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Abstract: We combine the stochastic perturbation method with the maximum entropy principle
to construct approximations of the first probability density function of the steady-state solution
of a class of nonlinear oscillators subject to small perturbations in the nonlinear term and driven
by a stochastic excitation. The nonlinearity depends both upon position and velocity, and the
excitation is given by a stationary Gaussian stochastic process with certain additional properties.
Furthermore, we approximate higher-order moments, the variance, and the correlation functions of
the solution. The theoretical findings are illustrated via some numerical experiments that confirm
that our approximations are reliable.

Keywords: stochastic perturbations; random nonlinear oscillator; maximum entropy principle;
probability density function; stationary Gaussian noise

1. Introduction and Motivation

The analysis of stochastic perturbations in nonlinear dynamical systems is a hot topic
in applied mathematics [1,2] with many applications in apparently different areas such
as control [3], economy [4] and especially in dealing with nonlinear vibratory systems.
The study of systems subject to vibrations is encountered, for example, in Physics (in
the analysis of different types of oscillators) and in Engineering (in the analysis of road
vehicles, response of structures to earthquakes’ excitations or to sea waves). The nature of
vibrations in this type of systems is usually random because they are spawned by complex
factors that are not known in a deterministic manner but statistically characterized via
measurements that often contain errors and uncertainties. Although, oscillators in Physics
and Engineering systems have been extensively studied in the deterministic case [5,6],
and particularly, in the nonlinear case [7–9], due to the above-mentioned facts the stochastic
analysis is more suitable since provides better understanding of their dynamics.

Many vibratory systems are governed by differential equations with small nonlinear
terms of the following form,

Ẍ(t) + βẊ(t) + ω2
0(X(t) + εg(X(t))) = Y(t), t > 0. (1)

Here, X(t) denotes the position (usually of the angle w.r.t. an origin) of the oscil-
latory system at the time instant t, the parameter β is given by β := 2ξω0, being ξ the
damping constant and ω0 > 0 the undamped angular frequency, and finally, ε is a small
perturbation (|ε| � 1) affecting a nonlinear function of the position, g(X(t)). The expres-
sion X(t) + εg(X(t)) is referred to as the nonlinear restoring term. The right-hand side
term, Y(t), stands for an external source/forcing term (vibration) acting upon the system.
In the setting of random vibration systems, Y(t) is assumed to be a stochastic process,
termed stochastic excitation, having certain characteristics that in the present study will be
specified later.
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Notice that the nonlinear restoring term in Equation (1) involves the parameter ε,
which determines the magnitude of the nonlinear perturbation, whose shape is given by
g(X(t)). When ε = 0, Equation (1) describes a random linear oscillator. In [10], authors
analyze this class of oscillators considering two cases for the stochastic source term Y(t),
first when is Gaussian and, secondly, when it can be represented via a Karhunen–Loève
expansion. In the case that ε 6= 0, the inclusion of the nonlinear term makes more difficult
(even simply impossible) to exactly solve Equation (1). An effective method to construct
reliable approximations of Equation (1) in the case that ε represents a small parameter
is the perturbation technique [11–15]. In the stochastic setting, this method has been
successfully applied to study different type of oscillators subject to random vibrations.
After pioneer contributions by Crandall [16,17], the analysis of random vibration systems
has attracted many researchers (see, for instance, in [15,18,19] for a full overview of this
topic). In [20], approximations of quadratic and cubic nonlinear oscillators subject to
white noise excitations are constructed by combining the Wiener–Hermite expansion and
the homotopy perturbation technique. The aforementioned approximations correspond
to the first statistical moments (mean and variance) because, as authors indicate in the
introduction section, the computation of the probability density function (PDF) is usu-
ally very difficult to obtain. In [21], the authors extend the previous analysis to compute
higher-order statistical moments of the oscillator response in the case the nonlinearity is
only quadratic. The previous methodology is extended and algorithmically automated
in [22]. In [23], the author considers the interesting scenario of an harmonic oscillator
with a random mass and analyses important dynamic characteristics such as the stochastic
stability and the resonance phenomena. To conduct that study, a new type of Brownian
motion is introduced. The perturbation technique has also been used to approximate
the first moments, mainly the mean and the variance, of some oscillators subject to small
nonlinearities. The computational procedures of this method often requires amendments to
the existing solution codes, so it is classified as an intrusive method. A spectral technique
that allows overcoming this drawback is non-intrusive polynomial chaos expansion (PCE)
in which simulations are used as black boxes and the calculation of chaos expansion coeffi-
cients for response metrics of interest is based on a set of simulation response evaluations.
In the recent paper [24], authors design an interesting hybrid non-intrusive procedure
that combine PCE with Chebyshev Surrogate Method to analyze a number of uncertain
physical parameters and the corresponding transient responses of a rotating system.

