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Abstract: Over the last decade, regularized regression methods have offered alternatives for per-
forming multi-marker analysis and feature selection in a whole genome context. The process of
defining a list of genes that will characterize an expression profile remains unclear. It currently relies
upon advanced statistics and can use an agnostic point of view or include some a priori knowledge,
but overfitting remains a problem. This paper introduces a methodology to deal with the variable
selection and model estimation problems in the high-dimensional set-up, which can be particularly
useful in the whole genome context. Results are validated using simulated data and a real dataset
from a triple-negative breast cancer study.

Keywords: variable selection; high dimension; regularization; classification; sparse-group lasso

1. Introduction

Breast cancer (BC) is the most frequent cancer among women, representing around
25% of all new cancer diagnoses in women [1]. One in eight women in developed countries
will be diagnosed with BC over the course of a lifetime.

The prognosis of this disease has progressively improved over the past three decades,
due to the implementation of population-based screening campaigns and, above all, the
introduction of new effective targeted medical therapies, i.e., aromatase inhibitors (effective
in hormone receptor-positive tumors) and trastuzumab (effective in HER2-positive tumors).
Breast cancer is, however, a heterogeneous disease. The worst outcomes are associated with
the so-called triple-negative breast cancer subtype (TNBC), diagnosed in 15-20% of BC
patients. TNBC is defined by a lack of immunohistochemistry expression of the estrogen
and progesterone receptors and a lack of expression/amplification of HER2 [2]. The absence
of expression of these receptors makes chemotherapy the only available therapy for TNBC.

TNBC is usually diagnosed in an operable (early) stage. Surgery, chemotherapy and
radiation therapy are the critical components of the treatment of early TNBC. Many early
TNBC patients are treated with upfront chemotherapy (neoadjuvant chemotherapy, NACT)
and then operated on and, perhaps, irradiated. The rationale for this sequence is the ability
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to predict the long-term outcome of patients looking at the pathological response achieved
with initial NACT [3].

With the currently available neoadjuvant chemotherapy regimens, nearly 50% of
TNBC patients achieve a good pathological response to this therapy, whereas the remaining
patients have an insufficient response. TNBC patients achieving a complete or almost
complete disappearance of the tumor in the breast and axilla after NACT have an excellent
outcome (less than 10% of relapses at five years), in contrast with those with significant
residual disease (more than 50% of relapses at five years) [4,5].

The identification of these two different populations is therefore of utmost relevance,
in order to test new experimental therapies in the population unlikely to achieve a good
pathological response.

Several tumor multigene predictors of pathological response of operable BC to NACT
have been proposed over the past few years, taking advantage of the recent decreased
economic cost of obtaining an individual’s full transcriptome [6-8]. Most of them have
been tested in unselected populations of BC patients and have shown insufficient positive
predictive value and sensitivity.

The process of defining a list of genes that will define a characteristic expression profile
is still ambiguous. This process relies upon advanced statistics and can use an agnostic
point of view or include some a priori knowledge, but overfitting remains a problem.
RNA-Seq has become one of the most appealing tools of modern whole transcriptome
analyses because it combines a relatively low cost and a comprehensive approach to
transcript quantification. Some approaches to complex disease biomarker discovery already
pointed to the need to use a whole genome perspective using joint information in order to
predict complex traits instead of a priori selecting individual features [9,10]. This strategy
would lead to high predictive accuracy, and there would be no need to know the precise
biological associations in the genome background because of the high correlation among
the biomarkers [11]. This approach is challenging from the statistical point of view because
of the large number of biomarkers that must be tested along the genome in relation to
the rather small sample sizes in clinical studies. On the other hand, daily clinical practice
scenarios require cheaper and faster quantification platforms than whole-genome RNA-Seq
analysis. Thus, it is necessary to reduce the number of biomarkers to focus on in order to
define a practical gene expression signature for the clinical community.

