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Abstract: This research study investigates the issue of finite-time passivity analysis of neutral-type
neural networks with mixed time-varying delays. The time-varying delays are distributed, discrete
and neutral in that the upper bounds for the delays are available. We are investigating the creation
of sufficient conditions for finite boundness, finite-time stability and finite-time passivity, which
has never been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–
Park’s integral inequality, descriptor model transformation and zero equation use, and then we
use Wirtinger’s integral inequality technique. New finite-time stability necessary conditions are
constructed in terms of linear matrix inequalities in order to guarantee finite-time stability for the
system. Finally, numerical examples are presented to demonstrate the result’s effectiveness. Moreover,
our proposed criteria are less conservative than prior studies in terms of larger time-delay bounds.

Keywords: neural networks; finite-time passivity; linear matrix inequality; distributed delay;
neutral system

1. Introduction

Neural networks have been intensively explored in recent decades due to their vast
range of applications in a variety of fields, including signal processing, associative memo-
ries, learning ability and so on [1–10]. In the study of real systems, time-delay phenomena
are unavoidable. Many interesting neural networks, such as Hopfield neural networks,
cellular neural networks, Cohen-Grossberg neural networks and bidirectional associative
memory neural networks frequently exhibit time delays. In addition, time delays are well
recognized as a source of instability and poor performance [11]. Accordingly, stability
analysis of delayed neural networks has become a topic of significant theoretical and
practical relevance (see [12–15]), and many important discoveries have been reported on
this subject. In recent years, T-S fuzzy delayed neural networks with Markovian jumping
parameters using sampled-data control have been presented by Syed Ali et al. [16]. The
global stability analysis of fractional-order fuzzy BAM neural networks with time delay
and impulsive effects was considered in [17].

Furthermore, conventional neural network models are often unable to accurately
represent the qualities of a neural reaction process due to the complex dynamic features
of neural cells in the real world. It is only natural for systems to store information about
the derivative of a previous state in order to better characterize and analyze the dynamics
of such complicated brain responses. Neutral neural networks and neutral-type neural
networks are the names given to this new type of neural network. Several academics [18–23]
have studied neutral-type neural networks with time-varying delays in recent years. In
2018 [24], the authors investigated improved results on passivity analysis of neutral-type
neural networks with mixed time-varying delays. In particular, a type of time-varying
delay known as distributed delay occurs in networked-based systems and has received a
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lot of academic interest because of its significance in digital control systems [25]. Then, this
system has all three types of delays: discrete delay, neutral delay and distributed delay. As
a result, the neutral delay in neural networks has recently been reported, as well as some
stability analysis results for neutral-type neural networks with mixed time-varying delays.

The passive theory [26] is a useful tool for analyzing system stability, and it can
deal with systems based solely on the input–output dynamics’ general features. The
passive theory has been used in engineering applications such as in high-integrity and
safety-critical systems. Krasovskii and Lidskii proposed this family of linear systems in
1961 [27]. Researchers have been looking at the passivity of neural networks with delays
since then. Many studies have been performed on stability in recent years, including
Lyapunov stability, asymptotic stability, uniform stability, eventually uniformly bounded
stability and exponential stability, all of which are concerned with the behavior of systems
over an indefinite time span. Most actual neural systems, on the other hand, only operate
over finite-time intervals. Finite-time passivity is obviously vital and vital for investigating
finite-time stabilization of neural networks as a useful tool for analyzing system stability.

This topic has piqued the curiosity of researchers [28–35]. They deal with by Jensen’s
and Coppel’s inequality in [28], which is concerned with the problem of finite-time stability
of continuous time delay systems. The authors used an unique control protocol based on
the Lyapunov theory and inequality technology to examine the finite-time stabilization of
delayed neural networks in [29]. Rajavel et al. [30] solves the problem of finite-time non-
fragile passivity control for neural networks with time-varying delay using the Lyapunov–
Krasovskii functional technique. Researchers used a new Lyapunov–Krasovskii function
with triple and four integral terms to examine finite-time passive filtering for a class of
neutral time-delayed systems in [31]. The free-weighting matrix approach and Wirtinger’s
double integral inequality were used to demonstrate finite-time stability of neutral-type
neural networks with random time-varying delays in [32]. Syed Ali et al. [33] studied
finite-time passivity for neutral-type neural networks with time-varying delays using the
auxiliary integral inequality. Ali et al. [34] explored popular topics including the finite-time
H∞ boundedness of discrete-time neural networks and norm-bounded disturbances with
time-varying delay. In 2021, Phanlert et al. [35] has been researching a finite-time non-
neutral system. Based on the above research, there are many different methods for stability
analysis. Our research will make stability stronger. However, no results on finite-time
passivity analysis of neutral-type neural networks with mixed time-varying delays latency
have been reported to the best of the authors’ knowledge. This is the driving force behind
our current investigation.

As a result of the foregoing, we investigate three types of finite passivity in neural
networks and provide matching criteria for judging network properties using Lyapunov
functional theory and inequality technology. The following are the primary contributions
of this paper:

(i) We examine a system with mixed time-varying delays in this study. Furthermore,
because time-varying delays are distributed, discrete and neutral, the upper bounds
for the delays are known.

(ii) We then used the theorems to derive finite-time boundedness, finite-stability and
finite-time passivity requirements.

(iii) By using Peng-integral Park’s inequality, model transformation, zero equation and
subsequently Wirtinger-based integral inequality approach, some of the simplest
LMI-based criteria have been developed.

(iv) Several cases have been examined to ensure that the primary theorem and its corollar-
ies are accurate.

