1

tn

∫
E

λ(de)dt
)

,

(22)

which by ∫ tn+1

tn

∫
E

∫ t

tn
dsλ(de)dt =

1
2

∆t
∫ tn+1

tn

∫
E

λ(de)dt =
1
2
(∆t)2λE ,

gives ε1
g,xk

= 0. Similarly, we deduce

ε2
g,xk

= L1
e ak

( ∫ tn+1

tn

∫ t

tn

∫
E
E
[
Ds,e

∂

∂xk
g(Xn+1)|Ftn

]
λ(de)dsdt

− 1
2

∆t
∫ tn+1

tn

∫
E
E
[
Ds,e

∂

∂xk
g(Xn+1)|Ftn

]
λ(de)ds

)
= 0.

(23)

Using the duality formula in Lemma 2, we conclude

|ε3
g,xk
| =

∣∣∣Iλα

(0,0,0)

[
E
[
Dα

s1s2s3,e
( ∂

∂xk
g(Xn+1)

)
gk,α(s1, Xn

s1
)|Ftn

]]
tn ,tn+1

∣∣∣ ≤ C(1 + |Xn|r)(∆t)3. (24)

Combining the Equation (20), ε1
g,xk

= ε2
g,xk

= 0, and the inequality (24), we obtain

|Jn
1 | =

∣∣∣E[ q

∑
k=1

∂

∂xk
g(Xn+1)(Xn

k,tn+1
− Xn+1

k )|Ftn

]∣∣∣ ≤ C(1 + |Xn|r)(∆t)3. (25)

For α = (1, 1, 1), applying the Itô isometry Formula (3), we have

E
[( ∫ tn+1

tn

∫ s3

tn

∫ s2

tn
gk,α(s1, Xn

s1
)dÑs1 dÑs2 dÑs3

)2∣∣Ftn

]
= E

[ ∫ tn+1

tn

∫
E

∫ s3

tn

∫
E

∫ s2

tn

∫
E

(
gk,α(s1, Xn

s1
)
)2

λ(de)ds1λ(de)ds2λ(de)ds3
∣∣Ftn

]
= Iλα

(0,0,0)E
[
(gk,α(·, Xn

· ))
2|Ftn

]
.

(26)
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For α 6= (1, 1, 1), we obtain

∑
α∈B(Γ2)
α 6=(1,1,1)

∣∣∣E[Iα

[
gk,α(s1, Xn

s1
)
]∣∣Ftn

]∣∣∣2 ≤ C(1 + |Xn|r)(∆t)3. (27)

Combining the inequalities (26) and (27), we have

Jn
2 =

1
2

∫ 1

0
E
[( q

∑
k=1

(Xn
k,tn+1

− Xn+1
k )

∂

∂xk

)2g
(
Xn+1 + µ(Xn

tn+1
− Xn+1)

)∣∣Ftn

]
dµ ≤ C(1 + |Xn|r)(∆t)3. (28)

From the inequalities (25) and (28), we finally obtain∣∣E[g(Xn
tn+1

)− g(Xn+1)|Ftn

]∣∣ ≤ C(1 + |Xn|r)(∆t)3.

The proof is completed.

4. Numerical Experiments

In this section, we consider three one-dimensional stochastic differential equations
with pure jump models to verify the accuracy and effectiveness of the theoretical results.
We compare our new scheme in precision as well as the time of computing with other
schemes. Assume T = 1 is terminal time, Nsp = 5000 is the number of sample paths in the
numerical experiment, and N ∈ {23, 24, 25, 26, 27}. The errors of global weak convergence
can be measured by

eglobal
∆t := | 1

Nsp

Nsp

∑
i=1

(ϕ(XN
i )− ϕ(Xi,tN ))|,

and the errors of local weak convergence can be measured by

elocal
∆t := | 1

Nsp

1
N

Nsp

∑
i=1

N

∑
j=1

(ϕ(X j
i )− ϕ(Xi,tj))|,

where ϕ(X j
i ) = sin(X j

i ) and X j
i and Xi,tj are the numerical solution and explicit solution at

the time tj, respectively.

Example 3. Consider the O-U process with pure jump:{
Xt = X0 −

∫ t
0 aXsds + h

∫ t
0

∫
E eÑ(de, ds),

X0 = 20,
(29)

where Ñ(de, ds) is one-dimensional compensated poisson process with γ(e) = 1, E = [0, 1] and
λE =

∫ 1
0 de = 1. Let a = 1.5, h = 0.01, and e ∈ U(0, 1). Applying Itô formula to eatXt,

Equation (29) has the explicit solution

Xt = X0e−at + he−at
∫ t

0

∫
E

easeÑ(de, ds).