Besides computing the first statistical moments of the response or performing a
stability analysis of systems under stochastic vibrations, we must emphasize that the
computation of the finite distribution (usually termed “fidis”) associated to the stationary
solution, and particularly of the stationary PDF, is also a major goal in the realm of vibratory
systems with uncertainties. Some interesting contributions in this regard include [25,26].
In [25], the authors first present a complete overview of methods and techniques available
to determine the stationary PDF of nonlinear oscillators excited by random functions.
Second, nonlinear stochastic oscilators excited by a combination of Gaussian and Poisson
white noises are fully analyzed. The study is based on solving the forward generalized
Kolmogorov partial differential equation (PDE) using the exponential-polynomial closure
method. The theoretical analysis is accompanied with several illustrative examples. In the
recent contribution [26], authors propose a new method to compute a closed-form solu-
tion of stationary PDF of single-degree-of-freedom vibro-impact systems under Gaussian
white noise excitation. The density is obtained by solving the Fokker–Planck–Kolmogorov
PDE using the iterative method of weighted residue combined with the concepts of the
circulatory and potential probability flows. Apart from obtaining the density of the solu-
tions, it is worth to pointing out that in some recent contributions one also determines the
densities of key quantities, that belong to Reliability Theory, like the first-passage time for
vibro-impact systems with randomly fluctuating restoring and damping terms (see [27]
and references therein).
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In this paper, we address the study of random cross-nonlinear oscillators subject to
small perturbations affecting the nonlinear term, g, which depend on both the position,
X(t), and the velocity, Ẋ(t),

Ẍ(t) + 2ζω0Ẋ(t) + εg(X(t), Ẋ(t)) + ω2
0X(t) = Y(t). (2)

Here, the stochastic derivatives are understood in the mean square sense [28] (Chapter 4).
In our subsequent analysis, we will consider the case that g(X(t), Ẋ(t)) = X2(t)Ẋ(t) and
the excitation Y(t) is a mean square differentiable and stationary zero-mean Gaussian
stochastic process whose correlation function, ΓYY(τ), is known. On the other hand, assum-
ing that Y(t) is a stationary and Gaussian stochastic process is a rather intuitive concept,
which has been extensively used in both theoretical and practical studies [29,30]. Station-
arity means that the statistical properties of the process do not vary significantly over
time/space. This feature is usually met in a number of modeling problems as the surface
of the sea in both spatial and time coordinates, noise in time in electric circuits under
steady-state operations, homogeneous impurities in engineering materials and media,
for example [28] (Chapter 3).

Now, we list the main novelties of our contribution.

• We combine mean square calculus and the stochastic perturbation method to study a
class of nonlinear oscillators whose nonlinear term, g, involves both position, X(t),
as velocity, Ẋ(t), specifically, we consider the case g = g(X(t), Ẋ(t)) = X2(t)Ẋ(t).
This corresponds to the most complicated case, usually termed cross-nonlinearity.

• The oscillator is subject to random excitations driven by a stochastic process, Y(t),
having the following properties: Y(t) is mean square differentiable and stationary
zero-mean Gaussian.

• We compute reliable approximations, not only of the mean, the variance, and the
covariance (as is usually done), but also of higher moments (including the asymmetry
and the kurtosis) of the steady-state of the above-described nonlinear oscillator.

• We combine the foregoing information related to higher moments and the entropy
method to construct reliable approximations of the probability density function of
the steady-state solution. The approximation is quite accurate as it is based on
higher moments.

To the best of our knowledge, this is the first time that stochastic nonlinear os-
cillators with the above-described type of cross-nonlinearities is studied using our ap-
proach, i.e., combining mean square calculus and the stochastic perturbation method.
In this sense, we think that our approach may be useful to extend our study to stochastic
nonlinear oscillators having more general cross-nonlinearities, in particular of the form
g(X(t), Ẋ(t)) = Xn(t)Ẋm(t), for n ≥ 3 and m ≥ 2.

The paper is organized as follows. In Section 2, we introduce the auxiliary stochas-
tic results that will be used throughout the whole paper. This section is intended to
help the reader to better understand the technical aspects of the paper. Section 3 is di-
vided into two parts. In Section 3.1, we apply the perturbation technique to construct a
first-order approximation of the stationary solution stochastic process of model (2) with
g(X(t), Ẋ(t)) = X2(t)Ẋ(t). In Section 3.2, we determine expressions for the first higher-
order moments, the variance, the covariance, and the correlation of the aforementioned
first-order approximation. These expressions will be given in terms of certain integrals of
the correlation function of the Gaussian noise, Y(t), and of the classical impulse response
function to the linearized oscillator associated to Equation (2). In Section 4, we take advan-
tage of the results given in Section 3 to construct reliable approximations of the PDF of
the stationary solution using the principle of maximum entropy. In Section 5, we illustrate
all theoretical findings by means of several illustrative examples. Our numerical results
are compared with Monte Carlo simulations and with the application of Euler–Maruyama
numerical scheme, showing full agreement. Conclusions are drawn in Section 6.
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2. Stochastic Preliminaries

For the sake of completeness, in this section we will introduce some technical stochastic
results that will be required throughout the paper.

Hereinafter, we will work on a complete probability space (Ω,F ,P), i.e., Ω is a
sample space; F is a σ-algebra of sets of Ω, usually called events; and P is a probability
measure. To simplify, we will omit the sample notation, so the input and the solution
stochastic processes involved in Equation (2) will be denoted by Y(t) ≡ {Y(t) : t ≥ 0}
and X(t) ≡ {X(t) : t ≥ 0}, respectively, rather than {Y(t; ω) : t ≥ 0, ω ∈ Ω} and
{X(t; ω) : t ≥ 0, ω ∈ Ω}, respectively.

The following result will be applied to calculate some higher-order moments of the
solution stochastic process, X(t), of the random differential Equation (2), since as it shall
be seen later, X(t) depends on a product of the stochastic excitation, Y(t), evaluated at a
finite number of instants, say t1, t2, . . . , tn, Y(ti) = Yi, 1 ≤ i ≤ n.

