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Abstract: Higher-order symmetries are constructed for a linear anomalous diffusion equation with the
Riemann–Liouville time-fractional derivative of order α ∈ (0, 1)∪ (1, 2). It is proved that the equation
in question has infinite sequences of nontrivial higher-order symmetries that are generated by two
local recursion operators. It is also shown that some of the obtained higher-order symmetries can be
rewritten as fractional-order symmetries, and corresponding fractional-order recursion operators are
presented. The proposed approach for finding higher-order symmetries is applicable for a wide class
of linear fractional differential equations.

Keywords: anomalous diffusion; Riemann–Liouville fractional derivative; Lie–Bäcklund transforma-
tion; higher-order symmetry; recursion operator

1. Introduction

The theory of higher-order symmetries is an important branch of modern group
analysis of differential and integro-differential equations [1–4]. In this theory, it is assumed
that for a given differential equation or for a system of such equations, the coordinates
of infinitesimal generators of symmetry groups depend on a finite number of derivatives
of all dependent variables. Such group generator corresponds to a one-parameter local
transformation group, and corresponding transformations are known as higher-order
tangent local transformations or as Lie–Bäcklund transformations [1,4–6].

In general case, Lie–Bäcklund transformations are invertible infinite-order tangent
transformations acting in infinite-dimensional space [7]. The infinitesimal description
of such transformations leads to an infinite system of first-order ordinary differential
equations that are similar to the classical Lie equations. It had been proved that this
system is reduced to a finite-dimensional system only for Lie point transformations and for
contact transformations [5]. As a result, applications of the theory of infinite-order tangent
transformation groups to differential equations lead to more complex calculations than the
classical theory of Lie point transformation groups. However, higher-order symmetries
play an important role in practical applications of symmetry analysis because they give an
opportunity to find new exact solutions and conservation laws for differential equations.
At present, there are some techniques for finding higher-order symmetries, and a lot of
sequences of such symmetries have been found for numerous integer-order differential
equations that are of great importance for many fields of science and technology (see,
e.g., [1,2,4,8–14] therein).

Nevertheless, the theory of higher-order symmetries has not been yet extended to
fractional differential equations (FDEs) [15]. At present, the basic methods of classical Lie
group analysis have been successfully adopted to investigation of symmetry properties of
FDEs with different types of fractional derivatives. A detailed discussion of this branch of
Lie group analysis can be found in [16–18]. By using these methods, numerous Lie point
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symmetries, invariant solutions and conservation laws had been found for different classes
of FDEs (see, e.g., the overview given in the last section of [17]). However, to the best of our
knowledge, there are not examples of finding higher-order symmetries for FDEs. In this
paper, we overcome this drawback.

We illustrate the possibility of finding higher-order symmetries for fractional differ-
ential equations by a simple example of the linear one-dimensional anomalous diffusion
equation given by

0Dα
t u = uxx, α ∈ (0, 1) ∪ (1, 2), (1)

where

0Dα
t u =

1
Γ(n− α)

∂n

∂tn

∫ t

0

u(τ, x)
(t− τ)α−n+1 dτ, n = [α] + 1 (2)

is the Riemann–Liouville time-fractional derivative (see, e.g., [15]). The Equation (1) is
known as the subdiffusion equation for α ∈ (0, 1), and as the diffusion-wave equation
for α ∈ (1, 2). In the limiting case of α = 1, Equation (1) coincides with the linear diffu-
sion (heat) equation. For this equation, the corresponding higher-order symmetries and
recursion operators had been firstly calculated by Ibragimov [19]. If α = 2, Equation (1)
coincides with the linear wave equation which admits an infinite-dimensional algebra of
Lie–Bäcklund symmetries [1].

We prove that Equation (1) has infinite sequences of nontrivial higher-order sym-
metries that are generated by two local recursion operators. We also show that for the
considered equation, some higher-order symmetries can be rewritten as fractional-order
symmetries, and corresponding fractional recursion operators are presented in an ex-
plicit form.

