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Abstract: We propose two Mann-type subgradient-like extra gradient iterations with the line-search
procedure for hierarchical variational inequality (HVI) with the common fixed-point problem (CFPP)
constraint of finite family of nonexpansive mappings and an asymptotically nonexpansive mapping
in a real Hilbert space. Our methods include combinations of the Mann iteration method, subgradient
extra gradient method with the line-search process, and viscosity approximation method. Under
suitable assumptions, we obtain the strong convergence results of sequence of iterates generated by
our methods for a solution to HVI with the CFPP constraint.

Keywords: Mann-type subgradient-like extragradient method with line-search process;
hierarchical variational inequality; common fixed point problem; asymptotically nonexpansive
mapping; L continuity

1. Introduction

Let 〈·, ·〉 be the inner product and ‖ · ‖ induced norm of a real Hilbert space H. Given
a convex closed set C ⊂ H with C 6= ∅. Let PC be the nearest point projection from H onto
C. Given T : C → H, we denote the set Fix(T) = {x ∈ C : x = Tx} by Fix(T) the fixed
points set of T. We say that S : C → C is asymptotically nonexpansive if there exists a
sequence {θn} ⊂ [0,+∞) with limn→∞ θn = 0 such that the following is the case.

‖Snx− Sny‖ ≤ (1 + θn)‖x− y‖ ∀n ≥ 1, x, y ∈ C. (1)

S is called nonexpansive if θn = 0 ∀n ≥ 1.
Suppose A : H → H is a continuous mapping. The variational inequality problem

(VIP) is to find x∗ ∈ C such that 〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C. We denote by VI(C, A)
the set of solutions to VIP. One of the popular methods for solving VIP is the extragradient
method [1]: x0 ∈ C, {

yn = PC(xn − τAxn),
xn+1 = PC(xn − τAyn) ∀n ≥ 0,

(2)

with τ ∈ (0, 1
L ), where L is the Lipschitz constant of A. If VI(C, A) 6= ∅, then {xn}

generated by (2) converges weakly. Extragradient method (2) has been studied by many
authors (see, e.g., [2–13] and references therein).
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In (2), one needs to compute projections onto C twice for each iteration, and hence
a drawback emerges. In [3], Censor et al. modified (2) and introduced the subgradient
extragradient method:

yn = PC(xn − τAxn),
Cn = {x ∈ H : 〈xn − τAxn − yn, x− yn〉 ≤ 0},
xn+1 = PCn(xn − τAyn) ∀n ≥ 0,

(3)

with τ ∈ (0, 1
L ), where L is the Lipschitz constant of A. In 2018, by virtue of the inertial

technique, Thong and Hieu [9] studied an inertial subgradient extragradient method,
x0, x1 ∈ H: 

wn = xn + αn(xn − xn−1),
yn = PC(wn − τAwn),
Cn = {x ∈ H : 〈wn − τAwn − yn, x− yn〉 ≤ 0},
xn+1 = PCn(wn − τAyn) ∀n ≥ 1,

(4)

with τ ∈ (0, 1
L ), where L is the Lipschitz constant of A. Under some conditions, a weak

convergence of {xn} was obtained. Ceng and Shang in [11] introduced the hybrid inertial
subgradient extragradient method with a linear-search process to solve VIP in which A is
pseudomonotone and Lipschitz continuous and the common fixed-point problem (CFPP)
of nonexpansive mappings {Ti}N

i=1 and an asymptotically nonexpansive mapping T in a
real Hilbert space H are present. Given a contraction f : H → H with constant δ ∈ [0, 1),
and an η-strongly monotone and κ-Lipschitzian mapping F : H → H with δ < τ :=
1−

√
1− ρ(2η − ρκ2) for ρ ∈ (0, 2η/κ2). Let {αn} ⊂ [0, 1] and {βn}, {γn} ⊂ (0, 1) with

βn + γn < 1 ∀n ≥ 1. Moreover, one writes Tn := TnmodN for integer n ≥ 1 with the mod
function taking values in the set {1, 2, . . . , N}, i.e., if n = jN + q for some integers j ≥ 0
and 0 ≤ q < N, then Tn = TN if q = 0 and Tn = Tq if 0 < q < N. Their algorithm is
formulated below.

Under appropriate conditions, they proved the strong convergence of Algorithm 1 to
an element of Ω =

⋂N
i=0 Fix(Ti) ∩VI(C, A) with T0 := T. Meanwhile, Reich et al. [12] sug-

gested the modified projection-type method for solving the VIP with the pseudomonotone
and uniformly continuous mapping A given a sequence {αn} ⊂ (0, 1) and a contraction
f : C → C with constant δ ∈ [0, 1). Their algorithm is formulated below.

Algorithm 1 (see [11]). Initialization: Choose γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Take x0, x1 ∈ H.
Iterative Steps: Compute xn+1 in this manner:
Step 1. Set wn = Tnxn + αn(Tnxn − Tnxn−1) and compute yn = PC(wn − τn Awn),
where τn is chosen to be the largest τ ∈ {γ, γl, γl2, . . . } satisfying

τ‖Awn − Ayn‖ ≤ µ‖wn − yn‖.

Step 2. Compute zn = PCn(wn − τn Ayn) with Cn := {x ∈ H : 〈wn − τn Awn − yn, x− yn〉 ≤
0}.
Step 3. Compute xn+1 = βn f (xn) + γnxn + ((1− γn)I − βnρF)Tnzn.
Again set n := n + 1 and go to Step 1.

Under mild conditions, strong convergence of Algorithm 2 to an element of VI(C, A)
was given. Inspired by the above research works, we propose two Mann-type subgradient-
like extragradient algorithms with linear-search process for solving a hierarchical variational
inequality (HVI) with the common fixed-point problem (CFPP) constraint of family non-
expansive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. We
combine the Mann iteration method, subgradient extragradient method with linear-search
process, and viscosity approximation method and provide strong convergence results under
suitable conditions. We provide an illustration of our theory with an example.

We organize the paper as follows: Some definitions and preliminary results are given
in Section 2. In Section 3, we provide convergence analysis of the proposed algorithms. In
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Section 4, our main results are applied to solve the VIP and CFPP in an illustrated example.
Finally, some concluding remarks are given in Section 5.

Algorithm 2 (see [12]).

Initialization: Given µ > 0, l ∈ (0, 1), λ ∈ (0, 1
µ ). Let x1 ∈ C be arbitrary.

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute yn = PC(xn − λAxn) and rλ(xn) := xn − yn. If rλ(xn) = 0, then stop; xn
is a solution of VI(C, A). Otherwise,
Step 2. Compute wn = xn − τnrλ(xn), where τn := l jn and jn is the smallest nonnegative
integer j satisfying

〈Axn − A(xn − l jrλ(xn)), rλ(xn)〉 ≤
µ

2
‖rλ(xn)‖2.