Proposition 1 (p. 28, [28]). Let the random variables Y1, Y2, . . . , Yn be jointly Gaussian with
zero mean, E{Yi} = 0, 1 ≤ i ≤ n. Then, all odd order moments of these random variables vanish
and for n even,

E{Y1Y2 · · ·Yn} = ∑
m1,m2, ..., mn

E{Ym1Ym2}E{Ym3Ym4} · · ·E{Ymn−1Ymn}.

The sum above is taken over all possible combinations of n/2 pairs of n random variables.
The number of terms in the summation is 1 · 3 · 5 · · · (n− 3) · (n− 1).

The two following results permit interchange the expectation operator with the mean
square derivative and the mean square integral. In [28] (Equation (4.130) in Section 4.4.2),
the first result is established for n = 2 and then it follows straightforwardly by induction.

Proposition 2. Let {Y(t) : t ≥ 0} be a mean square differentiable stochastic process. Then,

E{Y(t1) · · ·Y(tn−1)Ẏ(tn)} =
∂

∂tn
(E{Y(t1) · · ·Y(tn)}), t1, . . . , tn ≥ 0,

provided the above expectations exists.

Proposition 3 (p. 104, [28]). Let {Y(t) : −∞ ≤ a ≤ t ≤ b ≤ +∞} be a second-order stochastic
process integrable in the mean square sense and h(t) a Riemann integrable deterministic function
on t ∈ (a, b). Then,

E
{∫ b

a
h(t)Y(t)dt

}
=
∫ b

a
h(t)E{Y(t)}dt .

The following is a distinctive property of Gaussian processes since they preserve
Gaussianity under mean square integration.

Proposition 4 (p. 112, [28]). Let {Y(t) : a ≤ t ≤ ∞} be a Gaussian process and let h(t) be a
Riemann integrable deterministic function on (a, t) such that the following mean square integral,

X(t) =
∫ t

a
h(t, τ)Y(τ)dτ,

exists, then {X(t) : t ≥ a} is a Gaussian process.

3. Probabilistic Model Study

As it has been indicated in Section 1, in this paper we will study, from a probabilistic
standpoint, the random cross-nonlinear oscillator

Ẍ(t) + 2ζω0Ẋ(t) + εX2(t)Ẋ(t) + ω2
0X(t) = Y(t). (3)
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The analysis will be divided into two steps. First, in Section 3.1 we will apply the per-
turbation technique to obtain an approximation, X̂(t), of the stationary solution stochastic
process, X(t). Then, in Section 3.2 we will take advantage of X̂(t) to determine reliable
approximations of the main statistical functions of X(t), namely, the first higher-order mo-
ments, E{Xn(t)}, n = 1, . . . , 5; the variance, V{X(t)}; the covariance, Cov{X(t1), X(t2)};
and the correlation, ΓXX(τ).

3.1. Perturbation Technique

Let us consider the Equation (3). The main idea of the stochastic perturbation tech-
nique is to consider that the solution X(t) can be expanded in the powers of the small
parameter ε (|ε| � 1),

X(t) = X0(t) + εX1(t) + ε2X2(t) + · · · (4)

Replacing expression (4) into Equation (3), yields the following sequence of linear
differential equations, with random inputs

ε0 : Ẍ0(t) + 2ζω0Ẋ0(t) + ω2
0X0(t) = Y(t),

ε1 : Ẍ1(t) + 2ζω0Ẋ1(t) + ω2
0X1(t) = −X2

0(t)Ẋ0(t),
ε2 : Ẍ2(t) + 2ζω0Ẋ2(t) + ω2

0X2(t) = −2X0(t)X1(t)Ẋ0(t)− X2
0(t)Ẋ1,

...
...

...
...

...

(5)

Notice that each equation can be solved in cascade. As usual, when applying the
perturbation technique, we take the first-order approximation

X̂(t) = X0(t) + εX1(t). (6)

This entails that in our subsequent development we will only need the two first
equations listed in (5).

As indicated in Section 1, now we will focus on the analysis of the steady-state solution.
Using the linear theory, the two first equations in (5) can be solved using the convolution
integral [31]:

X0(t) =
∫ ∞

0
h(s)Y(t− s)ds, (7)

and
X1(t) =

∫ ∞

0
h(s)

[
−X2

0(t− s)Ẋ0(t− s)
]

ds, (8)

where

h(t) =


(
ω2

0 − ζ2ω2
0
)− 1

2 e−ζω0t sin
[(

ω2
0 − ζ2ω2

0
) 1

2 t
]

if t > 0,

0 if t ≤ 0,
(9)

is the impulse response function for the underdamped case ζ2 < 1. This situation corre-
sponds to the condition in which damping of an oscillator causes it to return to equilibrium
with the amplitude gradually decreasing to zero (in our random setting it means that the
expectation of the amplitude is null); system returns to equilibrium faster but overshoots
and crosses the equilibrium position one or more times. Although, they are no treated here-
inafter, two more situations are also possible, namely, critical damping and overdamping.
The former corresponds to ζ2 = 1 and in that case the damping of an oscillator causes it to
return as quickly as possible to its equilibrium position without oscillating back and forth
about this position, while the latter corresponds to ζ2 > 1, and in this situation damping
of an oscillator causes it to return to equilibrium without oscillating; oscillator moves more
slowly toward equilibrium than in the critically damped system [32].
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3.2. Approximation of the Main Statistical Moments

This subsection is devoted to calculate the main probabilistic information of the
stationary solution stochastic process, X(t), of model (3). As it has been previously pointed
out, to this end, we assume that the input term Y(t) is a stationary zero-mean (E{Y(t)} = 0)
Gaussian stochastic process whose correlation function, ΓYY(τ), is given. We will further
assume that Y(t) is mean square differentiable. This additional hypothesis will be apparent
later. At this point, it is convenient to recall that for any stationary stochastic process its
correlation function is even, so ΓYY(τ) = ΓYY(−τ), (p. 47, [28]). This property will be
extensively applied throughout our subsequent developments.