The paper is organised as follows. In Section 2, we give a brief overview on higher-
order symmetries. Section 3 is devoted to construction of second-order symmetries for
the Equation (1). Recursion operators for the considered equation are derived in Section 4.
A brief discussion about generalization of the obtained results is given in the Conclusions.

2. Brief Preliminary

In this section, we recall some necessary definitions of the theory of higher-order
symmetries for integer-order differential equations [1,14]. For simplicity, we restrict our
attention to the case of two independent variables t and x, and one dependent variable
u = u(t, x).

Let τ, ξ and η be the functions of t, x, u, and any finite number of derivatives ut, ux,
utt, utx, uxx, etc. Then a differential operator

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζtt

∂

∂utt
+ ζtx

∂

∂utx
+ ζxx

∂

∂uxx
+ · · · , (3)

where

ζi = Di(η − τut − ξux) + τDi(ut) + ξDi(ux), i ∈ {t, x};

ζij = DiDj(η − τut − ξux) + τDiDj(ut) + ξDiDj(ux), i, j ∈ {t, x};
. . .

is called a Lie-Bäcklund operator . Here, Di is the total derivative operator with respect to the
variable i ∈ {t, x}.

It is proved that any operator of the form (3) is equivalent to the operator

X− τDt − ξDx = (η − τut − ξux)
∂

∂u
+ · · · .
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An operator of the form

X = f
∂

∂u
+ Dt( f )

∂

∂ut
+ Dx( f )

∂

∂ux
+ · · · , (4)

where f = f (t, x, u, ut, ux, utt, utx, uxx, . . .), is called a canonical Lie-Bäcklund operator.
A Lie–Bäcklund operator generates a one-parameter transformation group, which is

called a Lie–Bäcklund transformation group, and corresponding transformations are called
Lie–Bäcklund transformations or infinite-order tangent transformations.

The operator X is called an infinitesimal Lie–Bäcklund symmetry or a higher-order symme-
try for a differential equation F = 0 if

XF
∣∣
[F=0] = 0, (5)

where [F = 0] is the so-called extended frame of the equation F = 0 defined by

F = 0, DiF = 0, DiDjF = 0, . . . .

The Equation (5) is called the determining equation for higher-order symmetries. Note that
since the operator (4) is fully defined by a function f , this function is also often called a
higher-order symmetry.

3. Second-Order Symmetries of the Linear Anomalous Diffusion Equation

First of all, we note that similarly to the case of Lie point symmetry groups, the Lie–
Bäcklund operator (3) can be prolonged to the fractional-order dependent variable 0Dα

t u as

X̃ = X + ζα
∂

∂(0Dα
t u)

.

Here, the infinitesimal ζα is defined by using the prolongation formula

ζα = 0Dα
t (η − τut − ξux) + τ0Dα+1

t u + ξDx(0Dα
t u),

which has been obtained earlier for the Lie point transformation groups (see, e.g., [16,17]).
Then, the prolonged canonical Lie–Bäcklund operator (4) has the form

X̃ = f
∂

∂u
+ Dt( f )

∂

∂ut
+ Dx( f )

∂

∂ux
+ 0Dα

t ( f )
∂

∂(0Dα
t u)

+ · · · . (6)

Similarly to the integer-order case, the operator (4) will be called an infinitesimal Lie–
Bäcklund symmetry for a time-fractional differential equation F(t, x, u, Dα

t u, ux, uxx, . . .) = 0 if

X̃F
∣∣
{F=0} = 0, (7)

where the time-fractional extended frame {F = 0} of FDE F = 0 is defined by

F = 0, DxF = 0, Dα
t F = 0, D2

xF = 0, Dα
t DxF = 0, . . . .