Step 3. Compute xn+1 = αn f (xn) + (1− αn)PCn(xn), where Cn := {x ∈ C : hn(xn) ≤ 0}
and hn(x) = 〈Fwn, x− xn〉+ τn

2λ‖rλ(xn)‖2.
Again set n := n + 1 and go to Step 1.

2. Preliminaries

A mapping T : C → H is called the following:

(a) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that ‖Tx− Ty‖ ≤ L‖x−
y‖ ∀x, y ∈ C;

(b) Monotone if 〈Tx− Ty, x− y〉 ≥ 0 ∀x, y ∈ C;
(c) Pseudomonotone if 〈Tx, y− x〉 ≥ 0⇒ 〈Ty, y− x〉 ≥ 0 ∀x, y ∈ C;
(d) α-strongly monotone if ∃α > 0 such that 〈Tx− Ty, x− y〉 ≥ α‖x− y‖2 ∀x, y ∈ C;
(e) Sequentially weakly continuous if ∀{xn} ⊂ C, the relation holds: xn ⇀ x ⇒ Txn ⇀ Tx.

It is known that every monotone operator is pseudomonotone. However, the converse
fails. For each x ∈ H, there exists a unique nearest point in C such that ‖x − PCx‖ ≤
‖x− y‖ ∀y ∈ C. Such a point is denoted by PCx, called a metric projection of H onto C.
According to [14], we know that the following holds:

(a) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 ∀x, y ∈ H;
(b) 〈x− PCx, y− PCx〉 ≤ 0 ∀x ∈ H, y ∈ C;
(c) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y− PCx‖2 ∀x ∈ H, y ∈ C;
(d) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 ∀x, y ∈ H;
(e) ‖λx + µy‖2 = λ‖x‖2 + µ‖y‖2 − λµ‖x− y‖2 ∀x, y ∈ H, ∀λ, µ ∈ [0, 1] with λ + µ = 1.

Lemma 1 (see [13]). Let H1 and H2 be two real Hilbert spaces. Suppose that A : H1 → H2 is
uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1, then A(M)
is bounded.

The following inequality is an immediate consequence of the subdifferential inequality of the
function 1

2‖ · ‖2:
‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀x, y ∈ H.

Lemma 2 (see [15]). Let h be a real-valued function on H and define K := {x ∈ C : h(x) ≤ 0}.
If K is nonempty and h is Lipschitz continuous on C with modulus θ > 0, then dist(x, K) ≥
θ−1 max{h(x), 0} ∀x ∈ C, where dist(x, K) denotes the distance of x to K.

Lemma 3 (see [3], Lemma 1). Let A : C → H be pseudomonotone and continuous. Then, x∗ ∈ C
is a solution to the VIP 〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C, if and only if 〈Ax, x− x∗〉 ≥ 0 ∀x ∈ C.

Lemma 4 (see [16]). Let {an} be a sequence of nonnegative numbers satisfying the following con-
ditions: an+1 ≤ (1− λn)an + λnγn ∀n ≥ 1, where {λn} and {γn} are sequences of real numbers



Mathematics 2021, 9, 3322 4 of 17

such that (i) {λn} ⊂ [0, 1] and ∑∞
n=1 λn = ∞, and (ii) lim supn→∞ γn ≤ 0 or ∑∞

n=1 |λnγn| < ∞.
Then limn→∞ an = 0.

Lemma 5 (see [17]). Let X be a Banach space that admits a weakly continuous duality mapping, let
C be a nonempty closed convex subset of X, and let T : C → C be an asymptotically nonexpansive
mapping with Fix(T) 6= ∅. Then, I − T is demiclosed at zero, i.e., if {xn} is a sequence in C such
that xn ⇀ x ∈ C and (I − T)xn → 0, then (I − T)x = 0, where I is the identity mapping of X.

3. Main Results

In this section, we assume the following.
T : C → C is an asymptotically nonexpansive mapping and Ti : C → C is a nonexpan-

sive mapping for i = 1, . . . , N such that the sequence {Tn}∞
n=1 is defined as in Algorithm 1.

A : H → H is pseudomonotone and uniformly continuous on C, s.t. ‖Az‖ ≤
lim infn→∞ ‖Axn‖ for each {xn} ⊂ C with xn ⇀ z.

f : C → C is a contraction with constant δ ∈ [0, 1), and Ω =
⋂N

i=0 Fix(Ti) ∩VI(C, A) 6=
∅ with T0 := T.

{σn} ⊂ [0, 1] and {αn}, {βn}, {γn} ⊂ (0, 1) such that the following is the case:

(i) αn + βn + γn = 1 and 0 < lim infn→∞ γn;
(ii) limn→∞ αn = 0 and ∑∞

n=1 αn = ∞;
(iii) 0 < lim infn→∞ σn and limn→∞(θn/αn) = 0.

Lemma 6. The Armijo-type search rule (5) is well defined, and the inequality holds: 〈Awn, rλ(wn)〉 ≥
λ−1‖rλ(wn)‖2. Recall that the Armijo-type search rule is a backtracking line search that determines the
amount to move along a given search direction and involves starting with a relatively large estimate of the
step size for movement along the search direction and iteratively shrinking the step size until a decrease as
given in (5) is observed.

Proof. Since l ∈ (0, 1) and A are uniformly continuous on C, one has limj→∞〈Awn −
A(wn − l jrλ(wn)), rλ(wn)〉 = 0. If rλ(wn) = 0, then it is clear that jn = 0. If rλ(wn) 6= 0,
then there exists an integer jn ≥ 0 satisfying (5).

Since PC is firmly nonexpansive, one knows that ‖x− PCy‖2 ≤ 〈x− y, x− PCy〉 ∀x ∈
C, y ∈ H. Placing y = wn − λAwn and x = wn, one obtains ‖wn − PC(wn − λAwn)‖2 ≤
λ〈Awn, wn − PC(wn − λAwn)〉, and hence 〈Awn, rλ(wn)〉 ≥ λ−1‖rλ(wn)‖2.

Lemma 7. Let p ∈ Ω and let the function hn be defined by (6). Then, hn(wn) =
τn
2λ‖rλ(wn)‖2

and hn(p) ≤ 0. In particular, if rλ(wn) 6= 0, then hn(wn) > 0.

Proof. The first assertion of Lemma 6 is obvious. In what follows, let us show the second
assertion. Indeed, let p ∈ Ω. Then, by Lemma 3 one has 〈Atn, tn − p〉 ≥ 0. Thus, the
following is the case.

hn(p) = 〈Atn, p− wn〉+ τn
2λ‖rλ(wn)‖2

= −〈Atn, wn − tn〉 − 〈Atn, tn − p〉+ τn
2λ‖rλ(wn)‖2

≤ −τn〈Atn, rλ(wn)〉+ τn
2λ‖rλ(wn)‖2.

(5)

On the other hand, by (5) one has the following.

〈Awn − Atn, rλ(wn)〉 ≤
µ

2
‖rλ(wn)‖2.

Thus, by Lemma 6, we obtain the following.