To compute the mean of the approximation, we first take the expectation operator
in (6),

E{X̂(t)} = E{X0(t)}+ εE{X1(t)}. (10)

Therefore, we now need to determine both E{X0(t)} and E{X1(t)}. To compute the
E{X0(t)} we again use the expectation operator in (7),

E{X0(t)} = E
{∫ ∞

0
h(s)Y(t− s)ds

}
=
∫ ∞

0
h(s)E{Y(t− s)}ds = 0, (11)

where we have applied Proposition 3 and that E{Y(t)} = 0.
Now, we deal with the computation of E{X1(t)} in an analogous manner but using

the representation of X1(t) given in (8),

E{X1(t)} = E
{∫ ∞

0
h(s)

[
−X2

0(t− s)Ẋ0(t− s)
]

ds
}

=
∫ ∞

0
h(s)E

{[
−X2

0(t− s)Ẋ0(t− s)
]}

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)E

{
Y(t− s− s1)Y(t− s− s2)Ẏ(t− s− s3)

}
ds3 ds2 ds1 ds

= 0.

(12)

Notice that the assumption of mean square differentiability of the input process Y(t)
appears naturally at this stage.

Let us justify the last step in expression (12). Let us denote u1 = t− s− s1, u2 = t− s− s2
and u3 = t− s− s3, then applying Propositions 2 and 1, both with n = 3, one gets

E
{

Y(t− s− s1)Y(t− s− s2)Ẏ(t− s− s3)
}
= E

{
Y(u1)Y(u2)Ẏ(u3)

}
=

∂

∂u3
E{Y(u1)Y(u2)Y(u3)} = 0.

Therefore, substituting (11) and (12) into (10), we obtain the expectation of the approx-
imation is null,

E{X̂(t)} = E{X0(t)}+ εE{X1(t)} = 0. (13)

From the approximation (6) and neglecting the term ε2, the second-order moment for
X̂(t) is given by

E
{

X̂2(t)
}
= E

{
X2

0(t)
}
+ 2εE{X0(t)X1(t)}. (14)

The first addend can be calculated using expression (7) and Fubini’s theorem,

E
{

X2
0(t)

}
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)E{Y(t− s)Y(t− s1)}ds1 ds

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓYY(s− s1)ds1 ds .

(15)

Notice that we have used that Y(t) is a stationary process, so

E{Y(t− s)Y(t− s1)} = ΓYY(t− s1 − (t− s)) = ΓYY(s− s1).
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Now, we calculate the second addend in (14). To this end, we substitute the expressions
of X0(t) and X1(t) given in (7) and (8), respectively,

E{X0(t) X1(t)} =
∫ ∞

0
h(s)E{X0(t)[−X2

0(t− s)Ẋ0(t− s)]}ds

=
∫ ∞

0
h(s)E

{
−
∫ ∞

0
h(s1)Y(t− s1)ds1

∫ ∞

0
h(s2)Y(t− s− s2)ds2

∫ ∞

0
h(s3)Y(t− s− s3)ds3

∫ ∞

0
h(s4)Ẏ(t− s− s4)ds4

}
ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)E

{
Y(t− s1)Y(t− s− s2)Y(t− s− s3)Ẏ(t− s− s4)

}
ds4 ds3 ds2 ds1 ds

(I)
= −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
ΓYY(s1 − s− s2)Γ′YY(s3 − s4) + ΓYY(s1 − s− s3)Γ′YY(s2 − s4)

+ Γ′YY(s1 − s− s4)ΓYY(s2 − s3)
)

ds4 ds3 ds2 ds1 ds

(II)
= −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
2ΓYY(s1 − s− s2)Γ′YY(s3 − s4)

+ Γ′YY(s1 − s− s4)ΓYY(s2 − s3)
)

ds4 ds3 ds2 ds1 ds .

(16)

Observe that in the step (I) of the above expression, we have first applied Proposition 2
and second Proposition 1. Indeed, let us denote by u1 = t− s1, u2 = t− s− s2, u3 = t− s− s3
and u4 = t− s− s4, then by Proposition 2, with n = 4, one gets

E
{

Y(t− s1)Y(t− s− s2)Y(t− s− s3)Ẏ(t− s− s4)
}
=

∂

∂u4
E{Y(u1)Y(u2)Y(u3)Y(u4)},

and now we apply Proposition 1, with n = 4, to the right-hand side. This yields

E
{

Y(t− s1)Y(t− s− s2)Y(t− s− s3)Ẏ(t− s− s4)
}
=

=
∂

∂u4

(
E{Y(u1)Y(u2)}E{Y(u3)Y(u4)}+E{Y(u1)Y(u3)}E{Y(u2)Y(u4)}+E{Y(u1)Y(u4)}E{Y(u2)Y(u3)}

)
=

∂

∂u4
(ΓYY(u2 − u1)ΓYY(u4 − u3) + ΓYY(u3 − u1)ΓYY(u4 − u2) + ΓYY(u4 − u1)ΓYY(u3 − u2))

= ΓYY(u)|u=s1−s−s2 Γ′YY(u)|u=s3−s4 + ΓYY(u)|u=s1−s−s3 Γ′YY(u)|u=s2−s4 + Γ′YY(u)|u=s1−s−s4 ΓYY(u)|u=s2−s3 .