The following is a breakdown of the paper’s structure. Section 2 introduces the
network under consideration and offers some definitions, propositions and lemmas. In
Section 3, three types of finite-time passivity of the neural network are introduced, and
finite-time stability is achieved. In Section 4, several useful outcomes are observed. In
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Section 4, five numerical examples are presented to demonstrate the usefulness of our
proposed results. Finally, in Section 5, we bring this study to a close.

2. Preliminaries

We begin by explaining various notations and lemmas that will be used throughout
the study. R denotes the set of all real numbers; Rn denotes the n-dimensional space; Rm×n

denotes the set of all m× n real matrices ; AT denotes the transpose of the matrix A; A
is symmetric if A = AT ; λ(A) denotes the set of all eigenvalues of A; and λmax(A) and
λmin(A) represent the maximum and minimum eigenvalues of the matrix A, respectively.
∗ represents the elements below the main diagonal of the symmetric matrices; diag{.}
stands for the diagonal matrix.

Consider the study of finite-time passivity analysis of neutral-type neural networks
with mixed time-varying delays of the following form:

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

z(t) = G1 f (ξ(t)) + G2κ(t), t ∈ R+

ξ(t) = φ(t), t ∈ [−h̄, 0],

 (1)

where ξ(t) = [ξ1(t), ξ2(t), . . ., ξn(t)]T ∈ Rn is the neural state vector, z(t) is the output
vector of neuron network, and κ(t) is the exogenous disturbance input vector belongs
to L2[0, ∞). A = diag{a1, a2, . . ., an} > 0 is a diagonal matrix with ai > 0, i = 1, 2, . . ., n.
Matrices Gb, Gd and Ge are the interconnection matrices representing the weight coeffi-
cients of the neurons. Matrices G1, G2, H and Gc are known real constant matrices with
appropriate dimensions. f (ξ(t)) = [ f1(ξ1(t)), f2(ξ2(t)), . . ., fn(ξn(t))]T ∈ Rn is the neuron
activation function, and φ(t) ∈ C[[−h̄, 0], Rn] denotes the initial function. µ(t) is the dis-
crete time-varying delay, ρ(t) is the distributed time-varying delay, τ(t) is neutral delay
and h̄ = max{µM, ρM, τM}.

The variables µ(t), ρ(t) and τ(t) represent the mixed delays of the model in (1)
and satisfy the following:

0 ≤ µ(t) ≤ µM, 0 ≤ µ̇(t) ≤ µd,

0 ≤ ρ(t) ≤ ρM, 0 ≤ ρ̇(t) ≤ ρd, (2)

0 ≤ τ(t) ≤ τM, 0 ≤ τ̇(t) ≤ τd,

where µM, µd, ρM, ρd, τM and τd are positive real constants.

Assumtion 1. The activation function f is continuous and the exist real constants F−i and F+
i

such that the following is the case:

F−i ≤ fi(c1)− fi(c2)

c1 − c2
≤ F+

i , (3)

for all c1 6= c2, and fi = [ f1, f2, . . ., fn]T for any i ∈ {1, 2, . . ., n} satisfies fi(0) = 0. For the sake
of presentation convenience, in the following, we denote F1 = diag(F−1 F+

1 , F−2 F+
2 , . . ., F−n F+

n ) and

F2 = diag( F−1 +F+
1

2 , F−2 +F+
2

2 , . . ., F−n +F+
n

2 ).

Assumtion 2. In the case of a positive parameter δ, κ(t) is a time-varying external disturbance
that satisfies the following. ∫ Tf

0
κT(t)κ(t)dt ≥ δ, δ > 0. (4)
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Definition 1 ((Finite-time boundedness) [36,37]). For a positive constant of T, system (1) is
finite-time bounded with respect to (g1, g2, Tf , P1, δ) if there exist constants g2 > g1 > 0
such that the following is the case:

sup
−µM≤t0≤0

{ξT(t0)P1ξ(t0), ξ̇T(t0)P1ξ̇(t0)} ≥ g1 =⇒ ξT(t)P1ξ(t) ≥ g2, f or t ∈ [0, Tf ],

for a given positive constant Tf , and P1 is a positive definite matrix.

Definition 2 ((Finite-time stability) [36,37]). System (1) with κ(t) = 0 is said to be finite-time
stable with respect to (g1, g2, Tf , P1) if there exist constants g2 > g1 > 0 such that the following
is the case:

sup
−µM≤t0≤0

{ξT(t0)P1ξ(t0), ξ̇T(t0)P1ξ̇(t0)} ≥ g1 =⇒ ξT(t)P1ξ(t) ≥ g2, f or t ∈ [0, Tf ],

for a given positive constant Tf , and P1 is a positive definite matrix.

Definition 3 ((Finite-time passivity) [37]). System (1) is said to be a finite-time passive with
with a prescribed dissipation performance level γ > 0, if the following relations hold:

(a) For any external disturbances κ(t), system (1) is finite-time bounded;
(b) For a given positive scalar γ > 0, the following relationship holds under a zero initial

condition. ∫ Tf

0
κT(t)z(t)dt ≥ γ

∫ Tf

0
κT(t)κ(t)dt.

Lemma 1 ((Jensen’s Inequality) [38]). For each positive definite symmetric matrix P7, positive
real constant µM and vector function ξ̇ : [−µM, 0]→ Rn such that the following integral is well
defined, then the following is obtained.

−µM

∫ 0

−µM

ξ̇T(s + t)P7ξ̇(s + t)ds ≤ −
( ∫ 0

−µM

ξ̇(s + t)ds
)T

P7

( ∫ 0

−µM

ξ̇(s + t)ds
)

.