〈Atn, rλ(wn)〉 ≥ 〈Awn, rλ(wn)〉 − µ
2 ‖rλ(wn)‖2

≥ ( 1
λ −

µ
2 )‖rλ(wn)‖2.

(6)
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Combining (7) and (8), we obtain the following.

hn(p) ≤ −τn

2
(

1
λ
− µ)‖rλ(wn)‖2. (7)

Consequently, hn(p) ≤ 0, as asserted.

Lemma 8. Let {wn}, {xn}, {yn}, {zn} be bounded sequences generated by Algorithm 3. If xn −
xn+1 → 0, wn − xn → 0, wn − yn → 0, wn − zn and Tnzn − Tn+1zn → 0 and ∃{wnk} ⊂
{wn} such that wnk ⇀ z ∈ C, then z ∈ Ω.

Algorithm 3 Initialization: Given µ > 0, l ∈ (0, 1), λ ∈ (0, 1
µ ). Pick x1 ∈ C.

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Set wn = (1− σn)xn + σnTnxn, and compute yn = PC(wn − λAwn) and rλ(wn) :=
wn − yn.
Step 2. Compute tn = wn − τnrλ(wn), where τn := l jn and jn is the smallest nonnegative
integer j satisfying

〈Awn − A(wn − l jrλ(wn)), wn − yn〉 ≤
µ

2
‖rλ(wn)‖2. (8)

Step 3. Compute zn = PCn(wn) and xn+1 = αn f (xn) + βnxn + γnTnzn, where Cn := {x ∈
C : hn(x) ≤ 0} and

hn(x) = 〈Atn, x− wn〉+
τn

2λ
‖rλ(wn)‖2. (9)

Set n := n + 1 and return to Step 1.

Proof. By Algorithm 3, wn − xn = σn(Tnxn − xn) ∀n ≥ 1, and hence ‖wn − xn‖ =
σn‖Tnxn − xn‖. Utilizing the assumptions lim infn→∞ σn > 0 and wn − xn → 0, we have
the following.

lim
n→∞

‖xn − Tnxn‖ = 0. (10)

By Algorithm 3, we obtain xn+1− zn = αn( f (xn)− zn)+ βn(xn− zn)+γn(Tnzn− zn),
which immediately yields the following.

γn‖Tnzn − zn‖ ≤ ‖xn+1 − zn‖+ αn(‖ f (xn)‖+ ‖zn‖) + βn‖xn − zn‖
≤ ‖xn+1 − xn‖+ 2(‖xn − wn‖+ ‖wn − zn‖) + αn(‖ f (xn)‖+ ‖zn‖).

Since xn − xn+1 → 0, wn − xn → 0, wn − zn → 0, αn → 0, lim infn→∞ γn > 0
and {xn}, {zn} are bounded, we obtain limn→∞ ‖zn − Tnzn‖ = 0, which together with
Tnzn − Tn+1zn → 0 implies the following.

‖zn − Tzn‖ ≤ ‖zn − Tnzn‖+ ‖Tnzn − Tn+1zn‖+ ‖Tn+1zn − Tzn‖
≤ ‖zn − Tnzn‖+ ‖Tnzn − Tn+1zn‖+ (1 + θ1)‖Tnzn − zn‖
= (2 + θ1)‖zn − Tnzn‖+ ‖Tnzn − Tn+1zn‖ → 0 (n→ ∞).

(11)

Moreover, from yn = PC(wn− λAwn), we have 〈wn− λAwn− yn, x− yn〉 ≤ 0 ∀x ∈ C,
and hence the following is the case.

1
λ
〈wn − yn, x− yn〉+ 〈Awn, yn − wn〉 ≤ 〈Awn, x− wn〉 ∀x ∈ C. (12)

According to the uniform continuity of A on C, one knows that {Awn} is bounded
(due to Lemma 1). Note that {yn} is bounded as well. Thus, from (12), we obtain
lim infk→∞〈Awnk , x− wnk 〉 ≥ 0 ∀x ∈ C. Meantime, observe that 〈Ayn, x− yn〉 = 〈Ayn −
Awn, x−wn〉+ 〈Awn, x−wn〉+ 〈Ayn, wn− yn〉. Since wn− yn → 0, from the uniform conti-
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nuity of A we obtain Awn− Ayn → 0, which together with (12) yields lim infk→∞〈Aynk , x−
ynk 〉 ≥ 0 ∀x ∈ C.

Next we show that limn→∞ ‖xn − Trxn‖ = 0 for r = 1, . . . , N. Indeed, note that for
i = 1, . . . , N, the following is the case.

‖xn − Tn+ixn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − Tn+ixn+i‖+ ‖Tn+ixn+i − Tn+ixn‖
≤ 2‖xn − xn+i‖+ ‖xn+i − Tn+ixn+i‖.

Hence, from (10) and the assumption xn − xn+1 → 0, we obtain limn→∞ ‖xn −
Tn+ixn‖ = 0 for i = 1, . . . , N. This immediately implies that the following is the case.

lim
n→∞

‖xn − Trxn‖ = 0 for r = 1, . . . , N. (13)

We now take a sequence {εk} ⊂ (0, 1) satisfying εk ↓ 0 as k→ ∞. For each k ≥ 1, we
denote by mk the smallest positive integer such that the following is the case.

〈Aynj , x− ynj〉+ εk ≥ 0 ∀j ≥ mk. (14)

Since {εk} is decreasing, it is clear that {mk} is increasing. Noticing that {ymk} ⊂ C

guarantees Aymk 6= 0 ∀k ≥ 1, we set umk =
Aymk
‖Aymk ‖

2 , and we obtain 〈Aymk , umk 〉 = 1 ∀k ≥
1. Thus, from (14), we obtain 〈Aymk , x + εkumk − ymk 〉 ≥ 0 ∀k ≥ 1. Again from the
pseudomonotonicity of A, we have 〈A(x + εkumk ), x + εkumk − ymk 〉 ≥ 0 ∀k ≥ 1. This
immediately results in

〈Ax, x− ymk 〉 ≥ 〈Ax− A(x + εkumk ), x + εkumk − ymk 〉 − εk〈Ax, umk 〉 ∀k ≥ 1. (15)

We claim that limk→∞ εkumk = 0. Indeed, from wnk ⇀ z ∈ C and wn − yn → 0,
we obtain ynk ⇀ z. Using the assumption on A, instead of the sequentially weak con-
tinuity of A, we obtained 0 < ‖Az‖ ≤ lim infk→∞ ‖Aynk‖ (otherwise, if Az = 0, then
z is a solution). Note that {ymk} ⊂ {ynk} and εk ↓ 0 as k → ∞. Thus, it follows that

0 ≤ lim supk→∞ ‖εkumk‖ = lim supk→∞
εk

‖Aymk ‖
≤ lim supk→∞ εk

lim infk→∞ ‖Aynk ‖
= 0. Hence, we obtain

εkumk → 0 as k→ ∞.
Next, we show that z ∈ Ω. Indeed, from wn− xn → 0 and wnk ⇀ z, we obtain xnk ⇀ z.