In step (II) of expression (16) we have taken advantage of the symmetry of the indexes.
Then, substituing (15) and (16) in (14) one gets

E
{

X̂2(t)
}
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓYY(s− s1)ds1 ds−2ε

( ∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

·
(

2ΓYY(s1 − s− s2)Γ′YY(s3 − s4) + Γ′YY(s1 − s− s4)ΓYY(s2 − s3)
)

ds4 ds3 ds2 ds1 ds

)
.

(17)

Notice that E
{

X̂2(t)
}

does not depend on t. This is consistent with the fact that we
are dealing with the stochastic analysis of the stationary solution. The same feature will
hold when computing higher-order moments, E

{
X̂n(t)

}
, n > 2, later.

As E
{

X̂(t)
}

is null (see (13)), then the variance of the solution coincides with E
{

X̂2(t)
}

.

Now, we calculate the third-order moment of X̂(t) keeping up to the first-order term
of perturbation ε. Therefore,

E
{

X̂3(t)
}
= E

{
X3

0(t)
}
+ 3εE

{
X2

0(t)X1(t)
}

. (18)

Reasoning analogously as we have shown before, we obtain

E
{

X3
0(t)

}
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)E{Y(t− s)Y(t− s1)Y(t− s2)}ds2 ds1 ds = 0, (19)
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where we have applied Proposition 1 in the last step.
The second addend in (18) is calculated using Propositions 1 and 2,

E
{

X2
0(t)X1(t)

}
=
∫ ∞

0
h(s)E

{
X2

0(t)
[
−X2

0(t− s)Ẋ0(t− s)
]}

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)E

{
Y(t− s)Y(t− s1)Y(t− s− s3)Y(t− s− s4)

· Ẏ(t− s− s5)
}

ds5 ds4 ds3 ds2 ds1 ds = 0.

(20)

From (19) and (20), we obtain

E
{

X̂3(t)
}
= E{X3

0(t)}+ 3εE{X2
0(t)X1(t)} = 0.

Using again the first-order approximation of the perturbation ε, in general, it can be
straightforwardly seen that

E{X̂n(t)} = 0, n = 1, 3, 5, . . . . (21)

Indeed, we know that,

E
{

X̂n(t)
}
= E{Xn

0 (t)}+ n εE
{

Xn−1
0 (t)X1(t)

}
. (22)

On the one hand, let us observe that applying first Fubini’s theorem and Proposition 3,
and second Proposition 1 for n odd, one gets

E{Xn
0 (t)} = E

{(∫ ∞

0
h(s)Y(t− s)ds

)n}
=
∫ ∞

0
h(s1) · · ·

∫ ∞

0
h(sn)E{Y(t− s1) · · ·Y(t− sn)}dsn · · ·ds1 = 0.

On the other hand, using the same reasoning as in (20),

E
{

Xn−1
0 (t)X1(t)

}
=
∫ ∞

0
h(s)E

{
Xn−1

0 (t)
[
−X2

0(t− s)Ẋ0(t− s)
]}

ds = 0,

where first we have applied Proposition 2, in order to put the first derivative out of the
expectation, and second, we have utilized that Xn−1

0 (t), X2
0(t− s) and Ẋ0(t− s) depend

upon n− 1, 2 and 1 terms of Y(·), respectively, together with Proposition 1 (notice that
n + 2 is odd as n is odd).

To complete the information of statistical moments of the approximation, we also
determine E

{
X̂4(t)

}
.

The fourth-order moment of X̂(t), based on the first-order approximation via the
perturbation method, is given by

E
{

X̂4(t)
}
= E

{
X4

0(t)
}
+ 4εE

{
X3

0(t)X1(t)
}

. (23)

Reasoning analogously as we have shown in previous sections, we obtain for the
first addend

E{X4
0(t)} = 3

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)ΓYY(s− s1)ΓYY(s2 − s3)ds ds1 ds2 ds3, (24)

and for the second addend
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E{X3
0(t)X1(t)} = −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)E{Y(t− s1)

·Y(t− s2)Y(t− s3)Y(t− s− s4)Y(t− s− s5)Ẏ(t− s− s6)}ds ds1 ds2 ds3 ds4 ds5 ds6

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

(
6 Γ′YY(s5 − s6)

· ΓYY(s1 − s2)ΓYY(s3 − s− s4) + 3 Γ′YY(s1 − s− s6)
(
2 ΓYY(s2 − s− s4)ΓYY(s3 − s− s5)

+ ΓYY(s2 − s3)ΓYY(s4 − s5)
))

ds ds1 ds2 ds3 ds4 ds5 ds6 .

(25)

Observe that in the last step of the above expression, first we have used Proposition 2,
and second, Proposition 1. From this last proposition, we know that exist 15 combinations,
but we can reduce the expression by the symmetry of involved indexes.