Regularized regression methods provide alternatives for performing multi-marker
analysis and feature selection in a whole genome context [12]. Specifically, we focus on
the sparse-group lasso (SGL) regularization method [13], which generalizes lasso [14],
group lasso [15] and elastic-net [16], merging lasso and group lasso penalties. The solution
provided by SGL usually involves a small number of predictor variables, given that many
coefficients in the solution are exactly zero. It has an advantage over lasso when the
predictor variables are grouped, as many groups are entirely zeroed out, but unlike group
lasso, the solution is also sparse within those groups that are not completely eliminated from
the model. However, as will be explained in the next sections, the SGL is not appropriate
for the problem we are dealing with without introducing a broader methodology to
control the regularization hyper-parameters, the groups, and the high-dimensionality issue.
From a methodological point of view, this paper provides an original contribution to
perform variable selection and model fitting in high-dimensional problems, allowing a
priori selection of the final number of variables and addressing the problem of overfitting
with the introduction of the importance index. Furthermore, the results presented in this
paper are the first attempt in a translational oncology scenario at building a predictive
model for the response to treatment, based entirely on whole genome RNA-Seq data and
conventional clinical variables.

This paper is organized as follows. Section 2 ties together the various theoretical con-
cepts that support our approach. Section 2.1 introduces the mathematical formulation of
the SGL as an optimization problem. Section 2.2 discusses the iterative-sparse group lasso,
a coordinate descent algorithm used to automatically select the regularization parameters
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of the SGL. Section 2.3 describes a clustering strategy for the variables, based on principal
component analysis, which makes it possible to work with an arbitrarily large number of
variables without specifying the groups a priori. Section 2.5 highlights our main method-
ological contributions: the importance and the power indexes, to weight variables and
models, respectively. In Section 3, a simulation study is presented, with several synthetic
matrix designs, and varying the number of variables from 40 to 4000. Section 4 highlights
the contributions of our methodology on a TNBC cohort that had undergone neoadjuvant
docetaxel/carboplatin chemotherapy. Some conclusions and outlines for future work are
drawn in the final section.

2. Methodology and Algorithms
Consider the usual logistic regression framework, with N observations in the form
(i) (N

{y(i), xgi), Xp'yeee, Xyl bilq, where p is the number of features or predictor variables, and

y) is the binary response. We assume that the response comes from a random variable
with conditional distribution,

Y|(Xq...Xp) ~ Ber(p(Xi...Xp, B)),

where:
p(X1... Xp, B) = (1+exp(—1)) ),

and 7 is the linear predictor,

p
n=po+ Ziﬁjxjr B=1[Bop1 ... By € R\
=

The objective is to predict the response Y for future observations of Xj ... X}, using
an estimation of the unknown parameter g, given by:

,B = argminf{(ﬁ), (1)
ﬂeRp+l
where:
5 1 L) L)
R(B) = Y. [108 <1 +exp{Bo+ )_ Bjx; }> —vi(Bo+ Y Bix;") |- )
i=1 j=1 j=1

The problem with this approach is that for N < p, the minimization (1) has infinite
optimal solutions. When the features Xj ... X}, represent genetic expressions, this problem
of predicting Y becomes more extreme, since we often have N several orders of magnitude
smaller than p.

As a solution, variable selection techniques are proposed, in order to tackle the analyt-
ical intractability of this problem.

2.1. The Sparse-Group Lasso

It has been shown that SGL can play an important role in addressing the issue of
variable selection in genetic models, where genes are grouped following different pathways.
The mathematical formulation of this problem is:

s . I ,
B(A) = argmin{R(ﬁ) + A2 Y- il B9 12 + Ml Bl } ®)

BeRFH! j=1

Here ] is the number of groups, BU) € R”/ are vectors with the components of
corresponding to j-th group (of size p;), and v; = /pj, j = 1,2,...,]. The regularization
parameter is A = [A A;] € RZ.
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The problem with (3) is that the vector (1) of estimated coefficients depends on the
selection of a vector of regulation parameters A, which must be chosen before estimating
B(A). The selection of A is partly an open problem, because although there are several
practical strategies for choosing these parameters, there is no established theoretical crite-
rion to follow. In most cases, the regularization parameters are set a priori, based on some
additional information about the data, or the characteristics of the desired solution, e.g., a
greater A; implies that more components of § are identically zero. The most commonly
used methodology to select A consists of moving the regulation parameters in a fixed
grid, which is usually not very thin. However, this approach has many disadvantages.
By contrast, we propose the iterative-sparse group lasso, a coordinate descent algorithm,
recently introduced in [17].