From (13), we have xnk − Trxnk → 0 for r = 1, . . . , N. Note that Lemma 5 guarantees
the demiclosedness of I − Tr at zero for r = 1, . . . , N. Thus, z ∈ Fix(Tr). Since r is an
arbitrary element in the finite set {1, . . . , N}, we obtain z ∈ ∩N

r=1Fix(Tr). Simultaneously,
from wn − zn → 0 and wnk ⇀ z, we obtain znk ⇀ z. From (11), we have znk − Tznk → 0.
From Lemma 5, it follows that I−T is demiclosed at zero, and hence we obtain (I−T)z = 0,
i.e., z ∈ Fix(T). On the other hand, letting k→ ∞, we deduce that the right-hand side of (15)
tends to zero by the uniform continuity of A, the boundedness of {ymk}, {umk}, and the limit
limk→∞ εkumk = 0. Thus, we obtain 〈Ax, x − z〉 = lim infk→∞〈Ax, x − ymk 〉 ≥ 0 ∀x ∈ C.
By Lemma 3, we have z ∈ VI(C, A). Therefore, z ∈ ∩N

i=0Fix(Ti) ∩VI(C, A) = Ω.

Lemma 9. Let {wn} be the sequence constructed by Algorithm 3. Then, the following is the case.

lim
n→∞

τn‖rλ(wn)‖2 = 0 ⇒ lim
n→∞

‖wn − yn‖ = 0.

Proof. To show the conclusion, we consider two cases. In the case when lim infn→∞ τn > 0,
we might assume that there exists a constant τ > 0 such that τn ≥ τ > 0 ∀n ≥ 1, which
hence yields the following.

‖wn − yn‖2 =
1
τn

τn‖wn − yn‖2 ≤ 1
τ
· τn‖wn − yn‖2 =

1
τ
· τn‖rλ(wn)‖2. (16)
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This together with limn→∞ τn‖rλ(wn)‖2 = 0 results in limn→∞ ‖wn − yn‖ = 0.

In the case, when lim infn→∞ τn = 0, we might pick a subsequence {nk} of {n}
such that the following is the case.

lim
k→∞

τnk = 0 and lim
k→∞
‖wnk − ynk‖ = a > 0. (17)

Let υnk = 1
l τnk ynk + (1 − 1

l τnk )wnk . Then, υnk = wnk −
1
l τnk (wnk − ynk ). Since

limn→∞ τn‖rλ(wn)‖2 = 0, we have the following.

lim
k→∞
‖υnk − wnk‖

2 = lim
k→∞

1
l2 τnk · τnk‖wnk − ynk‖

2 = 0. (18)

From the step size rule (5) and the definition of υnk , it follows that the following is
the case.

〈Awnk − Aυnk , wnk − ynk 〉 >
µ

2
‖wnk − ynk‖

2. (19)

Since A is uniformly continuous on bounded subsets of C, (18) ensures the following.

lim
k→∞
‖Awnk − Aυnk‖ = 0.

This, however, contradicts with (17). Thus, it follows that limn→∞ ‖wn − yn‖ = 0.

Theorem 1. Let {xn} be the sequence constructed by Algorithm 3. Assume that Tnzn−Tn+1zn →
0. Then, the following is the case:

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − yn → 0

where x∗ ∈ Ω is the unique solution of the VIP: 〈(I − f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. Since 0 < lim infn→∞ γn and limn→∞
θn
αn

= 0, we may assume, without loss of

generality, that {γn} ⊂ [a, 1) ⊂ (0, 1) and θn ≤ αn(1−δ)
2 ∀n ≥ 1. We claim that PΩ ◦ f : C →

C is a contraction. Indeed, it is clear that ‖PΩ f (x)− PΩ f (y)‖ ≤ δ‖x− y‖ ∀x, y ∈ C, which
implies that PΩ ◦ f is a contraction. Banach’s Contraction Mapping Principle guarantees
that PΩ ◦ f has a unique fixed point. Say x∗ ∈ C, that is, x∗ = PΩ f (x∗). Thus, there exists a
unique solution x∗ ∈ Ω = ∩N

i=0Fix(Ti) ∩VI(C, A) of the VIP

〈(I − f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω. (20)

If xn → x∗ ∈ Ω = ∩N
i=0Fix(Ti) ∩ VI(C, A), then x∗ = Tix∗ for i = 0, 1, . . . , N and

x∗ = PC(x∗ − λAx∗), together with Algorithm 3, imply the following.

‖wn − x∗‖ = ‖(1− σn)(xn − x∗) + σn(Tnxn − Tnx∗)‖ ≤ ‖xn − x∗‖ → 0 (n→ ∞).

Hence, using the continuity of A on C, we obtain that ‖Awn − Ax∗‖ → 0 and the
following is the case.

‖yn − xn‖ ≤ ‖yn − x∗‖+ ‖xn − x∗‖
= ‖PC(wn − λAwn)− PC(x∗ − λAx∗)‖+ ‖xn − x∗‖
≤ ‖wn − x∗‖+ λ‖Awn − Ax∗‖+ ‖xn − x∗‖ → 0 (n→ ∞).
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In addition, it is clear that the following is obtained.

‖xn − xn+1‖ ≤ ‖xn − x∗‖+ ‖xn+1 − x∗‖ → 0 (n→ ∞).

Next, we show the sufficiency of the theorem. To this aim, we assume limn→∞(‖xn −
xn+1‖+ ‖xn − yn‖) = 0 and divide the proof of sufficiency into several steps.

Step 1. We show that {xn} is bounded. Indeed, take an arbitrary p ∈ Ω = ∩N
i=0Fix(Ti) ∩

VI(C, A). Then, Tp = p and Tn p = p ∀n ≥ 1. We claim that the following inequality holds.

‖zn − p‖2 ≤ ‖wn − p‖2 − dist2(wn, Cn) ∀p ∈ Ω. (21)

Indeed, one has the following.

‖zn − p‖2 = ‖PCn wn − p‖2 ≤ ‖wn − p‖2 − ‖PCn wn − wn‖2

= ‖wn − p‖2 − dist2(wn, Cn).

Thus, the following is the case.

‖zn − p‖ ≤ ‖wn − p‖ ∀n ≥ 1. (22)

Then, the following is obtained:

‖wn − p‖ ≤ (1− σn)‖xn − p‖+ σn‖Tnxn − p‖ ≤ ‖xn − p‖.

which together with (22) yields the following.

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ ∀n ≥ 1. (23)

Thus, from (23) and αn + βn + γn = 1 ∀n ≥ 1, the following is the case.