Lemma 2 ((Wirtinger-based integral inequality) [39]). For any matrix P12 > 0, the following
inequality holds for all continuously differentiable function ξ̇ : [α, β]→ Rn

−(β− α)
∫ β

α
ξ̇T(s)P12ξ̇(s)ds ≤ κT

−4P12 −2P12 6P12
∗ −4P12 6P12
∗ ∗ −12P12

κ,

where κ = [ξT(β), ξT(α), 1
β−α

∫ β
α ξT(s)ds]T .

Lemma 3 ((Peng-Park’s integral inequality) [40,41]). For any matrix of the following:[
P13 S
∗ P13

]
≥ 0, 0 < µ(t) < µM is satisfied by positive constants µM and µ(t), and ξ̇ :

[−µM, 0]→ Rn is a vector function that verifies the integrations in question are correctly specified.
We then have the following:

−µM

∫ t

t−µM

ξ̇T(s)P13ξ̇(s)ds ≤ ΨT

−P13 P13 − S S
∗ −2P13 + S + ST P13 − S
∗ ∗ −P13

Ψ,

where Ψ = [ξT(t), ξT(t−µ(t)), ξT(t−µM)]T and Θ =

−P13 P13 − S S
∗ −2P13 + S + ST P13 − S
∗ ∗ −P13

.
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Lemma 4 ([42]). The following inequality applies to a positive matrix P10

− (α− β)2

2

∫ α

β

∫ α

s
ξT(u)P10ξ(u)duds ≤ −

( ∫ α

β

∫ α

s
ξ(u)duds

)T
P10

( ∫ t

β

∫ α

s
ξ(u)duds

)
.

Lemma 5 ([43]). P6 ∈ Rn×n is a constant symmetric positive definite matrix. For any constant
symmetric positive definite matrix P6 ∈ Rn×n, µ(t) is a discrete time-varying delay with (2),
vector function ξ : [−µM, 0]→ Rn such that the integrations concerned are well defined, then the
following is the case.

−µM

∫ 0

−µM

ξT(s)P6ξ(s)ds ≤ −
∫ 0

−µ(t)
ξT(s)dsP6

∫ 0

−µ(t)
ξ(s)ds

−
∫ −µ(t)

−µM

ξT(s)dsP6

∫ −µ(t)

−µM

ξ(s)ds.

Lemma 6 ([43]). For any constant matrices R7, R8, R9 ∈ Rn×n, R7 ≥ 0, R9 > 0,
[

R7 R8
∗ R9

]
≥

0, µ(t) is a discrete time-varying delay with (2) and vector function ξ̇ : [−µM, 0]→ Rn such that
the following integration is well defined:

−µM

∫ t

t−µM

[
ξ(s)
ξ̇(s)

]T[R7 R8
∗ R9

][
ξ(s)
ξ̇(s)

]
ds ≤ ΥTΠΥ,

where ΥT =
[
ξ(t) ξ(t− µ(t)) ξ(t− µM)

∫ t
t−µ(t) ξ(s)ds

∫ t−µ(t)
t−µM

ξ(s)ds
]
.

and the following is the case Π =


−R9 R9 0 −RT

8 0
∗ −R9 − RT

9 R9 RT
8 −RT

8
∗ ∗ −R9 0 RT

8
∗ ∗ ∗ −R7 0
∗ ∗ ∗ ∗ −R7

.

Lemma 7 ([43]). Let ξ(t) ∈ Rn be a vector-valued function with first-order continuous-derivative
entries. For any constant matrices P5, M̂i ∈ Rn×n, then the following integral inequality holds, i =
1, 2, . . . , 5 and µ(t) is a discrete time-varying delay with (2):

−
∫ t

t−µM

ξ̇T(s)P5ξ̇(s)ds ≤ ΓT

M̂1 + M̂T
1 −M̂1T + M̂2 0

∗ M̂1 + M̂T
1 − M̂2 − M̂T

2 −M̂T
1 + M̂2

∗ ∗ −M̂2 − M̂T
2

Γ

+µMΓT

M̂3 M̂4 0
∗ M̂3 + M̂5 M̂4
∗ ∗ M̂5

Γ,

where Γ =

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)

,

P5 M̂1 M̂2
∗ M̂3 M̂4
∗ ∗ M̂5

 ≥ 0.

Lemma 8 ([44]). For a positive definite matrix P8, P9 > 0 and any continuously differentiable
function ξ̇ : [a, b]→ Rn, the following inequality holds:

∫ b

a
ξ̇T(s)P5ξ̇(s)ds ≥ 1

b− a
ΘT

1 P8Θ1 +
3

b− a
ΘT

2 P8Θ2 +
5

b− a
ΘT

3 P8Θ3,∫ b

a

∫ b

u
ξ̇T(s)P5ξ̇(s)dsdu ≥ 2ΘT

4 P9Θ4 + 4ΘT
5 P9Θ5 + 6ΘT

6 P9Θ6,
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where the following is the case.

Θ1 = ξ(a)− ξ(b),

Θ2 = ξ(a) + ξ(b)− 2
b− a

∫ b

a
ξ(s)ds,

Θ3 = ξ(a)− ξ(b) +
6

b− a

∫ b

a
ξ(s)ds− 12

(b− a)2

∫ b

a

∫ b

u
ξ(s)dsdu,

Θ4 = ξ(b)− 1
b− a

∫ b

a
ξ(s)ds,

Θ5 = ξ(b) +
2

b− a

∫ b

a
ξ(s)ds− 6

(b− a)2

∫ b

a

∫ b

u
ξ(s)dsdu,

Θ6 = ξ(b)− 3
b− a

∫ b

a
ξ(s)ds +

24
(b− a)2

∫ b

a

∫ b

u
ξ(s)dsdu

− 60
(b− a)3

∫ b

a

∫ b

u

∫ b

s
ξ(r)drdsdu.