2.2. Selection of the Optimal Regularization Parameter

Traditionally, the data set Z = {y(/ xl , xé % yo xé) N | is partitioned into three
disjoint data sets, Z7, Zy, and Zys. The data in Z7 are used for training the model, i.e.,
solving (3). 2y is used for validation, i.e., finding the optimal parameter A. The remaining
observations in Zy, are used for testing the prediction ability of the model on future obser-
vations. Specifically, the selection of the optimal parameter A is based on the minimization
of the validation error, defined as:

Rv) =gz ¥ [log(+exp{n(r)}) —yVn(fr)], 4)
Yy x0)ezy
where:
Br(r —argml { (B +/\2Z’Y]\|I3(])||2+A1||ﬁ||1} 5)
and: 1
Rr(B) =3z L [log(1+exp{n(Br)}) — ¥ (Br)], ©6)
T (o x0)ezr

with # denoting the cardinal of a set. Therefore, the problem of finding the optimal
parameter A can be formulated as:

min, g2 Ry (M)

5(1) — aremi : I o180 @)
st Br(A) = argming e {Rr(B) + A XLy 1189+ A Bl
Algorithm 1 describes the two-parameter ITERATIVE SPARSE-GROUP LASSO (iSGLy),
a gradient-free coordinate descent method to tune the parameter A from the sparse-group
lasso (3), which performs well under different scenarios while drastically reducing the
number of operations required to find optimal penalty weight parameters that minimize
the validation error in (4). The iSGL iteratively performs a univariate minimization over
one of the coordinates of A, while the other coordinate is fixed.

Algorithm 1: Two-parameter iterative sparse-group lasso (iSGLo)

/* Data for training/validation */
Function isgl (Z7, Zy):

Initialize A i < 1

while A not stationary do

%‘i <* argminAeRJr Rv(A|/\, = )\), // minimize over coordinate i of A
i+ imod2+1; // Next coordinate
end

return f1(A)
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As mentioned before, a very useful property of the sparse-group lasso as a variable
selection method is the ability to remove entire groups from the model (sending to zero
the components of the B vector relative to those groups), as is the case with group lasso.
However, this means that a grouping among the variables under consideration must
be specified. This does not entail a challenge if there are natural groupings among the
variables, e.g., if the variables are dummies related to different levels of the same original
categorical variable. However, in our study most of the variables are transcriptomes, for
which there are no established groupings in the literature. To overcome this problem,
we suggest an empirical variable grouping approach, based on the principal component
analysis of the data matrix.

2.3. Grouping Variables Using Principal Component Analysis

Principal component analysis (PCA) is a dimension reduction technique, which is
very effective in reducing a large number of variables related to each other to a few latent
variables while trying to lose a minimum amount of information. The new latent variables
obtained (the principal components), which are a linear transformation of the original
variables, are uncorrelated and ordered in such a way that the first components capture
most of the variation present in all of the original variables.

Given the data matrix X € RN*?, PCA computes the rotation matrix W € R” xG
where G < min(N, p) is the number of principal components to retain. The transformed
data matrix (the principal component matrix) is T = XW. This rotation matrix W suggests
a natural grouping on the columns of X, given by:

group(X;) = arg max Wiil, j=12,...,p. 8)

This strategy will provide at most G groups on the columns of X.

The following example illustrates our approach on a simulated data set. Suppose that
we want to cluster variables Xj, X5, and X3 using two groups. There are 300 observations
(Figure 1) and they are simulated such that corr(Xj, X) = 0.75, corr(Xy, X3) = 0.1, and
corr(Xy, X3) = —0.25. The principal components rotation matrix W is displayed in Table 1.

Table 1. Principal components rotation matrix W.

PC1 PC2
X, —0.67 0.40
X, ~0.70 ~0.08
X3 0.23 0.91
{gf :
. A,
21 CLEET g &
e
X1I I I X1I I S Xé

Figure 1. Simulated sample from three random variables, that illustrate the grouping based on
principal component analysis (PCA).

In this example, X; and X, would be grouped together, whereas X3 would be in the
other group. This method places highly correlated variables in the same group.

2.4. Mining Influent Variables under a Cross-Validation Approach

In this section, we focus on the problem of variable selection in models where the
ratio p/N is in the order of 102. In these scenarios, even state-of-the-art methods such
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as SGL find it hard to select an appropriate set of variables related to the response term.
We propose a cross-validation approach to fit and evaluate many different models using
only a sample size of N initially given observations.