‖xn+1 − p‖ = ‖αn f (xn) + βnxn + γnTnzn − p‖
≤ αn‖ f (xn)− p‖+ βn‖xn − p‖+ γn‖Tnzn − p‖
≤ αn(‖ f (xn)− f (p)‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn(1 + θn)‖zn − p‖
≤ αn(δ‖xn − p‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn‖zn − p‖+ θn‖zn − p‖
≤ αn(δ‖xn − p‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn‖xn − p‖+ αn(1−δ)

2 ‖xn − p‖
= [1− αn(1−δ)

2 ]‖xn − p‖+ αn‖ f (p)− p‖
= [1− αn(1−δ)

2 ]‖xn − p‖+ αn(1−δ)
2 · 2‖ f (p)−p‖

1−δ

≤ max{‖xn − p‖, 2‖ f (p)−p‖
1−δ }.

Therefore, we obtain ‖xn − p‖ ≤ max{‖x1 − p‖, 2‖ f (p)−p‖
1−δ } ∀n ≥ 1. Thus, {xn} is

bounded, and so are the sequences {wn}, {yn}, {zn}, { f (xn)}, {Atn}, {Tnzn}, {Tnxn}.

Step 2. We show that the following is the case.

γn‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉.

To prove this, we first note that the following is the case:

‖xn+1 − p‖2 = ‖αn( f (xn)− p) + βn(xn − p) + γn(Tnzn − p)‖2

≤ ‖βn(xn − p) + γn(Tnzn − p)‖2 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ βn‖xn − p‖2 + γn(1 + θn)2‖zn − p‖2 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ βn‖xn − p‖2 + γn‖zn − p‖2 + θn(2 + θn)‖zn − p‖2 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ βn‖xn − p‖2 + γn‖zn − p‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉,

(24)
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where supn≥1(2 + θn)‖zn − p‖2 ≤ M1 for some M1 > 0. On the other hand, from (23) one
has the following.

‖zn − p‖2 = ‖PCn wn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖zn − wn‖2. (25)

Substituting (24) into (25), one obtains the following.

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + γn(‖xn − p‖2 − ‖zn − wn‖2)
+ θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉

= (1− αn)‖xn − p‖2 − γn‖zn − wn‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ ‖xn − p‖2 − γn‖zn − wn‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉.

This immediately implies the following.

γn‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉.

Step 3. We show the following.

γn[
τn

2λL
‖rλ(wn)‖2]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn)− p‖2 + θn M1.

Indeed, we claim that for some L > 0, the following obtains.

‖zn − p‖2 ≤ ‖wn − p‖2 − [
τn

2λL
‖rλ(wn)‖2]2. (26)

Since the sequence {Atn} is bounded, there exists L > 0 such that ‖Atn‖ ≤ L ∀n ≥ 1.
This ensures that for all u, v ∈ Cn, the following is the case:

|hn(u)− hn(v)| = |〈Atn, u− v〉| ≤ ‖Atn‖‖u− v‖ ≤ L‖u− v‖,

which hence implies that hn(·) is L-Lipschitz continuous on Cn. By Lemmas 2 and 7,
we obtain

dist(wn, Cn) ≥
1
L

hn(wn) =
τn

2λL
‖rλ(wn)‖2. (27)

Combining (21) and (27), we obtain the following.

‖zn − p‖2 ≤ ‖wn − p‖2 − [
τn

2λL
‖rλ(wn)‖2]2.

From Algorithm 3, (23), and (26), the following is obtained.

‖xn+1 − p‖2 ≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖Tnzn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn(1 + θn)2‖zn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖zn − p‖2 + θn(2 + θn)‖zn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn[‖wn − p‖2 − [ τn
2λL‖rλ(wn)‖2]2] + θn M1

≤ αn‖ f (xn)− p‖2 + (1− αn)‖xn − p‖2 − γn
τn

2λL‖rλ(wn)‖2]2 + θn M1
≤ αn‖ f (xn)− p‖2 + θn M1 + ‖xn − p‖2 − γn

τn
2λL‖rλ(wn)‖2]2.

This immediately yields the following.

γn[
τn

2λL
‖rλ(wn)‖2]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn)− p‖2 + θn M1.

Step 4. Let us obtain the following.

‖xn+1 − p‖2 ≤ (1− αn(1− δ))‖xn − p‖2 + αn(1− δ)[
2〈 f (p)− p, xn+1 − p〉

1− δ
+

θn

αn
· M1

1− δ
]. (28)

Indeed, from Algorithm 3 and (23), one obtains the following.
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‖xn+1 − p‖2 = ‖αn( f (xn)− f (p)) + βn(xn − p) + γn(Tnzn − p) + αn( f (p)− p)‖2

≤ ‖αn( f (xn)− f (p)) + βn(xn − p) + γn(Tnzn − p)‖2 + 2αn〈 f (p)− p, xn+1 − p〉
≤ αn‖ f (xn)− f (p)‖2 + βn‖xn − p‖2 + γn(1 + θn)2‖zn − p‖2 + 2αn〈 f (p)− p, xn+1 − p〉
≤ δαn‖xn − p‖2 + βn‖xn − p‖2 + γn‖zn − p‖2 + θn(2 + θn)‖zn − p‖2

+ 2αn〈 f (p)− p, xn+1 − p〉
≤ δαn‖xn − p‖2 + βn‖xn − p‖2 + γn‖xn − p‖2 + θn M1 + 2αn〈 f (p)− p, xn+1 − p〉
= [1− αn(1− δ)]‖xn − p‖2 + θn M1 + 2αn〈 f (p)− p, xn+1 − p〉
= (1− αn(1− δ))‖xn − p‖2 + αn(1− δ)[ 2〈 f (p)−p,xn+1−p〉

1−δ + θn
αn
· M1

1−δ ].

Step 5. Let p = x∗, we deduce from (28) that the following is the case.

‖xn+1 − x∗‖2 ≤ (1− αn(1− δ))‖xn − x∗‖2 + αn(1− δ)[
2〈 f (x∗)− x∗, xn+1 − x∗〉

1− δ
+

θn

αn
· M1

1− δ
]. (29)

We need to show that lim supn→∞〈 f (x∗)− x∗, xn+1 − x∗〉 ≤ 0. Substituting p = x∗,
from Step 2, we obtain the following.

γn‖zn − wn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + θn M1 + 2αn〈 f (xn)− x∗, xn+1 − x∗〉
≤ ‖xn − xn+1‖(‖xn − x∗‖+ ‖xn+1 − x∗‖) + θn M1 + 2αn‖ f (xn)− x∗‖‖xn+1 − x∗‖.

Since 0 < lim infn→∞ γn, θn → 0, αn → 0 and xn − xn+1 → 0. From the boundedness
of {xn}, one obtains the following.

lim
n→∞

‖wn − zn‖ = 0. (30)

Substituting p = x∗, from Step 3, we obtain the following.

γn[
τn

2λL‖rλ(wn)‖2]2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αn‖ f (xn)− x∗‖2 + θn M1
≤ ‖xn − xn+1‖(‖xn − x∗‖+ ‖xn+1 − x∗‖) + θn M1 + αn‖ f (xn)− x∗‖2.

Since 0 < lim infn→∞ γn, θn → 0, αn → 0, and xn − xn+1 → 0 (due to the assumption),
from the boundedness of {xn}, one obtains the following.

lim
n→∞

[
τn

2λL
‖rλ(wn)‖2]2 = 0.