For the considered Equation (1), the determining Equation (7) takes the form(
0Dα

t f − D2
x f
)∣∣
{0Dα

t u−uxx=0} = 0. (8)

Note that this equation can be obtained as a consistency condition of Equation (1) with
the equation

∂u
∂a

= f (t, x, u, ut, ux, . . .),

where a is a group parameter.
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It is obvious that for a classical evolution equation of the form ut = F(t, x, u, ux, uxx,
uxxx, . . .), all time derivatives in the function f can be excluded by this equation. Therefore,
in this case, the function f depends only on spatial derivatives of u, i.e., f = f (t, x, u, ux, uxx,
uxxx, . . .). However, it is not valid for time-fractional evolution equation such as Equa-
tion (1). Nevertheless, since Equation (1) is linear, we can exclude all even-order spatial
derivatives from the function f and rewrite it as a function of fractional differential variables
(note that such variables are nonlocal ones). Thus, we have

f = f (t, x, u, ut, ux, utt, utx, 0Dα
t u, uttt, uttx, 0Dα+1

t u, 0Dα
t ux, . . .).

At first, we will find second-order symmetries of Equation (1) in the form

f = f (t, x, u, ut, ux, utt, utx, uxx),

or in the equivalent form

f = f (t, x, u, ut, ux, utt, utx, 0Dα
t u).

It is easy to show by direct calculations that in this case, the function D2
x f is a linear function

with respect to variables uttxx = 0Dα+2
t u, utxxx = 0Dα+1

t ux and uxxxx = 0Dα
t 0Dα

t u. Then,
from the determining Equation (8), it follows that 0Dα

t f also has to be a linear function of
these variables. It is possible if and only if the function f is linear with respect to utt, utx
and 0Dα

t u. Thus, we can write

f = ϕutt + ψutx + θ 0Dα
t u + ω, (9)

where ϕ, ψ, θ, and ω are functions of variables t, x, u, ut, ux.
Now, we consider the structure of 0Dα

t f . It follows from solvability conditions of the
Cauchy-type problem for Equation (1) (see Theorem 6.1 in [15]) that the initial condition
for this equation should have the form 0 In−α

t u|t=0 = u0(x), where 0 In−α
t u is a fractional

integral of order n− α with n = [α] + 1. It means that the function u has a singularity at
the point t = 0, and the main term of its asymptotic expansion ∼ tα−n when t→ 0. In this
case, the fractional derivatives 0Dα

t utx and 0Dα
t utt do not exist and, therefore, we cannot

use the generalized Leibniz rule

0Dα
t (yz) =

∞

∑
k=0

(
α

k

)
0Dα−k

t y Dk
t z (10)

for the terms in the right-hand side of Equation (9). Moreover, 0Dα
t (ϕutt) exists only if

ϕ|t=0 = 0, ϕ′|t=0 = 0, (11)

and 0Dα
t (ψutx) exists only if

ψ|t=0 = 0. (12)

We will assume that these conditions are satisfied and that the functions ϕ and ψ are
analytic as functions of t. For such functions, the conditions given above lead to more
strict conditions

(ϕu)|t=0 = 0, (uDt ϕ)|t=0 = 0, (ψu)|t=0 = 0. (13)

The right-hand side of (9) can be rewritten in a more convenient form by using the
following obvious equalities:

ϕutt = D2
t (uϕ)− 2Dt(uDt ϕ) + uD2

t ϕ, ψutx = Dt(uxψ)− uxDtψ.
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In view of (13), we have

0Dα
t D2

t (uϕ) = 0Dα+2
t (uϕ), 0Dα

t Dt(uDt ϕ) = 0Dα+1
t (uDt ϕ), 0Dα

t Dt(uxψ) = 0Dα+1
t (uxψ).

Thus, we obtain

0Dα
t f = 0Dα+2

t (uϕ)− 20Dα+1
t (uDt ϕ) + 0Dα

t (uD2
t ϕ)

+ 0Dα+1
t (uxψ)− 0Dα

t (uxDtψ) + 0Dα
t (θ 0Dα

t u) + 0Dα
t (ω).