The solution in terms of B(A) provided by Algorithm 1 strongly depends on the
partition Zr1, Zy. As a consequence, if we run Algorithm 1 for different partitions Z7, Zy
of the same data Z, it will probably result in different coefficient estimates B(A). Therefore,
the indicator function of variable X; included in the model, 1(8;(A) # 0), will take different
values depending on the partition Zt, Zy. In order to avoid this dependency in the sample
data partition, we propose Algorithm 2, which computes many different solutions B(A) of
Algorithm 1 for different partitions of the original data sample Z. The goal of this algorithm
is to be able to fit and evaluate many models using the same data. Since the sample size is
small compared to the number of covariates, the variable selection will greatly depend on
the train—validate partition. We denote by R the total number of models that will be fitted
using different partitions from the original sample. Algorithm 2 stores the information of
the fitting 8 of each model and the correct classification rate in the validation sample (ccry)
in each case.

Algorithm 2:

/* sample data Z, # of runs R */
Function isgl (Z, R):
forrinl,2...Rdo
Z7, Zy + random partition of Z
B« ISGL(ZT, Zv)
ccr@ + Correct classification rate of (") in Zy
end

return B, ccry

OK

2.5. Selection of the Best Model

Our objective is to select one of the R models computed in Algorithm 2 to be our
final model. We believe that a selection only based on the maximization of ccry could
lead to overfit in the training sample data Z. To overcome this problem, we define two
indexes: the importance index of a variable and the power of a model. These indexes are
fundamental to choosing a final model that does not overfit the data.

We consider the importance index [; of variable X;, defined as:

R a0 ) X, 20 ")
Iy = ;LB] |+ (ccry —5)/mjax{Z;|,Bj |+ (ccry —(5>}, 9

where (") and ccrg) are those returned by Algorithm 2 on data Z. With the objective

of penalizing those models that performed poorly on the validation set, the term J has
been introduced, which is the maximum between  and 1 — ¥, i.e., the null model correct
classification rate.

The importance index weights each variable X ... X,, differently depending on the
correct classification rate of the models in which each variable was present. The larger I;,
the greater the chances of X; being present in the underlying model that generated the
data Z.

Figure 2 illustrates the importance index, computed on a simulated data set, with
N = 100 observations and p = 400 variables. Notice that the most important highest
variables are actually in the generating model, and there is a clear gap in Figure 2 between
them and the rest of the variables.
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1.00 A
1
1
\
1
~ 075 \
Y ' Generating model?
5] 1
[ \
& 050 A No
2 A\ A Yes
£ \
- \
0.25 \
s =X
- 8 ~
0.00

Variable index (sorted by importance 1))

Figure 2. Sorted importance index obtained from Algorithm 2, with R = 150, and a simulated data
sample with N = 100 observations and p = 400 variables.

Based on the maximization of the importance index, an appropriate subset is selected
from the original p variables. Although the true number of variables involved in the model
is unknown, we can focus our attention on a predefined number of important variables K,
which depends only on the sample data Z. We empirically found K = [+/N/2] to achieve

good results. Using the importance index of the best K variables, we define the power of a

model as: 1
Po=—— Y LB1/IB N r=12..R, (10)
L=t Ly o =<Tig

where [ () denotes the k-th greatest importance index, e.g., I;) = max; I;. The power index
P weights each model, depending on the importance of its included variables.
The selection of the final model is based on the criterion:

B=pB"), where r*= mrax{Pr + ccrg,r)}. (11)

Equation (11), Algorithm 2, and the framework that supports them, are the main
contribution of this paper from a methodological point of view. Equation (11) is based
on the correct classification rates of R different fitted models, two indexes defined in this
paper, and the iterative sparse-group lasso, which is a novel algorithm.

3. A Simulation Study

In this section, we illustrate the performance of Algorithm 2 using synthetic data.
To generate observations, we have followed simulation designs from [13] (uncorrelated fea-
tures) and [14,18,19] (correlated features). Since our objective was to evaluate Algorithm 2
in binary classification problems, we used a logistic regression model for the response term
using the simulated design matrices in each case. We simulated data from the true model:

1 =XB,

with the logistic response y given by:

y; ~ Ber(p;), pi=(1 +exp(—77i))71, i=1,2...N. (12)

Five scenarios for f and X were simulated. In each example, our simulated data
consisted of a training set of N = 50 observations and p variables, and an independent
test set of 5000 observations and p variables. Models were fitted using training data only.
Below are the details of the five scenarios.
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(SFHT_1)

=

=(1,2,3,4,5,0,...,0
B=( )

p—5
and X; are i.i.d N(0,1), for1 <i < p.