Now we deal with the approximation of the correlation function of X(t) via (6),
i.e., taking the first-order approximation of the perturbation expansion,

ΓX̂X̂(τ) = E{X̂(t)X̂(t + τ)} = E{X0(t)X0(t + τ)}+ ε[E{X0(t)X1(t + τ)}+E{X1(t)X0(t + τ)}]. (26)

The first addend in (26) corresponds to the correlation function of X0(t). It can be
expressed as

E{X0(t)X0(t + τ)} =
∫ ∞

0

∫ ∞

0
h(s)h(s1)E{Y(t− s)Y(t + τ − s1)}ds ds1

=
∫ ∞

0

∫ ∞

0
h(s)h(s1)ΓYY(τ − s1 + s)ds1 ds .

The two last addends in (26) represent the cross-correlation of X0(t) and X1(t). They
are given, respectively, by

E{X0(t)X1(t + τ)} =
∫ ∞

0
h(s)E

{
X0(t)[−X2

0(t + τ − s)Ẋ0(t + τ − s)]
}

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

{
2 ΓYY(τ − s− s2 + s1)Γ′YY(s3 − s4)

+ Γ′YY(τ − s− s4 + s1)ΓYY(s2 − s3)

}
ds4 ds3 ds2 ds1 ds .

and

E{X1(t)X0(t + τ)} = E
{∫ ∞

0
−h(s)X2

0(t− s)Ẋ0(t− s)X0(t + τ)

}
ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

{
ΓYY(s1 − s2)Γ′YY(τ − s4 + s + s3)

+ 2 Γ′YY(s1 − s3)ΓYY(τ − s4 + s + s2)

}
ds4 ds3 ds2 ds1 ds .

Summarizing,
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ΓX̂X̂(τ) =
∫ ∞

0

∫ ∞

0
h(s)h(s1)ΓYY(τ − s1 + s)ds ds1

− ε
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

{
2 ΓYY(τ − s− s2 + s1)Γ′YY(s3 − s4)

+ Γ′YY(τ − s− s4 + s1)ΓYY(s2 − s3) + ΓYY(s1 − s2)Γ′YY(τ − s4 + s + s3)

+ 2 Γ′YY(s1 − s3)ΓYY(τ − s4 + s + s2)

}
ds4 ds3 ds2 ds1 ds .

(27)

As E{X̂(t)} = 0, we observe that the covariance and correlation functions of
X̂(t) coincide,

Cov{X̂(t1), X̂(t2)} = ΓX̂X̂(τ), τ = |t1 − t2|.

4. Approximating the PDF via the Maximum Entropy Principle

So far, we have calculated approximations of the moments E{X̂n(t)}, n = 1, . . . , 5
to the first-order approximation, X̂(t), via the perturbation method, of the steady-state
solution of the random nonlinear oscillator (3). Although this is an important information,
a more ambitious goal is the approximation of the PDF, say fX̂(t)(x), as from it one can
calculate key stochastic information as the probability that the output lies in a specific
interval of interest, say [a1, a2],

P
{

a1 ≤ X̂(t) ≤ a2

}
=
∫ a2

a1

fX̂(t)(x)dx,

for any arbitrary fixed time t. Furthermore, from the knowledge of the PDF one can easily
compute confidence intervals at a specific confidence level α ∈ (0, 1),

1− α = P
{

µX̂(t)− kσX̂(t) ≤ X̂(t) ≤ µX̂(t) + kσX̂(t)
}
=
∫ µX̂(t)+kσX̂(t)

µX̂(t)−kσX̂(t)
fX̂(t)(x)dx,

where µX̂(t) = E{X̂(t)} = 0 (see (13)) and σX̂(t) =
√
V{X̂(t)}. Usually α is taken as

α = 0.05 so that 95% confidence intervals are built, and k > 0 must be determined numerically.
As we have calculated the approximations E{X̂n(t)}, n = 1, . . . , 5, a suitable method

to approximate the PDF, fX̂(t)(x), is the Principle of Maximum Entropy (PME), [33]. For t
fixed, the PME seeks for a PDF, fX̂(t)(x), that maximizes the so-called Shannon’s Entropy,

of random variable X̂(t) with support [a, b], defined via the following functional,

S
{

fX̂(t)(x)
}
= −

∫ b

a
fX̂(t)(x) log( fX̂(t)(x))dx, (28)

satisfying the following restrictions

∫ b

a
fX̂(t)(x)dx = 1, (29)

E
{

X̂n(t)
}
=
∫ b

a
xn fX̂(t)(x)dx = mn, n = 1, . . . , M. (30)

Condition (29) guarantees fX̂(t)(x) is a PDF, and the M conditions given in (30) impose

that the sampled moments, mn, match the moments, E
{

X̂n(t)
}

, obtained in our setting by
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the stochastic perturbation method. For each t fixed, the maximization of functional (28)
subject to the constrains (29)–(30) can be solved via the auxiliary Lagrange function

L
{

fX̂(t), λ0, . . . , λM

}
= S

{
fX̂(t)(x)

}
+

M

∑
i=0

λi

[
mi −

∫ b

a
xi fX̂(t)(x)dx

]
,

where m0 = 1. It can be seen that the form of the PDF is given by [33]

fX̂(t)(x) = 1[a,b] e−∑M
i=0 λixi

,

where 1[a,b] denotes the characteristic function on the interval [a, b].
In Section 3, we have approximated, via the stochastic perturbation technique, the mo-

ments E
{

X̂n(t)
}

for n = 1, 2, . . . , 5. Therefore, to apply the PME we will take M = 5 in
(30). Notice that, in practice, to calculate the parameters λi, i = 0, 1, . . . , 5, we will need to
numerically solve the system of nonlinear Equations (29) and (30).