Hence, by Lemma 9, we deduce the following.

lim
n→∞

‖wn − yn‖ = 0. (31)

Obviously, assumption xn − yn → 0 together with (31) implies the following.

‖wn − xn‖ ≤ ‖wn − yn‖+ ‖yn − xn‖ → 0 (n→ ∞). (32)

From the boundedness of {xn}, it follows that there exists a subsequence {xnk} of
{xn} such that the following is the case.

lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 = lim
k→∞
〈 f (x∗)− x∗, xnk − x∗〉. (33)

Since H is reflexive and {xn} is bounded, we may assume, without loss of generality,
that xnk ⇀ x̃. Thus, from (33), one obtains the following.

lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 = lim
k→∞
〈 f (x∗)− x∗, xnk − x∗〉

= 〈 f (x∗)− x∗, x̃− x∗〉.
(34)
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Thus, it follows from wn − xn → 0 (due to (32)) and xnk ⇀ x̃ that wnk ⇀ x̃. Since
xn − xn+1 → 0, wn − xn → 0, wn − yn → 0, wn − zn → 0 and wnk ⇀ x̃, by Lemma 8, we
infer that x̃ ∈ Ω. Hence, from (20) and (34), one obtains the following:

lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 = 〈 f (x∗)− x∗, x̃− x∗〉 ≤ 0, (35)

which immediately results in the following.

lim sup
n→∞

〈 f (x∗)− x∗, xn+1 − x∗〉

= lim sup
n→∞

[〈 f (x∗)− x∗, xn+1 − xn〉+ 〈 f (x∗)− x∗, xn − x∗〉]

≤ lim sup
n→∞

[‖ f (x∗)− x∗‖‖xn+1 − xn‖+ 〈 f (x∗)− x∗, xn − x∗〉] ≤ 0.

(36)

Note that {αn(1− δ)} ⊂ [0, 1], ∑∞
n=1 αn(1− δ) = ∞, and the following is the case.

lim sup
n→∞

[
2〈 f (x∗)− x∗, xn+1 − x∗〉

1− δ
+

θn

αn
· M1

1− δ
] ≤ 0.

Consequently, by applying Lemma 4 to (29), one has limn→∞ ‖xn − x∗‖ = 0. This
completes the proof.

Theorem 2. Let T : C → C be nonexpansive and the sequence {xn} be constructed by the modified
version of Algorithm 3; that is, for any initial x1 ∈ C, the following is the case:

wn = (1− σn)xn + σnTnxn,
yn = PC(wn − λAwn),
tn = (1− τn)wn + τnyn,
zn = PCn(wn),
xn+1 = αn f (xn) + βnxn + γnTzn ∀n ≥ 1,

where for each n ≥ 1, Cn, and τn are chosen as in Algorithm 3. Then, the following is the case:

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − yn → 0

where x∗ ∈ Ω is the unique solution of the VIP: 〈(I − f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. The necessity is obvious. Thus, we show the sufficiency. Assume limn→∞(‖xn −
xn+1‖+ ‖xn − yn‖) = 0 and divide the rest of the proof into several steps.

Step 1. {xn} is bounded: Indeed, using the same argument as in Step 1 of the proof of
Theorem 1, we obtain the desired assertion.

Step 2. We obtain the following:

γn‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉,

for some M1 > 0. Indeed, using the same arguments as in Step 2 of the proof of Theorem 1,
we obtain the desired assertion.

Step 3. We prove that the following is the case.

γn[
τn

2λL
‖rλ(wn)‖2]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn)− p‖2 + θn M1.

Indeed, similar arguments similar to those in Step 3 of the proof of Theorem 1 provide
the assertion.
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Step 4. We show the following.

‖xn+1 − p‖2 ≤ (1− αn(1− δ))‖xn − p‖2 + αn(1− δ)[
2〈 f (p)− p, xn+1 − p〉

1− δ
+

θn

αn
· M1

1− δ
].

By Step 4 of the proof of Theorem 1, we obtain the desired conclusion.

Step 5. {xn} converges strongly to the unique solution x∗ ∈ Ω of the VIP (20): substitute
p = x∗ and we deduce from Step 4 that the following is the case.

‖xn+1 − x∗‖2 ≤ (1− αn(1− δ))‖xn − x∗‖2 + αn(1− δ)[
2〈 f (x∗)− x∗, xn+1 − x∗〉

1− δ
+

θn

αn
· M1

1− δ
]. (37)

We show that lim supn→∞〈 f (x∗)− x∗, xn+1 − x∗〉 ≤ 0. Using the same arguments as
those of (30) and (31), we obtain the following.

lim
n→∞

‖wn − zn‖ = 0 and lim
n→∞

‖wn − yn‖ = 0. (38)

Now, the following is obtained.

xn+1 − xn = αn( f (xn)− xn) + γn(Tzn − xn)
= αn( f (xn)− xn) + γn(Tzn − zn + zn − wn + wn − yn + yn − xn)
= αn( f (xn)− xn) + γn(Tzn − zn) + γn(zn − wn + wn − yn + yn − xn).

From (38), αn → 0, xn − xn+1 → 0, xn − yn → 0, {γn} ⊂ [a, 1) ⊂ (0, 1), and the
boundedness of {xn}, { f (xn)}, it follows that, as n→ ∞, the following is the case.

‖Tzn − zn‖ = 1
γn
‖xn+1 − xn − αn( f (xn)− xn)− γn(zn − wn + wn − yn + yn − xn)‖

≤ 1
a [‖xn+1 − xn‖+ αn(‖ f (xn)‖+ ‖xn‖) + ‖zn − wn‖+ ‖wn − yn‖+ ‖yn − xn)‖]→ 0.

(39)

Obviously, combining (38) and xn − yn → 0 guarantees the following.

‖wn − xn‖ ≤ ‖wn − yn‖+ ‖yn − xn‖ → 0 (n→ ∞). (40)

The rest of the proof is similar to the arguments in Step 5 of the proof of Theorem 1.
Next, we introduce modified Mann-type subgradient-like extragradient algorithm.
Note that Lemmas 6–9 are valid for Algorithm 4.

Algorithm 4 Initialization: Given µ > 0, l ∈ (0, 1), λ ∈ (0, 1
µ ). Let x1 ∈ C be arbitrary.

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Set wn = (1− σn)xn + σnTnxn, and compute yn = PC(wn − λAwn) and rλ(wn) :=
wn − yn.
Step 2. Compute tn = wn − τnrλ(wn), where τn := l jn and jn is the smallest nonnegative
integer j satisfying

〈Awn − A(wn − l jrλ(wn)), wn − yn〉 ≤
µ

2
‖rλ(wn)‖2. (41)

Step 3. Compute zn = PCn(wn) and xn+1 = αn f (xn) + βnwn + γnTnzn, where Cn := {x ∈
C : hn(x) ≤ 0} and

hn(x) = 〈Atn, x− wn〉+
τn

2λ
‖rλ(wn)‖2. (42)

Again set n := n + 1 and go to Step 1.