3. Main Results
3.1. Finite-Time Boundedness Analysis

The following finite-time boundedness analysis of neutral-type neural networks with
mixed time-varying delays is discussed in this subsection.

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

ξ(t) = φ(t), t ∈ [−h̄, 0].

 (5)

In the first subsection, we look at system (5) with (2) that uses new criteria for systems
introduced via the LMIs approach.

∑ =
[
Π(i,j)

]
23×23

. (6)

For future reference, we introduce the following notations in the Appendix A.

Theorem 1. For ‖ C ‖ < 1, system (5) is finite-time bounded if there exist positive definite matrices
Pi, Rj, i = 1, 2, 3, . . ., 16, j = 1, 2, 3, . . ., 9 any appropriate matrices S, P13, R8, Qk, R7 ≥

0, Zl , l = 1, 2 and Oe, e = 1, 2, 3, . . ., 8,
[

Rn+3n R2+3n
RT

2+3n R3+3n

]
≥ 0,

[
P13 S
∗ P13

]
≥ 0 where

n = 0, 1, 2, k = 1, 2, . . ., 14, positive diagonal matrices Hp, Wp, p = 1, 2 and positive real
constants µM, ρM, µd, τM, τd, δ, α, g1, g2, T such that the following symmetric linear matrix
inequality holds: P5 M1 M2

∗ M3 M4
∗ ∗ M5

 ≥ 0, (7)

∑ < 0, (8)

λ1g2e−αT > Λg1 + δ(1− e−αT). (9)

For future reference, we introduce the following notations in Appendix A. Then, λi, i =
1, 2, . . ., 31 in system (9) is defined in Remark 1.
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Proof. First, we show that system (5) is the finite-time bounded analysis. As a result, we
consider system (5) to satisfy the following.

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t) (10)

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds.

We can rewrite system (10) to the following system:

ξ̇(t) = y(t), (11)

0 = −y(t)− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t)

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds, (12)

by using the model transformation approach. Construct a Lyapunov–Krasovskii functional
candidate for system (10)–(12) of the following form:

V(t) =
10

∑
i=1

Vi(t), (13)

where the following is the case:

V1(t) = ξT(t)P1ξ(t) + 2
N

∑
i=1

wi1

∫ ξi(t)

0
( fi(s)− F−s)ds,

V2(t) = ζT(t)GP2ζ(t) + 2
N

∑
i=1

wi2

∫ ξi(t)

0
(F+s− fi(s))ds,

V3(t) =
∫ t

t−µM

ξT(s)P3ξ(s)ds

+
∫ t

t−µ(t)

[
ξ(s)

f (ξ(s))

]T[R1 R2
∗ R3

][
ξ(s)

f (ξ(s))

]
ds

+
∫ t

t−µM

[
ξ(s)

f (ξ(s))

]T[R4 R5
∗ R6

][
ξ(s)

f (ξ(s))

]
ds,

V4(t) = µM

∫ 0

−µM

∫ t

t+s

[
ξ(θ)
y(θ)

]T[R7 R8
∗ R9

][
ξ(θ)
y(θ)

]
dθds,

V5(t) = µM

∫ 0

−µM

∫ t

t+s
ξT(θ)P4ξ(θ)dθds

+
∫ 0

−µM

∫ t

t+s
yT(θ)P5y(θ)dθds,

V6(t) = µM

∫ 0

−µM

∫ t

t+s
yT(θ)P6y(θ)dθds

+µM

∫ 0

−µM

∫ t

t+s
ξ̇T(θ)P7ξ̇(θ)dθds,

V7(t) = µM

∫ 0

−µM

∫ t

t+s
yT(θ)S1y(θ)dθds,

+µM

∫ 0

−µM

∫ 0

λ

∫ t

t+s
yT(θ)S2y(θ)dθdsdλ,

V8(t) =
(µM)2

2

∫ 0

−µM

∫ 0

λ

∫ t

t+s
ξT(θ)P10ξ(θ)dθdsdλ

+
(µM)2

2

∫ 0

−µM

∫ 0

λ

∫ t

t+s
yT(θ)P11y(θ)dθdsdλ,
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V9(t) = µM

∫ 0

−µM

∫ t

t+s
yT(θ)P12y(θ)dθds

+µM

∫ 0

−µM

∫ t

t+s
yT(θ)P13y(θ)dθds,

V10(t) =
∫ t

t−τ(t)
ξ̇T(s)P14ξ̇(s)ds + τM

∫ t

t−τM

ξ̇T(s)P15ξ̇(s)ds,

V11(t) = ρM

∫ 0

−ρM

∫ t

t+s
f (ξ(θ))T P16 f (ξ(θ))dθds,

where G =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, ζT(t) =


ξ(t)∫ t

t−µ(t) y(s)ds∫ t−d(t)
t−µM

y(s)ds
y(t)


T

.

Along the trajectory of system (10)–(12) , the time derivative of V(t) is equivalent to
the following.

V̇(t) =
10

∑
i=1

V̇i(t). (14)

The time derivative of V1(t) is then computed as the following.

V̇1(t) = 2ξT(t)P1

[
− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)

]
+ 2 f T(ξ(t))W1ξ̇(t)− ξT(t)W1F1ξ̇(t).

Taking the derivative of V2(t) along any system solution trajectory, we have the
following.