Now, we can use the generalized Leibniz rule (10) in this expression. After simple calcula-
tions, we get

0Dα
t f = ϕ 0Dα+2

t u+ αDt(ϕ) 0Dα+1
t u+

α(α− 1)
2

D2
t (ϕ) 0Dα

t u+
∞

∑
k=1

(
α

k + 2

)
Dα−k

t u Dk+2
t ϕ

+ ψ 0Dα+1
t ux + αDtψ 0Dα

t ux +
∞

∑
k=1

(
α

k + 1

)
0Dα−k

t ux Dk+1
t ψ

+ θ 0Dα
t 0Dα

t u +
∞

∑
k=1

(
α

k

)
0Dα−k

t (0Dα
t u) Dk

t θ + 0Dα
t ω.

By using (9), we can also write

D2
x f = ϕ0D2+α

t u + 2Dx ϕuttx + D2
x ϕutt + ψ0Dα+1

t ux + 2Dxψ0Dα
t u + D2

xψutx+

θ0Dα
t 0Dα

t u + 2Dxθ0Dα
t ux + D2

xθ0Dα
t u + D2

xω.

The functions ϕ, ψ and ω do not depend on fractional variables 0Dα−k
t u, 0Dα−k

t ux,
and 0Dα−k

t (0Dα
t u). Moreover, for Equation (1) such variables cannot arise under differenti-

ation by x. Thus, D2
x f does not contain such variables. Nevertheless, such variables can

be generated by 0Dα
t ω. We can use the chain rule for the Riemann–Liouville fractional

derivative to get the expansion of this function, but this technique is very complex. For this
reason, we will use a more simple approach. We represent the function ω in the form

ω(t, x, u, ut, ux) = µ(t, x, u, ut, ux)ux + ν(t, x, u, ut). (14)

Then, by using the generalized Leibniz rule (10), we obtain

0Dα
t ω = µ0Dα

t ux +
∞

∑
k=1

(
α

k

)
Dα−k

t uxDk
t µ + 0Dα

t ν.

After substituting this representation into the determining equation, we can isolate the
terms containing 0Dα−k

t ux and set them equal to zero. As a result, we get an infinite chain
of equations (

α

k

)
Dk

t µ +

(
α

k + 1

)
Dk+1

t ψ = 0, k = 1, 2, . . . .

The solution of these equations can be written as

ψ ≡ ψ(t, x) = ψ2(x)t2 + ψ1(x)t + ψ0(x), µ ≡ µ(t, x) = (1− α)ψ2(x)t + µ0(x), (15)

where ψ0, ψ1, ψ2, µ0 are arbitrary functions of x. The initial condition (12) yields ψ0(x) = 0.
Next, we represent the function ν in the form

ν(t, x, u, ut) = ρ(t, x, u, ut)ut + σ(t, x, u)u + λ(t, x).
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Since 0Dα
t ut does not exist in the general case, an additional condition

ρ|t=0 = 0 (16)

have to be fulfilled. As earlier, we assume that the function ρ is an analytic function with
respect to t. Then,

ν = Dt(ρu) + (σ− Dtρ)u + λ,

and, by using (10), we obtain

0Dα
t ν = 0Dα+1

t (ρu) + 0Dα
t [(σ− Dtρ)u] + 0Dα

t λ

= ρ 0Dα+1
t u + αDtρ 0Dα

t u + σ 0Dα
t u + 0Dα

t λ +
∞
∑

k=1
( α

k+1)0Dα−k
t u Dk+1

t ρ +
∞
∑

k=1
(α

k)0Dα−k
t u Dk

t σ.

After substituting this representation into the determining equation, we can isolate the
terms containing 0Dα−k

t u and set them equal to zero. As a result, we obtain an infinite
chain of equations(

α

k

)
Dk

t σ +

(
α

k + 1

)
Dk+1

t ρ +

(
α

k + 2

)
Dk+2

t ϕ = 0, k = 1, 2, . . .

which has the following solution:

ϕ ≡ ϕ(t, x) = ϕ0(x) + ϕ1(x)t + ϕ2(x)t2 + ϕ3(x)t3 + ϕ4(x)t4,

ρ ≡ ρ(t, x) = ρ0(x) + ρ1(x)t + ρ2(x)t2 + 2(2− α)ϕ4(x)t3,

σ = σ(t, x) = σ0(x) + (1− α)[ρ2(x) + (α− 2)ϕ3(x)]t + (1− α)(2− α)ϕ4(x)t2,

(17)

where ϕi, ρi, σi are arbitrary functions of x. The initial conditions (11) and (16) yield

ϕ0(x) = 0, ϕ1(x) = 0, ρ0(x) = 0.