Theorem 3. Let {xn} be the sequence constructed by Algorithm 4. Assume that Tnzn−Tn+1zn →
0. Then, the following is the case:

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − yn → 0

where x∗ ∈ Ω is the unique solution of the VIP: 〈(I − f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.
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Proof. Using the same arguments as in the proof of Theorem 1, we deduce that there exists
a unique solution x∗ ∈ Ω = ∩N

i=0Fix(Ti) ∩VI(C, A) of the VIP (20) and that the necessity
of the theorem is valid.

For sufficiency, assume limn→∞(‖xn− xn+1‖+ ‖xn− yn‖) = 0 and consider these steps.

Step 1. We show that {xn} is bounded. Indeed, using the same arguments as in Step 1 of
the proof of Theorem 1, we obtain that inequalities (21)–(23) hold. Thus, from (23) and
αn + βn + γn = 1 ∀n ≥ 1, the following is the case.

‖xn+1 − p‖ ≤ αn(‖ f (xn)− f (p)‖+ ‖ f (p)− p‖) + βn‖wn − p‖+ γn(1 + θn)‖zn − p‖
≤ αn(δ‖xn − p‖+ ‖ f (p)− p‖) + βn‖wn − p‖+ γn‖zn − p‖+ θn‖zn − p‖
≤ αn(δ‖xn − p‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn‖xn − p‖+ αn(1−δ)

2 ‖xn − p‖
= [1− αn(1−δ)

2 ]‖xn − p‖+ αn(1−δ)
2 · 2‖ f (p)−p‖

1−δ

≤ max{‖xn − p‖, 2‖ f (p)−p‖
1−δ }.

Hence, ‖xn − p‖ ≤ max{‖x1 − p‖, 2‖ f (p)−p‖
1−δ } ∀n ≥ 1. Thus, {xn} is bounded.

Step 2. We show the following.

γn‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉.

To prove this, we first note that the following is the case.

‖xn+1 − p‖2 = ‖αn( f (xn)− p) + βn(wn − p) + γn(Tnzn − p)‖2

≤ ‖βn(wn − p) + γn(Tnzn − p)‖2 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ βn‖wn − p‖2 + γn(1 + θn)2‖zn − p‖2 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ βn‖xn − p‖2 + γn‖zn − p‖2 + θn(2 + θn)‖zn − p‖2 + 2αn〈 f (xn)− p, xn+1 − p〉
≤ βn‖xn − p‖2 + γn‖zn − p‖2 + θn M1 + 2αn〈 f (xn)− p, xn+1 − p〉,

(43)

The desired conclusion follows from Step 2 of the proof of Theorem 1.

Step 3. We show the following.

γn[
τn

2λL
‖rλ(wn)‖2]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn)− p‖2 + θn M1.

Indeed, using the same argument as that of (28), we obtain that for some L > 0, the
following is the case.

‖zn − p‖2 ≤ ‖wn − p‖2 − [
τn

2λL
‖rλ(wn)‖2]2. (44)

From Algorithm 4, (23), and (44), the following is obtained.

‖xn+1 − p‖2 ≤ αn‖ f (xn)− p‖2 + βn‖wn − p‖2 + γn‖zn − p‖2 + θn(2 + θn)‖zn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖wn − p‖2 + γn[‖wn − p‖2 − [ τn
2λL‖rλ(wn)‖2]2] + θn M1

≤ αn‖ f (xn)− p‖2 + θn M1 + ‖xn − p‖2 − γn
τn

2λL‖rλ(wn)‖2]2.

By rearranging, we obtain the desired inequality.

Step 4. We show the following.

‖xn+1 − p‖2 ≤ (1− αn(1− δ))‖xn − p‖2 + αn(1− δ)[
2〈 f (p)− p, xn+1 − p〉

1− δ
+

θn

αn
· M1

1− δ
]. (45)

Indeed, from Algorithm 4 and (23), one obtains the following:

‖xn+1 − p‖2 ≤ ‖αn( f (xn)− f (p)) + βn(wn − p) + γn(Tnzn − p)‖2 + 2αn〈 f (p)− p, xn+1 − p〉
≤ δαn‖xn − p‖2 + βn‖wn − p‖2 + γn‖zn − p‖2 + θn(2 + θn)‖zn − p‖2

+ 2αn〈 f (p)− p, xn+1 − p〉
≤ δαn‖xn − p‖2 + βn‖xn − p‖2 + γn‖xn − p‖2 + θn M1 + 2αn〈 f (p)− p, xn+1 − p〉
= [1− αn(1− δ)]‖xn − p‖2 + θn M1 + 2αn〈 f (p)− p, xn+1 − p〉,
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which, hence, results in the desired assertion.

Step 5. We show that {xn} converges strongly to the unique solution x∗ ∈ Ω of the VIP
(20). Indeed, Step 5 of the proof of Theorem 1 provides the result.

Theorem 4. Let T : C → C be nonexpansive and the sequence {xn} be constructed by x1 ∈ C:
wn = (1− σn)xn + σnTnxn,
yn = PC(wn − λAwn),
tn = (1− τn)wn + τnyn,
zn = PCn(wn),
xn+1 = αn f (xn) + βnwn + γnTzn ∀n ≥ 1,

where for each n ≥ 1, Cn and τn are chosen in Algorithm 4. Then, the following is the case:

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − yn → 0

where x∗ ∈ Ω is the unique solution of the VIP: 〈(I − f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. Similar arguments as in the proof of Theorem 2 and Step 5 of Theorem 3 provide
the conclusions.

Remark 1. Our results complement the results in Kraikaew and Saejung [10], Ceng and Shang [11],
and Reich et al. [12] in the following ways:

(i) The problem of finding an element of VI(C, A) in [10] is extended to develop our problem of
finding an element of

⋂N
i=0 Fix(Ti) ∩ VI(C, A) where Ti is nonexpansive for i = 1, . . . , N,

and T0 = T is asymptotically nonexpansive. The Halpern subgradient extragradient method
for solving VIP in [10] is extended to develop our Mann-type subgradient-like extragradient
method with a line-search process for solving VIP and CFPP, which is based on Mann
iteration method, subgradient extragradient method with line-search process, and viscosity
approximation method.

(ii) The results in [12] are extended to finding an element of
⋂N

i=0 Fix(Ti) ∩VI(C, A). The modi-
fied projection-type method with linear-search process for solving the VIP in [12] is extended
to develop our Mann-type subgradient-like extragradient method with line-search process
for solving the VIP and CFPP, which is based on the Mann iteration method, subgradient
extragradient method with line-search process, and viscosity approximation method.