For the model (29), by using Itô Taylor expansion, the new Scheme 5 is

Xn+1 = Xn −
∫ tn+1

tn
aXnds + h

∫ tn+1

tn

∫
E

eÑ(de, ds) + a2Xn
∫ tn+1

tn

∫ t

tn
dsdt− ah

∫ tn+1

tn

∫ t

tn

∫
E

eÑ(de, ds)dt,



Mathematics 2021, 9, 224 10 of 14

Using the fact that
∫ tn+1

tn

∫
E eÑ(de, ds) =

∆Nn
∑

k=1
ξk,
∫
E eλ(de) =

∫ 1
0 ede = 1

2 and

∫ tn+1

tn

∫ t

tn

∫
E

eÑ(de, ds)dt =
∫ tn+1

tn

∫ t

tn

∫
E

eN(de, ds)dt−
∫ tn+1

tn

∫ t

tn

∫
E

eλ(de)dsdt

=
∆Nn

∑
k=1

ξk(tn+1 − τk)∆t− 1
4

λE (∆t)2,

Scheme 5 becomes

Xn+1 = Xn − aXn∆t + h
∆Nn

∑
k=1

ξk −
1
2

hλE∆t +
1
2

a2Xn(∆t)2 − ah
[ ∆Nn

∑
k=1

ξk(tn+1 − τk)∆t− 1
4

λE (∆t)2
]
,

where τk is the kth jump time, ξk is the kth jump mark, and the pairs (τk, ξk) are uniformly
distributed in the square [0, 1] × [0, 1].

In this example, the right of Figure 1 shows that, even if the jumps number ∆Nn
increase in [tn, tn+1], the convergence rate of Scheme 5 can still achieve second order.
Meanwhile, the left of Figure 1 presents that the global errors may have some difference
with different ∆Nn; a higher number of jumps accompanies less global error in numerical
computing in [tn, tn+1]. Then, we conclude that there is a little impact of the random
generation of the compound Poisson process.

Figure 1. (Left) The global errors for Example 3; and (Right) the convergence rates of ∆Nn = 1,
∆Nn = 2, ∆Nn = 3, and ∆Nn = 4.

Example 4. Consider the geometrical model with pure jump:{
Xt = X0 +

∫ t
0 aXsds +

∫ t
0

∫
E hXsÑ(de, ds),

X0 = 0.1,
(30)

where Ñ(de, ds) is a one-dimensional compensated Poisson process with λE = 1. Let a = 0.8 and
h = 0.01; the equation has the explicit solution by using Itô formula

Xt = X0 exp
{ ∫ t

0
(a− λEh)ds +

∫ t

0

∫
E

ln(1 + h)N(de, ds)
}

.

For the model (30), the new Scheme 5 is

Xn+1 =Xn + aXn∆t + hXn∆Ñn +
1
2

a2Xn(∆t)2 + ahXn∆Ñn∆t +
1
2

h2Xn((∆Ñn)
2 − λE∆t− ∆Ñn).
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In this pure jump geometrical model, we apply Scheme 5 to compute E[XN ] using 5000
sample trajectories. In Table 1, we obtain the scheme errors with ∆t = {2−3, 2−4, 2−5, 2−6,
2−7}. In addition, we show the global errors and average local errors of the scheme have
the convergence rates of global second-order and average local third-order, respectively.
Meanwhile, we intuitively display the accuracy of Scheme 5 from the left of Figure 2,
where the two coordinate axes are log2 ∆t and log2 |ϕ(XtN )− ϕ(XN)|. On the other hand,
from the right of Figure 2, we verify the result of mean-square convergence stability with
E[|ϕ(XtN )− ϕ(XN)|2].

To illustrate the advantages of Scheme 5 in computational efficiency, we also apply
Euler Scheme, Runge–Kutta Scheme, WST2 Scheme, and Jump-adapted Scheme to solve
Equation (30). The global errors and convergence rates of the schemes are displayed in
Table 2 and the left of Figure 3 displays the sample global errors and the corresponding
CPU time of the Euler Scheme, Scheme 5, Runge–Kutta Scheme, WST2 Scheme, and
Jump-adapted Scheme with X0 = 0.5, a = 1.5, h = 0.001.

Figure 2. (Left) The global convergence rates and average local convergence rate for Example 4 with
both referenced slope of 2 and 3; and (Right) the mean-square convergence stability of the schemes
with ∆t = 1/8, ∆t = 1/16, and ∆t = 1/32.