V̇2(t) = 2ξT(t)P2

[
− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)

]
+ 2ξ̇T(t)QT

13
[
ξ̇(t)− y(t)

]
+2yT(t)QT

14
[
ξ̇(t)− y(t)

]
+ ξT(t)W2F2ξ̇(t)− 2 f T(ξ(t))W2ξ̇(t)

= 2ξT(t)P2[−Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)] + 2ξ̇T(t)QT

13
[
ξ̇(t)− y(t)

]
+2yT(t)QT

14
[
ξ̇(t)− y(t)

]
+ 2
[

ξT(t)QT
1 +

∫ t

t−µ(t)
yT(s)dsQT

4

+
∫ t−µ(t)

t−µM

yT(s)dsQT
7 + yT(t)QT

10

]
[−y(t)− Aξ(t) + Gb f (ξ(t))

+Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t))) + Ge

∫ t

t−ρ(t)
f (ξ(s))ds

+Hκ(t)] + 2
[

ξT(t)QT
2 +

∫ t

t−µ(t)
yT(s)dsQT

5 +
∫ t−µ(t)

t−µM

yT(s)dsQT
8

+yT(t)QT
11

]
×
[

ξ(t)− ξ(t− µ(t))−
∫ t

t−µ(t)
y(s)ds

]
+2
[

ξT(t)QT
3 +

∫ t

t−µ(t)
yT(s)dsQT

6 +
∫ t−µ(t)

t−µM

yT(s)dsQT
9 + yT(t)QT

12

]
×
[

ξ(t− µ(t))− ξ(t− µM)−
∫ t−µ(t)

t−µM

y(s)ds
]

+ξT(t)W2F2ξ̇(t)− 2 f T(ξ(t))W2ξ̇(t).
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For V3(t) and µ̇(t) ≤ µd, we now have the following.

V̇3(t) = ξT(t)P3ξ(t)− ξT(t− µM)P3ξ(t− µM)

+

[
ξ(t)

f (ξ(t))

]T[R1 R2
RT

2 R3

][
ξ(t)

f (ξ(t))

]
−(1− µ̇(t))

[
ξ(t− µ(t))

f (ξ(t− µ(t)))

]T[R1 R2
RT

2 R3

][
ξ(t− µ(t))

f (ξ(t− µ(t)))

]
+

[
ξ(t)

f (ξ(t))

]T[R4 R5
RT

5 R6

][
ξ(t)

f (ξ(t))

]
−
[

ξ(t− µM)
f (ξ(t− µM))

]T[R4 R5
RT

5 R6

][
ξ(t− µM)

f (ξ(t− µM))

]
≤ ξT(t)P3ξ(t)− ξT(t− µM)P3ξ(t− µM) +

[
ξ(t)

f (ξ(t))

]T[R1 R2
RT

2 R3

][
ξ(t)

f (ξ(t))

]
−
[

ξ(t− µ(t))
f (ξ(t− µ(t)))

]T[R1 R2
RT

2 R3

][
ξ(t− µ(t))

f (ξ(t− µ(t)))

]
+µd

[
ξ(t− µ(t))

f (ξ(t− µ(t)))

]T[R1 R2
RT

2 R3

][
ξ(t− µ(t))

f (ξ(t− µ(t)))

]
+

[
ξ(t)

f (ξ(t))

]T[R4 R5
RT

5 R6

][
ξ(t)

f (ξ(t))

]
−
[

ξ(t− µM)
f (ξ(t− µM))

]T[R4 R5
RT

5 R6

][
ξ(t− µM)

f (ξ(t− µM))

]
.

It is from Lemma 6 that we have the following.

V̇4(t) = µ2
M

[
ξ(t)
y(t)

]T[R7 R8
RT

8 R9

][
ξ(t)
y(t)

]
− µM

∫ t

t−µM

[
ξ(s)
y(s)

]T[R7 R8
RT

8 R9

][
ξ(s)
y(s)

]
ds

≤ µ2
M

[
ξ(t)
y(t)

]T[R7 R8
RT

8 R9

][
ξ(t)
y(t)

]

+


ξ(t)

ξ(t− µ(t))
ξ(t− µM)∫ t
t−µ(t) ξ(s)ds∫ t−µ(t)
t−µM

ξ(s)ds



T

Π


ξ(t)

ξ(t− µ(t))
ξ(t− µM)∫ t
t−µ(t) ξ(s)ds∫ t−µ(t)
t−µM

ξ(s)ds


where

Π =


−R9 R9 0 −RT

8 0
RT

9 −R9 − RT
9 R9 RT

8 −RT
8

0 RT
9 −R9 0 RT

8
−R9 R8 0 −R7 0

0 −R8 R8 0 −R7

.
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Using Lemmas 5 and 7, V5(t) is computed as follows:

V̇5(t) = µ2
MξT(t)P4ξ(t)− µM

∫ t

t−µM

ξT(s)P4ξ(s)ds + µMyT(t)P5y(t)

−
∫ t

t−µM

ξ̇T(s)P5ξ̇(s)ds

≤ µ2
MξT(t)P4ξ(t) + µMyT(t)P5y(t)−

∫ t

t−µ(t)
ξT(s)dsP4

∫ t

t−µ(t)
ξ(s)ds

−
∫ t−µ(t)

t−µM

ξT(s)dsP4

∫ t−µ(t)

t−µM

ξ(s)ds

+

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)

T

Θ

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)


+µM

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)

T M̂3 M̂4 0
M̂T

4 M̂3 + M̂5 M̂4
0 M̂T

4 M̂5

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)


where the following is the case.

Θ =

 M̂1 + M̂T
1 −M̂T

1 + M̂2 0
−M̂1 + M̂T

2 M̂1 + M̂T
1 − M̂2 − M̂T

2 −M̂T
1 + M̂2

0 −M̂1 + M̂T
2 −M̂2 − M̂T

2

.

Using Lemma 1 (Jensen’s Inequality), we have the following.