(iii) The problem of finding an element of
⋂N

i=0 Fix(Ti) ∩ VI(C, A) with Lipschitz continu-
ity and sequentially weak continuity mapping A in [11] is extended to finding an ele-
ment of

⋂N
i=0 Fix(Ti) ∩ VI(C, A) where A is uniformly continuous such that ‖Az‖ ≤

lim infn→∞ ‖Axn‖ for each {xn} ⊂ C with xn ⇀ z ∈ C. The hybrid inertial subgra-
dient extragradient method with line-search process in [11] is generalized to Mann-type
subgradient-like extragradient method with line-search process, e.g., the original inertial
approach “wn = Tnxn + αn(Tnxn − Tnxn−1)” is replaced by our Mann iteration method
“wn = (1− σn)xn + σnTnxn”, and the original iterative step “xn+1 = βn f (xn) + γnxn +
((1 − γn)I − βnρF)Tnzn” is replaced by our simpler iterative one “xn+1 = αn f (xn) +
βnxn + γnTnzn”. It is worth mentioning that the definition of zn in the former formulation
of xn+1 is very different from the definition of zn in the latter formulation of xn+1.

(iv) The method in [10] involves a combination of Halpern approximation method, subgradient
extragradient method, and Mann iteration to find a common solution to variational inequalities
and common fixed point problem involving quasi-nonexpansive mapping with strong conver-
gence results obtained. The method in [11] solves a problem of finding a common solution
to variational inequalities and common fixed point problem in which one of the operators is
asymptotically nonexpansive and others are nonexpansive mappings. The method of [11] is
a combination of the subgradient extragradient method, viscosity approximation and hybrid
steepest-descent method, and strong convergence results obtained. In [12], a strongly con-
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vergent method that is a combination of projection-type method and viscosity approximation
method is proposed to solve variational inequalities. Our proposed methods in this paper
are proposed to solve variational inequalities and common fixed point problem for which one
of the operators is asymptotically nonexpansive and others are nonexpansive, and A in the
variational inequality is pseudomonotone and uniformly continuous (unlike [11] where A is
Lipschitz continuous). One method involves a combination of the method proposed in [12]
and viscosity approximation. In essence, our results in this paper reduce to the results in [12]
when the operators in the common fixed point problem are identity mappings. Furthermore,
our method does not involve the hybrid steepest-descent method and subgradient extragradient
method used in [11]. Our results also serve as extensions of the results obtained in [10] in the
setting of variational inequalities.

4. Applications

In this section, our main results are applied to solve the VIP and CFPP in an illustrated
example. Substitute µ = l, l = λ = 1

3 , σn = 1
2 , αn = 1

2(n+1) , βn = n
2(n+1) and γn = 1

2 .
We first provide an example of Lipschitz continuous and monotone mapping A, asymp-

totically nonexpansive mapping T, and nonexpansive mapping T1 with Ω = Fix(T1) ∩
Fix(T) ∩ VI(C, A) 6= ∅. Let C = [−3, 4] and H = R with the inner product 〈a, b〉 = ab
and induced norm ‖ · ‖ = | · |. The initial point x1 is randomly chosen in C. Take
f (x) = 1

2 x ∀x ∈ C with δ = 1
2 . Let A : H → H and T, T1 : C → C be defined as

Ax := 1
1+| sin x| −

1
1+|x| , Tx := 3

4 sin x, and T1x := sin x for all x ∈ C. Now, we first show
that A is pseudomonotone and Lipschitz continuous. Indeed, for all x, y ∈ H, we have
the following.

‖Ax− Ay‖ = | 1
1+‖ sin x‖ −

1
1+‖x‖ −

1
1+‖ sin y‖ +

1
1+‖y‖ |

≤ | ‖y‖−‖x‖
(1+‖x‖)(1+‖y‖) |+ |

‖ sin y‖−‖ sin x‖
(1+‖ sin x‖)(1+‖ sin y‖) |

≤ ‖x− y‖+ ‖ sin x− sin y‖ ≤ 2‖x− y‖.

This implies that A is Lipschitz continuous. Next, we show that A is pseudomonotone.
For each x, y ∈ H, it is easy to see that the following is the case.

〈Ax, y− x〉 = (
1

1 + | sin x| −
1

1 + |x| )(y− x) ≥ 0⇒ 〈Ay, y− x〉 = (
1

1 + | sin y| −
1

1 + |y| )(y− x) ≥ 0.

Furthermore, it is easy to see that T is asymptotically nonexpansive with θn =
( 3

4 )
n ∀n ≥ 1, such that ‖Tn+1zn − Tnzn‖ → 0 as n → ∞. Indeed, we observe that the

following is the case:

‖Tnx− Tny‖ ≤ 3
4
‖Tn−1x− Tn−1y‖ ≤ · · · ≤ (

3
4
)n‖x− y‖ ≤ (1 + θn)‖x− y‖,

and the following obtains.

‖Tn+1zn − Tnzn‖ ≤ (
3
4
)n−1‖T2zn − Tzn‖ = (

3
4
)n−1‖3

4
sin(Tzn)−

3
4

sin zn‖ ≤ 2(
3
4
)n → 0 (n→ ∞).

It is clear that Fix(T) = {0} and

lim
n→∞

θn

αn
= lim

n→∞

(3/4)n

1/2(n + 1)
= 0.

In addition, it is clear that T1 is nonexpansive and Fix(T1) = {0}. Therefore, Ω =
Fix(T1)∩ Fix(T)∩VI(C, A) = {0} 6= ∅. In this case, Algorithm 3 can be rewritten as follows:
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wn = 1
2 xn +

1
2 T1xn,

yn = PC(wn − 1
3 Awn),

tn = (1− τn)wn + τnyn,
zn = PCn(wn),
xn+1 = 1

2(n+1) ·
1
2 xn +

n
2(n+1) xn +

1
2 Tnzn ∀n ≥ 1,

(46)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 3. Then, by Theorem 1,
we know that {xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) if and only if
|xn − xn+1|+ |xn − yn| → 0 as n→ ∞.

In particular, since Tx := 3
4 sin x is also nonexpansive, we consider the modified

version of Algorithm 3:

wn = 1
2 xn +

1
2 T1xn,

yn = PC(wn − 1
3 Awn),

tn = (1− τn)wn + τnyn,
zn = PCn(wn),
xn+1 = 1

2(n+1) ·
1
2 xn +

n
2(n+1) xn +

1
2 Tzn ∀n ≥ 1,

(47)

where for each n ≥ 1, Cn and τn are chosen as stated above. Then, by Theorem 2, we know
that {xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) if and only if |xn − xn+1|+
|xn − yn| → 0 as n→ ∞.

5. Conclusions

We have introduced two Mann-type subgradient-like extra gradient algorithms that
combine projection-type method, viscosity approximation, and Armijo-type line-search
procedure to solve variational inequalities and common fixed-point problem of finitely
many nonexpansive mappings and an asymptotically nonexpansive mapping in a real
Hilbert space. We obtained strong convergence results of the sequences of iterates generated
by our proposed methods under some standard conditions. We also gave some illustrative
example to justify the theoretical analysis. Part of our future research is aimed to obtain
strong convergence results for modifications of our proposed methods with Nesterov
inertial extrapolation step and self-adaptive step sizes.
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