5. Numerical Examples

This section is devoted to illustrate the theoretical findings obtained in previous sec-
tions. We take the following data for the parameters of the random nonlinear oscillator (3),
ζ = 0.05 (ζ2 < 1) and ω0 = 1.

Example 1. Let us consider as input excitation the trigonometric stochastic process defined by
Y(t) = ξ1 cos(t) + ξ2 sin(t), where ξ1, ξ2 ∼ N(0, 1) are independent. Observe that Y(t) satisfies
the hypotheses, i.e., E{Y(t)} = 0, Y(t) is Gaussian, mean square differentiable with respect to
t, and stationary, with its correlation being ΓYY(t1, t2) = cos(t1 − t2) or ΓYY(τ) = cos(τ).
Substituting this data into Equation (3), we obtain

Ẍ(t) + 0.1Ẋ(t) + εX2(t)Ẋ(t) + X(t) = ξ1 cos(t) + ξ2 sin(t), ξ1, ξ2 ∼ N(0, 1). (31)

Now we shall obtain approximations to the first moments, E{X̂i(t)}, i = 1, . . . , 5, the correla-
tion function and the variance, V{X̂(t)}, of the approximate solution X̂(t) of random nonlinear
oscillator (31).

As we have seen in the expression (21), the moments of odd order are null, so, in this case,
E{X̂(t)} = E{X̂3(t)} = E{X̂5(t)} = 0. Now, we sequentially derive some bounds for the
perturbation parameter ε using the positiveness of even order moments, i.e., E{X̂2(t)} > 0 and
E{X̂4(t)} > 0. First, it is easy to check that, using expression (17), the second-order moment is
given by

E{X̂2(t)} = 100− 200000ε, (32)

so we obtain the bound ε < 0.0005. Since E{X̂(t)} = 0, observe that the variance of the first-order
approximation is given by (32). Second, using expressions (23)–(25),

E{X̂4(t)} = 30, 000− 1, 153, 800, 000, 000
6409

ε. (33)

This provides a stronger bound, ε < 0.000166641.
Now, applying (27), we obtain the following approximation of the correlation function,

ΓX̂X̂(τ) = 100(1− 2000ε) cos(τ). (34)

In Figure 1, we show the graphical representation of the correlation function, ΓX̂X̂(τ), given
in the expression (34) for different values of ε. We can see the higher the perturbation ε, the lower
the variability. This graphical behavior is in full agreement with the physical interpretation of the
oscillator dynamics. Indeed, let us rewrite Equation (31) as follows,

Ẍ(t) + (0.1 + εX2(t))Ẋ(t) + X(t) = ξ1 cos(t) + ξ2 sin(t).
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As ε > 0 increases, the damped coefficient 0.1+ εX2(t) does, so the mechanical system reduces
its oscillations. It should be noted that ε = 0.0004 only satisfies the first bound (ε < 0.0005);
however, we can observe that the corresponding approximation preserves symmetry of correlation
function. This might be due to the sample regularity of the random excitation, Y(t), which
is differentiable.

-10 -5 5 10

-100

-50

50

100

ϵ=0.0004

ϵ=0.0001

ϵ=0.00005

Figure 1. Correlation function ΓX̂X̂(τ) of X(t) for different values of ε. Example 1.

For the approximation of the PDF, fX̂(t)(x), we apply the results exhibited in Section 4
based on PME by taking ε = 0.00005, which satisfies the stronger bound previously determined
(ε < 0.000166641). We first compute the approximation based on the three first moments

fX̂(t)(x) = e−1−2.181+1.045·10−5x−0.005x2−4.9217·10−8x3
,

and, second, the approximation based on the five first moments

fX̂(t)(x) = e−1−2.243+2.552·10−8x−0.004x2−2.177·10−9x3−3.789·10−6x4+6.754·10−13x5
.

In Figure 2, we compare both graphical representations. From them, we can observe that both
plots are quite similar, so giving evidence that computations are consistent.

-50 50

0.01

0.02

0.03

0.04

third order

fifth order

Figure 2. Approximation of PDF, fX̂(t)(x), using until the third and the fifth-order moment for
ε = 0.00005 via the PME. Example 1.
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Finally, to check that our approximations are reliable, we compare the mean and standard devia-
tion of the approximate solution obtained via the perturbation method against the ones calculated by
Monte Carlo. The results are collected in Table 1. We can observe that both approximations agree.

Table 1. Comparison between perturbation method and Monte Carlo simulations using ε = 0.00005.
Example 1.