V̇6(t) ≤ µ2
MyT(t)P6y(t)−

∫ t

t−µM

yT(s)dsP6

∫ t

t−µM

y(s)ds

+µ2
M ξ̇T(t)P7ξ̇(t)−

∫ t

t−µM

ξ̇T(s)dsP7

∫ t

t−µM

ξ̇(s)ds

≤ µ2
MyT(t)P6y(t) + µ2

M ξ̇T(t)P7ξ̇(t)

−
[∫ t

t−µ(t)
yT(s)ds +

∫ t−µ(t)

t−µM

yT(s)ds
]

P6

[∫ t

t−µ(t)
yT(s)ds +

∫ t−µ(t)

t−µM

yT(s)ds
]

−
[∫ t

t−µ(t)
ξ̇T(s)ds +

∫ t−µ(t)

t−µM

ξ̇T(s)ds
]

P7

[∫ t

t−µ(t)
ξ̇T(s)ds +

∫ t−µ(t)

t−µM

ξ̇T(s)ds
]

.

Using Lemma 8 to confront V̇7(t), we can obtain the following:

V̇7(t) = µ2
My(t)P8y(t)− µM

∫ t

t−µM

ξ̇T(s)P8ξ̇(s)ds

+
µ2

M
2

yT(t)P9y(t)−
∫ t

t−µM

∫ t

u
ξ̇T(λ)P11ξ̇(λ)dλdu

≤ µ2
My(t)P8y(t) +

µ2
M
2

yT(t)P9y(t)

−[ΘT
1 P8Θ1 + 3ΘT

2 P8Θ2 + 5ΘT
3 P8Θ3]− [2ΘT

4 P9Θ4 + 4ΘT
5 P9Θ5 + 6ΘT

6 P9Θ6],
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where the following is the case.

Θ1 = ξ(t− µM)− ξ(t),

Θ2 = ξ(t− µM) + ξ(t)− 2
µM

∫ t

t−µM

ξ(s)ds,

Θ3 = ξ(t− µM)− ξ(t) +
6

µM

∫ t

t−µM

ξ(s)ds− 12
µ2

M

∫ t

t−µM

∫ t

u
ξ(s)dsdu,

Θ4 = ξ(t)− 1
µM

∫ t

t−µM

ξ(s)ds,

Θ5 = ξ(t) +
2

µM

∫ t

t−µM

ξ(s)ds− 6
µ2

M

∫ t

t−µM

∫ t

u
ξ(s)dsdu,

Θ6 = ξ(t)− 3
µM

∫ t

t−µM

ξ(s)ds +
24
µ2

M

∫ t

t−µM

∫ t

u
ξT(s)dsdu

− 60
µ3

M

∫ t

t−µM

∫ t

u

∫ t

s
ξ(s)drdsdu.

According to Lemma 4, we can obtain V̇8(t) by performing the following.

V̇8(t) ≤
µ4

M
4

ξT(t)P10ξ(t)−
µ2

M
2

∫ t

t−µM

∫ t

u
ξT(λ)P10ξ(λ)dλdu

+
µ4

M
2

yT(t)P11y(t)− µ2
M

∫ t

t−µM

∫ t

u
ξ̇T(λ)P11ξ̇(λ)dλdu

≤
µ4

M
4

ξT(t)P10ξ(t)−
∫ t

t−µM

∫ t

u
ξT(λ)dλduP10

∫ t

t−µM

∫ t

u
ξ(λ)dλdu

+
µ4

M
2

yT(t)P11y(t)− 2
∫ t

t−µM

∫ t

u
ξ̇T(λ)dλduP11

∫ t

t−µM

∫ t

u
ξ̇(λ)dλdu

≤
µ4

M
4

ξT(t)P10ξ(t)−
∫ t

t−µM

∫ t

u
ξT(λ)dλduP10

∫ t

t−µM

∫ t

u
ξ(λ)dλdu

+
µ4

M
2

yT(t)P11y(t)− 2µ2
MξT(t)P11ξ(t) + 2µMξT(t)P11

∫ t

t−µM

ξT(u)du

+2µM

∫ t

t−µM

ξT(u)duP11ξ(t)− 2
∫ t

t−µM

ξT(u)duP11

∫ t

t−µM

ξT(u)du.

Using Lemmas 2 and 3, an upper bound of V9(t) can be obtained as follows.

V̇9(t) ≤ µ2
MyT(t)P12y(t) + µ2

MyT(t)P13y(t)

+

 ξ(t)
ξ(t− µM)

1
µM

∫ t
t−µM

ξ(s)ds


T−4P12 −2P12 6P12
−2PT

12 −4P12 6P12
6PT

12 6PT
12 −12P12


 ξ(t)

ξ(t− µM)
1

µM

∫ t
t−µM

ξ(s)ds


+

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)

T −P13 P13 − S S
PT

13 − ST −2P13 + S + ST P13 − S
ST PT

13 − ST −P13

 ξ(t)
ξ(t− µ(t))
ξ(t− µM)

.

Taking the time derivative of V10(t), we have the following.

V̇10(t) ≤ ξ̇T(t)P14ξ̇(t)− (1− τ̇(t))ξ̇T(t− τ(t))P14ξ̇(t− τ(t)) + ξ̇T(t)P15ξ̇(t)

−τM ξ̇T(t− τM)P15ξ̇(t− τM)

≤ ξ̇T(t)P14ξ̇(t)− (1− τd)ξ̇
T(t− τ(t))P14ξ̇(t− τ(t)) + τM ξ̇T(t)P15ξ̇(t)

−τM ξ̇T(t− τM)P15ξ̇(t− τM).
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Calculating V̇11(t) yields the following.

V̇11(t) = ρ2
M f T(ξ(t))P16 f (ξ(t))− ρM

∫ t

t−ρM

f T(ξ(s))dsP16 f (ξ(s))ds

≤ ρ2
M f T(ξ(t))P16 f (ξ(t))−

∫ t

t−ρ(t)
f T(ξ(s))dsP16

∫ t

t−ρ(t)
f T(ξ(s))ds.