Finally, we can isolate the terms containing 0Dα−k
t (0Dα

t u). By setting all of them equal
to zero, we get the system of equations

Dk
t θ = 0, k = 1, 2, . . . .

It follows from this system that θ = θ(x).
So, we prove that the function f is a linear function with respect to u and all their

derivatives. It has the form

f = ϕ(t, x)utt + ψ(t, x)utx + θ(x)0Dα
t u + ρ(t, x)ut + µ(t, x)ux + σ(t, x)u + λ(t, x).

Thus, all second-order symmetries of Equation (1) are linear with respect to u.
The determining Equation (8) reduces to(
α(α− 1)

2
ϕtt + αϕt + αρt

)
0Dα

t u + αψt 0Dα
t ux + 0Dα

t λ− (2ψx + θxx + 2ρx + 2µx)0Dα
t u

− 2θx 0Dα
t ux − 2ϕxuttx − ϕxxutt − ψxxutx − ρxxut − µxxux − σxxu− 2σxux − λxx = 0.

We split this equation with respect to terms containing u and their derivatives. As a result,
we obtain the following system of equations:
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0Dα
t u :

α(α− 1)
2

ϕtt + αϕt + αρt − 2ψx − θxx − 2ρx − 2µx = 0,

0Dα
t ux : αψt − 2θx = 0,

uttx : ϕx = 0,
utt : ϕxx = 0,
utx : ψxx = 0,
ut : ρxx = 0,
ux : µxx + 2σx = 0,
u : σxx = 0,

In view of representations (15) and (17), one can obtain the solution of this system in
the form

σ = C0, µ = C1 + C2
α

2
x, θ = C3 + C4

α

2
x + C5

α2

4
x2,

ρ = C3t + C5

(
1− α

2

)
t, ψ = C4t + C5αtx, ϕ = C5t2,

where Ci (i = 1, . . . , 5) are arbitrary constants. The corresponding symmetries are

f0 = u, f1 = ux, f2 = tut +
α

2
xux, f3 = 0Dα

t u, f4 = tutx +
α

2
x0Dα

t u,

f5 =
(

1− α

2

)
tut + t2utt + αtxutx +

α2

4
x2

0Dα
t u.

The remaining part of the determining equation is

0Dα
t λ− λxx = 0. (18)

This equation is identical to the initial linear fractional diffusion Equation (1). It gives
an infinity number of symmetries of the form f∞ = λ(t, x), where λ(t, x) is an arbitrary
solution to Equation (18).

Note that symmetries f3, f4 and f5 are nonlocal ones because they contain the fractional
derivative 0Dα

t u. Nevertheless, these symmetries are local on solutions of Equation (1).
Indeed, in view of Equation (1), they can be rewritten in the form of local symmetries as

f̃3 = uxx, f̃4 = tutx +
α

2
xuxx, f̃5 =

(
1− α

2

)
tut + t2utt + αtxutx +

α2

4
x2uxx.

These symmetries are the second-order symmetries of the fractional anomalous diffusion
Equation (1).

Note that the symmetries f0, f1, f2 and f∞ correspond to the classical Lie point
symmetries of Equation (1) (see [20])

X0 = u
∂

∂u
, X1 =

∂

∂x
, X2 = t

∂

∂t
+

α

2
x

∂

∂x
, X∞ = λ(t, x)

∂

∂u
.