Perturbation
Method

Monte Carlo
(1000 Simulations)

Monte Carlo
(10,000 Simulations)

Mean 0 0.188808 −0.114379
Standard deviation 9.48714 9.31356 9.49534

Example 2. To previously perform our theoretical analysis, we have required the stationary Gaus-
sian stochastic excitation Y(t) be differentiable in the mean square sense (or equivalently, its cor-
relation function, ΓY(τ), be twice differentiable in the ordinary sense at τ = 0 [28] (Chapter 4)),
so having differentiable sample trajectories [34]. If we carefully revise our previous development,
we can notice this is an hypothesis coming from the fact the nonlinearity cross-term depends upon
Ẋ(t). In this second example, we shall show that using the general concept of differentiability, in the
sense of distributions, we can still obtain good results via the perturbation techniques when the
excitation is not differentiable. To this end, we have chosen, Y(t) = ξ(t), a Gaussian white-noise
process with zero-mean and correlation function ΓYY(τ) =

1
2 Wδ(τ), where δ(τ) is the Dirac delta

function and W is the noise power. This type of random noise has been extensively used in the
literature since the earliest contributions [17]. Observe that Y(t) = ξ(t) is a stationary zero-mean
Gaussian process but is not mean square differentiable (as its correlation function, given by the Dirac
delta function, is not differentiable) and, consequently, its sample trajectories are not differentiable
either. In this case, Equation (3) becomes

Ẍ(t) + 0.1Ẋ(t) + εX2(t)Ẋ(t) + X(t) = ξ(t). (35)

As in the previous example, we are going to obtain approximations to the five first moments,
E{X̂i(t)}, i = 1, . . . , 5, the correlation function and the variance, V{X̂(t)}, of the approximate
solution X̂(t) of Equation (35). To implement the corresponding formulas derived throughout
Section 3.2 saving computational time in Mathematica, we have taken into account the following
properties of Dirac delta function,∫ ∞

−∞
h(t)δ(t− s)dt = h(s),

∫ ∞

−∞
h(t)δ′(t− s)dt = −h′(s).

As mentioned in Example 1, the moments of odd order are null and using the positiveness
of even order moments we can obtain some bounds for the perturbation parameter ε. First, using
expression (17), the second-order moment is determined by

E{X̂2(t)} = 1
40
− ε

160
, (36)

so we obtain the bound ε < 4. Since E{X̂(t)} = 0, expression (36) is also the variance of the
first-order approximation. Second, using expression (23)–(25),

E{X̂4(t)} = 3
1600

− 759
644800

ε. (37)

This provides a stronger bound, ε < 1.59289.
Now, applying (27), we obtain the following approximation of the correlation function,
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ΓX̂X̂(τ) =



e−τ/20
(
−399(−399 + 5ετ) cos

(√
399τ
20

)
+
√

399(399 + 100ε) sin
(√

399τ
20

))
6, 368, 040

if τ ≥ 0,

eτ/20
(
−399(−399 + 5ετ) cos

(√
399τ
20

)
+
√

399(−399 + 100ε) sin
(√

399τ
20

))
6, 368, 040

if τ < 0.

(38)

In Figure 3, we show the plot of the correlation function, ΓX̂X̂(τ), given in the expression (38)
for different values of ε satisfying the weaker and the stronger bounds previously determined. We
can observe that for smaller values of ε the obtained approximation of the correlation function better
preserves the symmetry as expected.

-10 -5 5 10

-0.02

-0.01

0.01

0.02

ϵ=3

ϵ=1

ϵ=0.5

ϵ=0.01

Figure 3. Correlation function ΓX̂X̂(τ) of X(t) for different values of ε. Example 2.

Applying the results presented in Section 4, we obtain the approximation of the PDF, fX̂(t)(x),
for ε = 0.5, which satisfies the stronger bound 1.59289. We first compute the approximation based
on the three first moments

fX̂(t)(x) = e−1+1.992+1.438·10−8x−22.857x2−2.197·10−7x3
,

and, second, the approximation based on the five first moments

fX̂(t)(x) = e−1+1.940−5.226·10−11x−17.837x2+1.580·10−9x3−42.679x4−7.904·10−9x5
.

In Figure 4, we compare both graphical representations. We can observe, again, the similarity
between them, thus showing full agreement in our numerical computations.

Finally, to check that our approximations are accurate, we compare the mean and standard
deviation of X̂(t) obtained via the perturbation method against the ones computed by Euler–
Maruyama numerical scheme [35]. The results are shown in Table 2. We can observe that both
approximations are similar.
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fifth order

Figure 4. Approximation of PDF, fX̂(t)(x), using until the third and the fifth order moment for ε = 0.5
via the PME. Example 2.

Table 2. Comparison between perturbation method and Euler–Maruyama simulations using ε = 0.5.
Example 2.

Perturbation
Method

Euler-Maruyama
(1000 Simulations)

Euler-Maruyama
(10,000 Simulations)

Mean 0 0.00146868 0.00128423
Standard deviation 0.147902 0.157353 0.156475

6. Conclusions

We have studied, from a probabilistic standpoint, a family of oscillators subject to small
perturbations on the nonlinear term that depends both upon the position and the velocity
(cross-nonlinearity) and whose forcing source is driven by a mean square differentiable
stationary zero-mean Gaussian process. Despite the hypothesis of differentiability for the
stochastic excitation, we have checked, via a numerical example, the method also provides
good results when this hypothesis is not fulfilled, but involved computations are performed
using the concept of general differentiability in the sense of distributions. We must point
out that the majority of contributions dealing with this type of stochastic oscillators focus on
the computation of the mean, the variance and correlation function. Our main contribution
is the computation of reliable approximations of the probability density function of the
stationary solution, by combining the stochastic perturbation method and the principle
of maximum entropy. In this manner, we provide a fuller probabilistic description of the
solution since from the density one can determine any one-dimensional moment as well as
further probabilistic information of the steady-state. The proposed approach can be very
useful to open new avenues in the analysis to other kind of nonlinear oscillators subject
to small fluctuations and whose forcing term is a stochastic process that satisfies certain
hypotheses. In our future research, we will work to continue contributing in this direction.
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