From (3), for any positive diagonal matrices H1 > 0, H2 > 0, the following is obtained.[
ξ(t)

f (ξ(t))

]T[−F1H1 F2H1
FT

2 HT
1 −H1

][
ξ(t)

f (ξ(t))

]
≥ 0, (15)[

ξ(t− µ(t))
f (ξ(t− µ(t)))

]T[−F1H2 F2H2
FT

2 HT
2 −H2

][
ξ(t− µ(t))

f (ξ(t− µ(t)))

]
≥ 0. (16)

Furthermore, for any real matrices Zi, i = 1, 2 and Oj, j = 1, 2, 3, . . ., 8 of compatible
dimensions, we obtain

2
∫ t

t−µ(t)
ξ̇(s)dsZT

1

[
ξ(t)− ξ(t− µ(t))−

∫ t

t−µ(t)
ξ̇(s)ds

]
= 0, (17)

2
∫ t−µ(t)

t−µM

ξ̇(s)dsZT
2

[
ξ(t− µ(t))− ξ(t− µM)−

∫ t−µ(t)

t−µM

ξ̇(s)ds
]
= 0, (18)

2
[
ξ̇T(t)OT

1 + ξT(t)OT
2 + f (ξ(t))OT

3 + f (ξ(t− µ(t)))OT
4

][
− ξ̇(t)− Aξ(t)

+Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t))) + Ge

∫ t

t−ρ(t)
f (ξ(s))ds

+Hκ(t)
]
2
[
yT(t)OT

5 + ξT(t)OT
6 + f (ξ(t))OT

7 + f (ξ(t− µ(t)))OT
8

]
×
[
− y(t)− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t− τ(t)) + Gd f (ξ(t− µ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)

]
= 0. (19)

Based on (14)–(19), it is clear that the following is observed:

ηT(t)∑ η(t) < 0, (20)

where the following is the case.

η(t) =
[
ξ(t), y(t), f (ξ(t)), f (ξ(t− µ(t))), ξ(t− µ(t)), ξ(t− µM),∫ t

t−µ(t)
y(s)ds,

∫ t−µ(t)

t−µM

y(s)ds, f (ξ(t− µM)),
∫ t

t−µ(t)
ξ(s)ds,

∫ t−µ(t)

t−µM

ξ(s)ds,

ξ̇(t),
1

µM

∫ t

t−µM

ξ(s)ds,
1

µ2
M

∫ t

t−µM

∫ t

t−µM

ξ(s)ds,
1

µ3
M

∫ t

t−µM

∫ t

t−µM

∫ t

t−µM

ξ(s)ds,

∫ t

t−µM

ξ(u)du,
∫ t

−µM

∫ t

u
ξ(λ)dλdu,

∫ t

t−µ(t)
ξ̇(s)ds,

∫ t−µ(t)

t−µM

ξ̇(s)ds, ξ̇(t− τM),

ξ̇(t− τ(t)),
∫ t

t−ρ(t)
f (ξ(s))ds, κ(t)

]
.

Then, α > 0 and we are able to obtain the following.

V̇(t)− αV(t)− ακT(t)κ(t) ≤ ζT(t)∑ ζ(t). (21)
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By multiplying the above inequality by eαt, we can obtain the following.

d
dt
[e−αtV(t)] ≤ αe−αtκT(t)κ(t). (22)

Integrating the two sides of the inequality (22) from 0 to t, with t ∈ [0, T], we
have obtained the following.

V(t) ≤ eαtV(0) + αeαt
∫ t

0
e−αsκT(t)κ(t)ds. (23)

They include the following.

V(0) = ξT(0)P1ξ(0) + 2
N

∑
i=1

ki

∫ ξi(0)

0
( fi(s)− F−s)ds + ζT(0)GP2ζ(0)

+2
N

∑
i=1

wi

∫ ξi(0)

0
(F+s− fi(s))ds +

∫ 0

0−µM

ξT(s)P3ξ(s)ds

+
∫ 0

µ(t)

[
ξ(s)

f (ξ(s))

]T[R1 R2
∗ R3

][
ξ(s)

f (ξ(s))

]
ds

+
∫ 0

−µM

[
ξ(s)

f (ξ(s))

]T[R4 R5
∗ R6

][
ξ(s)

f (ξ(s))

]
ds

+µM

∫ 0

−µM

∫ 0

s

[
ξ(θ)
y(θ)

]T[R7 R8
∗ R9

][
ξ(θ)
y(θ)

]
dθds

+µM

∫ 0

−µM

∫ 0

s
ξT(θ)P4ξ(θ)dθds

+
∫ 0

−µM

∫ 0

s
yT(θ)P5y(θ)dθds + µM

∫ 0

−µM

∫ 0

s
yT(θ)P6y(θ)dθds

+µM

∫ 0

−µM

∫ 0

s
yT(θ)P7y(θ)dθds + µM

∫ 0

−µM

∫ 0

s
yT(θ)P8y(θ)dθds

+µM

∫ 0

−µM

∫ 0

λ

∫ 0

s
ξT(θ)P9ξ(θ)dθdsdλ

+
(µM)2

2

∫ 0

−µM

∫ 0

λ

∫ 0

s
ξT(θ)P10ξ(θ)dθdsdλ

+
(µM)2

2

∫ 0

−µM

∫ 0

λ

∫ 0

s
yT(θ)P11y(θ)dθdsdλ

+µM

∫ 0

−µM

∫ 0

s
yT(θ)P12y(θ)dθds

+µM

∫ 0

−µM

∫ 0

s
yT(θ)P13y(θ)dθds +

∫ 0

τ(t)
ξT(s)P14ξ(s)ds

+τM

∫ 0

−τM

ξT(s)P15ξ(s)ds + ρM

∫ 0

−ρM

∫ 0

s
f (ξ(θ))T P16 f (ξ(θ))dθds.
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Note that P̃ = L−
1
2 PiL−

1
2 ; i = 1, 2, 3, . . ., 13, R̃ = L−

1
2 RiL−

1
2 ; i = 1, 2, 3, . . ., 9 and

the following relationship can be found.