(SFHT_2) In this example, B is generated as in SFHT_1, but the rows of the model matrix
X are i.i.d. generated from a multivariate gaussian distribution with cov(X;, X;) =

051 <j<i<p.

(Tibs_1)
=(3,15,0,0,2,0,...,0),
B = )
p—5
and the rows of X are i.i.d. generated from a multivariate gaussian distribution with
cov(X;, Xj) =05, 1<j<i<p.
(Tibs_4)
g=(,...,0,2,...,20,...,0,2,...,20,...,0)
—— N N N N —
10 10 10 10 p—40
and the rows of X are i.i.d. generated from a multivariate gaussian distribution with
cov(X;, Xj) =05,and var(X;) =1, 1 <j<i<p.

(ZH_d)

B=(..30...,0
15 p—15

and the rows of X were generated as follows:

X;=7Z1+e€, Z1~N(01), i=1,...,5
X, =Zy+e€, Zy~N(0,1), i=6,...,10,
X;=Z3+¢€, Z3~N(0,1), i=11,...,15
X; ~ N(0,1), X; iid. fori = 16,...,p,

where € areiid. N(0,0.01), for1 <i < 15.

We aimed to investigate the robustness of our methodology in each example, mea-
sured using the test accuracy, as the number of noisy variables (not in the generating
model) increased. Table 2 describes the performance of the final model (Algorithm 2
with importance index) selected under our methodology in the scenarios described above.
We have conducted 30 experiments in each case, as we varied the number of variables
in the model (p). Mean standard errors are given in parenthesis. To establish a baseline
comparison, we also included Lasso with grid search, and our methodology with groups
known. Table 2 reveals that for all the configurations (except, perhaps Tibs_1 and SHFT_1)
the methodology is very robust with respect to an increase in the number of variables p.
In fact, for most of them, the ccr does not vary much from p = 400 to p = 1000. Intuitively,
the grouping strategy introduced in Section 2.3 places highly correlated variables in the
same groups, producing better results when there is correlation between the variables
in the model. That is why the simulation scheme SFHT_1 produces the poorest results.
In SFHT_1, all the simulated variables are independent and therefore, there is not any clear
way to group the variables.
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Table 2. Average correct classification rate (ccr, %) of Algorithm 2 (Alg. 2) in the test data (5000 observations),
in 30 experiments for each configuration, and N = 50 observations in the training sample. Mean standard errors are

given in parenthesis. Algorithm 2 was run with R = 30. To establish a baseline comparison, we also included Lasso with

grid search (Lasso-GS), and our methodology with known groups.

Simulation A

p=40 p =100 p =400 p =1000 p =4000
Alg. 2 77.82 (0.88) 73.97 (1.04) 65.42 (1.23) 62.1 (1.09) 56.95 (1.19)
Lasso (Grid Search) 82.61 (0.62) 81.1 (0.95) 83.08 (0.7) 83.48 (0.56) 84.27 (0.86)
Alg. 2 (Known Groups) 74.66 (1.24) 67.01 (1.8) 61.38 (1.8) 59.07 (1.49) 54.54 (1.19)
Simulation B
p=40 p =100 p =400 p =1000 p =4000
Alg. 2 84.72 (0.65) 82.28 (0.99) 75.63 (1.14) 73.33 (1.55) 68.87 (1.46)
Lasso (Grid Search) 87.82 (0.57) 88.01 (0.67) 88.16 (0.65) 89.25 (0.43) 88.5 (0.49)
Alg. 2 (Known Groups) 80.36 (0.93) 81.57 (0.82) 75.72 (1.18) 74.98 (0.96) 69.48 (2.04)
Simulation ZHa
p=40 p =100 p =400 p =1000 p =4000
Alg. 2 79.44 (0.76) 76.76 (0.87) 71.2 (0.86) 68.52 (1.08) 66.93 (1.46)
Lasso (Grid Search) 82.75 (0.79) 83.39 (0.6) 83.54 (0.41) 85.68 (0.42) 84.68 (0.45)
Alg. 2 (Known Groups) 78.72 (1.12) 75.75 (1.22) 70.81 (1.51) 69.54 (1.95) 61.98 (1.84)
Simulation ZHc
p=40 p =100 p =400 p =1000 p =4000
Alg. 2 89.11 (0.3) 87.95 (0.38) 88 (0.52) 88.96 (0.54) 89.68 (0.4)
Lasso (Grid Search) 92.1(0.43) 92.52 (0.55) 93.27 (0.34) 93.21 (0.35) 92.7 (0.38)
Alg. 2 (Known Groups) 83.98 (0.86) 83.11 (0.64) 81.12 (0.8) 81.81 (0.67) 81.52 (0.97)
Simulation ZHd
p=40 p =100 p =400 p =1000 p =4000
Alg. 2 85.91 (0.81) 83.44 (0.87) 83.19 (0.81) 80.41 (1.16) 71.89 (1.51)
Lasso (Grid Search) 89.98 (0.63) 89.96 (0.86) 90.7 (0.5) 91.87 (0.6) 89.94 (0.98)
Alg. 2 (Known Groups) 79.79 (1.59) 75.55 (1.74) 68.4 (1.71) 62.58 (1.62) 55.93 (1.29)