4. Recursion Operators

It is easy to see that

f1 = Dx f0, f̃3 = Dx f1, f̃4 = Dx f2 −
α

2
f1 = Dx

(
f2 −

α

2
f0

)
and

f2 =
(

tDt +
α

2
xDx

)
f0,

f̃5 =
(

tDt +
α

2
xDx

)
f2 −

α

2
f2 =

(
tDt +

α

2
xDx

)(
f2 −

α

2
f0

)
.
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Thus, we can introduce two differential operators

R1 = Dx, R2 = tDt +
α

2
xDx (19)

that permit to obtain symmetries f1, f2, f̃3, f̃4 and f̃5 from the single symmetry f0 = u.
In particular, for the Lie point symmetries we have

f1 = R1 f0, f2 = R2 f0.

Similarly to the case of integer-order differential equations [1,8], we will call operators R1
and R2 the recursion operators.

Note that the operator R1 coincides with the first recursion operator obtained in [19]
(see also [1]) for the linear heat (diffusion) equation. The second recursion operator 2tDx + x
for this equation can be also obtained from the operator R2 in view of the fact that for α = 1,
we have Dtu = D2

xu.
Let us introduce the linear fractional differential operator

L = 0Dα
t − D2

x.

Then Equation (1) can be written as Lu = 0, and the determining Equation (8) is L f |{Lu=0} =
0. Since Dx(0Dα

t ) = 0Dα
t (Dx), it is obvious that the commutator

[L, R1] ≡ LR1 − R1L = 0.

Additionally, it is easy to prove that

[L, R2] ≡ LR2 − R2L = 0.

So, when f = Riu (i = 1, 2), the determining equation is fulfilled identically because

L(Riu)|{Lu=0} = Ri(Lu)|{Lu=0} ≡ 0. (20)

Thus, the recursion operators R1 and R2 convert any solution of the determining equation into
another solution of this equation. Note that these operators satisfy the commutation relation

[R1, R2] =
α

2
R1,

i.e., the linear span of these operators is the two-dimensional Lie algebra.
We can also introduce fractional recursion operators for the Equation (1). Indeed, since

D2
xu = 0Dα

t u, the operator
R3 = 0Dα

t

is also the recursion operator for Equation (1), and we have f3 = R3 f0. It is easy to
prove that

[L, R3] = 0, [R1, R3] = 0, [R2, R3] = −αR3.

The composition of recursion operators R1 and R2 gives the fractional recursion operator

R4 = tDtDx +
α

2
x0Dα

t

such that f4 = R4 f0, and

[L, R4] = 0, [R1, R4] =
α

2
R3, [R2, R4] = −

α

2
R4, [R3, R4] = αR1R3.

Similarly, one can find other fractional recursion operators. Such operators can be also used
for constructing higher-order symmetries and can be useful for investigating qualitative
properties of Equation (1). Nevertheless, it is necessary to note that all these operators can
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be obtained in view of Equation (1) from the operators R1 and R2, and, therefore, such
fractional operators should not be considered as primary recursion operators.

5. Conclusions

The obtained results indicate that higher-order symmetries of linear fractional partial
differential equations can be found explicitly in the same manner as Lie point symmetries
of such equations. The local higher-order symmetries for linear FDEs can be obtained
from the Lie point symmetries by local recursion operators that can be obtained from the
analysis of the first-order and second-order symmetries. It is natural to expect that such
equations have infinite sequences of higher-order symmetries. For example, any linear
FDE of the form

0Dα
t u = b(t) +

n

∑
k=0

ak(t)
∂ku
∂xk

has the symmetries f0 = u and f1 = ux. As a result, there is a recursion operator R = Dx,

and the equation given above has an infinite sequence of higher-order symmetries fk =
∂ku
∂xk

(k = 0, 1, 2, . . .). Additionally, some of such symmetries can be rewritten as fractional
symmetries by initial FDE.

Nevertheless, the algorithm of finding higher-order symmetries described in this
paper is not applicable for nonlinear FDEs because in this algorithm, all fractional integral
variables are assumed to be independent and several linearization procedures are used.
Moreover, it is likely that the fractional-order form of higher symmetries is more suitable
for nonlinear FDEs. Thus, the development of methods of finding higher-order symmetries
for nonlinear FDEs remains a challenging problem of modern group analysis of fractional
differential equations.
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