Table 1. Errors and convergence rates of Scheme 5 with the parameters of Example 4.

N Global Errors CR Avg. Local Errors CR

8 2.618× 10−4 1.664× 10−5

16 6.785× 10−5 1.9482 2.052× 10−6 3.0197
32 1.724× 10−5 1.9622 2.544× 10−7 3.0156
64 4.345× 10−6 1.9716 3.166× 10−8 3.0125

128 1.101× 10−6 1.9751 3.987× 10−9 3.0072

Table 2. Errors and convergence rates of schemes with the parameters of Example 4.

N 8 16 32 64 128 CR Time(s)

Euler Scheme 1.494× 10−1 8.023× 10−2 4.564× 10−2 2.242× 10−2 1.180× 10−2 0.916 0.64640
New Scheme 5 1.015× 10−2 2.531× 10−3 6.352× 10−4 1.592× 10−4 3.701× 10−5 2.019 0.69348

Runge–Kutta Scheme 1.035× 10−2 2.772× 10−3 7.037× 10−4 1.709× 10−4 4.082× 10−5 1.999 0.59267
WST2 Scheme 1.042× 10−2 2.656× 10−3 7.015× 10−4 1.688× 10−4 4.162× 10−5 1.991 0.71448

Jump-adapted Scheme 1.062× 10−2 2.875× 10−3 7.315× 10−4 1.807× 10−4 4.456× 10−5 1.9718 4.67431
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Example 5. Consider the nonlinear model with pure jump:{
Xt = X0 +

∫ t
0 (aXs + as)ds +

∫ t
0

∫
E h
√

XsÑ(de, ds),
X0 = 2,

(31)

where Ñ(de, ds) is a one-dimensional compensated Poisson process with λE = 1. Let a = 1.5 and
h = 0.002. The new Scheme 5 is

Xn+1 = Xn + (aXn + atn)∆t + h
√

Xn∆Ñn +
1
2
(
a + a2Xn + a2tn

)
(∆t)2 +

1
2

ah
√

Xn∆Ñn∆t

+
1
2

( ahXn + ahtn

2
√

Xn
+
(
h
√

Xn +
√

Xn − h
√

Xn − 1
2

h2)λE)∆t∆Ñn

+
1
2
(
h
√

Xn +
√

Xn − h
√

Xn
)(
(∆Ñn)

2 − λE∆t− ∆Ñn
)
.

In this experiment, we give a nonlinear example which the drift coefficients satisfy
Lipschitz condition. Since the exact solution of Equation (31) cannot be expressed explicitly,
we set a small time step of ∆t = 2−18 as the exact reference solution.

We give the errors and the convergence rates with different parameters of Example 5
in Table 3 and Figure 3 (right), for the WST2 Scheme. When ∆t < 2−7, the accuracy of
reference solution is worse (refer Liu and Li [21]). Therefore, we give the comparison
of errors and convergence rates, which includes Euler Scheme, Scheme 5, Runge–Kutta
Scheme, and Jump-adapted Scheme.

Figure 3. (Left) The global samples errors and CPU time of Example 4; and (Right) the global samples
errors and CPU time of Example 5.

Table 3. Errors and convergence rates of schemes with the parameters of Example 5.

N 8 16 32 64 128 CR Time(s)

Euler Scheme 1.278 6.647× 10−1 3.153× 10−1 1.493× 10−1 7.194× 10−2 1.0456 0.70768
New Scheme 5 6.210× 10−2 1.596× 10−2 4.172× 10−3 1.005× 10−3 2.597× 10−4 1.9793 0.98609

Runge–Kutta Scheme 6.383× 10−2 1.614× 10−2 4.202× 10−3 1.094× 10−3 2.693× 10−4 1.9960 0.71030
Jump-adapted Scheme 6.273× 10−2 1.627× 10−2 4.249× 10−3 1.083× 10−3 2.605× 10−4 1.9732 5.48587

5. Conclusions

In this paper, we propose a new simplified weak second-order numerical scheme
for solving stochastic differential equations with jumps. By using trapezoidal rule and
the integration-by-parts formula of Malliavin calculus, we theoretically prove that the
numerical scheme has second-order convergence rate. In numerical experiments, we used
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three examples to verify the convergence of our scheme. Meanwhile, we compared the
computational time, programming complexity and precision of our scheme with other
schemes, such as Euler Scheme, Runge–Kutta Scheme, WST2 Scheme and Jump-adapted
Scheme and found our new scheme can be easily computed and consume less run time.
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