From a computational point of view, however, Algorithm 2 is very expensive com-
pared with lasso. In fact, the parameter R in Algorithm 2 is expected to linearly increase
the computational burden of the method. That is because Algorithm 2 loops through R
independent runs of Algorithm 1, which multiplies the computational cost of running
one instance of Algorithm 1 by a factor R. However, the actual time needed to obtain a
solution for Algorithm 2 can be decreased to the maximum of one instance of Algorithm 1,
because this is a parallel problem. The remaining computations performed to select the
best model can be ignored because they are at the same order of a matrix-vector product.
Therefore, the parameter K is not going to affect the computational performance of our
method. However, it should affect the predictive performance, since K is directly related to
the model selection. Figure 3 compares the computational and predictive performance of
our method and lasso on a numerical experiment. Figure 3 confirms that K does not affect
the computational burden, and its impact on the predictive performance is also negligible
in this case, although it has a peak when K equals the true number of variables in the
generating model.

To empirically evaluate the impact of R, we propose a numerical simulation. Figure 4
displays the average elapsed time needed to obtain a solution to Algorithm 2 (Alg. 2) and
lasso with grid search (lasso-GS), varying the parameter R (which does not affect lasso,
which has been included as a baseline). The illustrated simulation design was ZH_d, with
n = 50 and p = 200 both fixed, and R varying between 1 and 300. These experiments
demonstrate that the relationship between R and the elapsed time is linear. In addition,
Figure 4 confirms that we are trading computational cost for an increase of more than 10%
in the accuracy, which we believe is a reasonable trade for most applications.
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Figure 3. Elapsed time (in seconds) to obtain a solution (left panel) and accuracy (right panel) of
Algorithm 2 (Alg. 2) and lasso with grid search (lasso-GS), on 30 independent runs for each K.
The simulation design was ZH_d, with n = 100, p = 1000, R = 30, and K varying between 1 and 40.
These experiments were run sequentially.
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Figure 4. Average elapsed time (in seconds) needed to obtain a solution of Algorithm 2 (Alg. 2) and
lasso with grid search (lasso-GS), on 30 independent runs for each R. The simulation design was
ZH_d, with n = 50 and p = 200 both fixed, and R varying between 1 and 300. These experiments

were run sequentially.

4. Application to Biomedical Data

In this section, we evaluate the methodology described in Algorithm 2 with the model
selection criterion given by (11) on a real case study. A sample of TNBC patients from a
previously published clinical trial [20] was used to analyze relations between cancer cells’
transcriptome and the response of patients to the given medical treatment (docetaxel plus
carboplatin). The dataset was composed of 93 observations (patients) and 16,616 variables
(genetic transcripts and clinical variables).

Figure 5 shows the highest 30 importance indexes out of a total of 16,616 variables.
The criterion used to measure the importance of the variables is given in (9). Algorithm 2
was run with R = 200, and the cutoff value was set to K = [v/N /2] = 7, as described in
Section 2.5. With this importance index, the power of each model was computed using (10)
and the best model was chosen according to (11), as highlighted in Figure 6.
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Figure 5. Sorted Importance indexes, according to the criterion given in (9), and after running
Algorithm 2 with R = 200. The cutoff value was set to K = [+/N /2] = 7, as described in Section 2.5.
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Figure 6. Power index (10), measured in R = 200 models, in decreasing order, with the corresponding
correct classification rate (ccr) of each model in the validation sample.

The selected model included 843 out of 16,616 variables. The grouping strategy
mentioned in Section 2.3 resulted in a total of 82 groups, from which 18 were included in
the final model.

Figure 7 displays the distribution of the number of non-zero coefficients for each group
that was included in the final model, which is revealing in several ways. Firstly, it indicates
that PCA finds groups of similar lengths, and secondly, the selected model is sparse at both
the group and the variable levels.

In an attempt to discover the biological and genetic meaning in the model selected by
our methodology, we ran DAVID [21,22] to detect enriched functional-related gene groups.
The clustering and functional annotation was performed using the default analysis options,
and the role of the potential multiple testing effect was considered using the false discovery
rate (FDR). The results are detailed in supplementary Table S1.

We observed just two remarkable families of pathways after the gene enrichment
analysis: the homeobox-related and the oxidative phosphorylation pathways. They are
both involved in the mechanism of action of docetaxel and carboplatin in response to the
provided treatment.
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Figure 7. Number of included variables in the final model, by groups (top) and total (bottom).
Eighteen out of 82 groups were included.

The homeobox genes have been proposed to be involved in mechanisms of resistance
to taxane-based oncologic treatments in ovarian and prostate cancer [23-26]. Docetaxel
hyper-stabilizes the microtube structure, irreversibly blocking the cytoskeleton function in
the mitotic process and intracellular transport. In addition, this drug induces programmed
cell death.

On the other hand, carboplatin attaches alkyl groups to DNA bases, resulting in
fragmentation by repair enzymes when trying to repair them. It also inducts to mutations
due to nucleotide despairing and generates DNA cross-links that affects the transcription
process [27]. The development of resistance to platinum-based schemes of chemotherapy
is a common feature. Several studies demonstrate that dysfunctions in mitochondrial
processes, in conjunction with the mentioned mechanism of action, can contribute to the
development of phenotypes associated with resistance [28-33].

5. Conclusions

The present study introduced a methodology to deal with the variable selection
problem in a high dimensional set-up. It can be seen as an extension of the sparse-group
lasso regularization method, without dependencies on both the hyper-parameters and the
groups. There are several critical components in this approach:

* A clustering of the variables, based on PCA, makes it possible to work with an
arbitrarily large number of variables without specifying groups a priori.

*  The iterative sparse group lasso removes the dependence on the hyper-parameters
of the sparse group lasso, but is sensible to the train—validate sample partitions.
This problem has been solved running the algorithm for a large number of different
train—validate sample partitions (Algorithm 2).

®  The correct classification rate of each model in its respective validation sample is
stored. Notice that this is an overestimation of the true correct classification rate on
future observations, and the highest validation rate does not imply the best model.
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¢ The importance index weighs the variables, based on the correct classification rate of
the models that include them.

¢ The power index weighs the models, based on the importance of the variables
they include.

This methodology was tested on a sample of TNBC patients, trying to reveal the
genetic profile associated with resistance to the treatment of interest. The literature studies
mentioned in Section 4 provide a rationale supporting the potential predictive value of
the two gene pathways identified in our study (the homeobox-related and the oxidative
phosphorylation pathways). In order to validate these results, we are testing the model in
a new cohort of TNBC patients from the same clinical trial.

Future studies should examine other strategies to grouping variables, as discussed in
Section 2.3, based on supervised algorithms as well as unsupervised ones.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-7
390/9/3/222/s1: Table S1: DAVID functional analysis of selected genes, the enriched pathways
and their sources. Each pathway underwent a modified Fisher’s exact test (EASE score) in order to
determine if the sparse-group lasso model genes were over-represented in those gene sets. The Fold
Enrichment and the PValue measure the magnitude of enrichment. In addition, Bonferroni, Benjamini,
and FDR techniques are provided to globally correct enrichment P-values to control the family-wide
false discovery rate. Some basic metrics regarding the number and percentage of genes in the studied
pathways are shown in the Count and % columns.
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