V(0) = ξT(0)L
1
2 P̃1L

1
2 ξ(0) + 2W̃1 f (ξT(0)) + ζT(0)L

1
2 GP̃2L

1
2 ζ(0)2W̃2 f (ξT(0))

+
∫ 0

0−µM

ξT(s)L
1
2 P̃3L

1
2 ξ(s)ds

+
∫ 0

µ(t)

[
ξ(s)

f (ξ(s))

]T
[

L
1
2 R̃1L

1
2 L

1
2 R̃2L

1
2

L
1
2 R̃T

2 L
1
2 L

1
2 R̃3L

1
2

][
ξ(s)

f (ξ(s))

]
ds

+
∫ 0

−µM

[
ξ(s)

f (ξ(s))

]T
[

L
1
2 R̃4L

1
2 L

1
2 R̃5L

1
2

L
1
2 R̃T

5 L
1
2 L

1
2 R̃6L

1
2

][
ξ(s)

f (ξ(s))

]
ds

+µM

∫ 0

−µM

∫ 0

s

[
ξ(θ)
y(θ)

]T
[

L
1
2 R̃7L

1
2 L

1
2 R̃8L

1
2

L
1
2 R̃T

8 L
1
2 L

1
2 R̃9L

1
2

][
ξ(θ)
y(θ)

]
dθds

+µM

∫ 0

−µM

∫ 0

s
ξT(θ)L

1
2 P̃4L

1
2 ξ(θ)dθds

+
∫ 0

−µM

∫ 0

s
yT(θ)L

1
2 P̃5L

1
2 y(θ)dθds + µM

∫ 0

−µM

∫ 0

s
yT(θ)L

1
2 P̃6L

1
2 y(θ)dθds

+µM

∫ 0

−µM

∫ 0

s
yT(θ)L

1
2 P̃7L

1
2 y(θ)dθds + µM

∫ 0

−µM

∫ 0

s
yT(θ)L

1
2 P̃8L

1
2 y(θ)dθds

+µM

∫ 0

−µM

∫ 0

λ

∫ 0

s
ξT(θ)L

1
2 P̃9L

1
2 ξ(θ)dθdsdλ

+
(µM)2

2

∫ 0

−µM

∫ 0

λ

∫ 0

s
ξT(θ)L

1
2 P̃10L

1
2 ξ(θ)dθdsdλ

+
(µM)2

2

∫ 0

−µM

∫ 0

λ

∫ 0

s
yT(θ)L

1
2 P̃11L

1
2 y(θ)dθdsdλ

+µM

∫ 0

−µM

∫ 0

s
yT(θ)L

1
2 P̃12L

1
2 y(θ)dθds

+µM

∫ 0

−µM

∫ 0

s
yT(θ)L

1
2 P̃13L

1
2 y(θ)dθds +

∫ 0

τ(t)
ξT(s)L

1
2 P̃14L

1
2 ξ(s)ds

+τM

∫ 0

−τM

ξT(s)L
1
2 P̃15L

1
2 ξ(s)ds + ρM

∫ 0

−ρM

∫ 0

s
f (ξ(θ))T L

1
2 P̃16L

1
2 f (ξ(θ))dθds,

≤ [λmax(P̃1 + P̃2) + 2λmax(K + W) + µMλmax(P̃3 + R̃1 + R̃2 + R̃T
2 + R̃3 + R̃4

+R̃5 + R̃T
5 + R̃6) +

µ3
M
2

λmax(P̃4 + P̃5 + P̃6 + P̃7 + R̃7 + R̃8 + R̃T
8 + R̃9 + P̃8

+P̃12 + P̃13) +
µ5

M
12

λmax(P̃9 + P̃10) + τMλmax(P̃14) + τ2
Mλmax(P̃15)

+
ρ3

M
2

λmax(P̃16)]× sup
−µM≤t0≤0

{ξT(t0)Lξ(t0), ξ̇T(t0)Lξ̇(t0)},

≤ Λg1.

We have the following:

eαtV(0) + αeαt
∫ t

0
e−αsκT(t)κ(t)ds ≤ eαtΛg1 + αeαt

∫ t

0
e−αsκT(s)κ(s)ds,

≤ eαTΛg1 + eαTδ(1− e−αT),

≤ eαT[Λg1 + δ(1− e−αT)
]
, (24)
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where the following is the case.

Λ = λ2 + λ4 + 2(λ3 + λ5) + µMλmax(λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12

+λ13 + λ14) +
µ2

M
2

λ20 +
µ3

M
2

(λ15 + λ16 + λ17 + λ18 + λ19 + λ21 + λ22

+λ23 + λ27 + λ28) +
µ4

M
6

λ24 +
µ5

M
12

(λ25 + λ26) + τM(λ29) + τ2
M(λ30)

+
ρ3

M
2

(λ31). (25)

On the other hand, the following condition holds.

V(t) ≥ ξT(t)P1ξ(t) ≥ λmin(P̃1)ξ
T(t)Lξ(t) = λ1ξT(t)Lξ(t). (26)

From Equations (24) and (27), we obtain the following.

ξT(t)Lξ(t) ≤
eαT[Λg1 + δ(1− e−αT)

]
λ1

. (27)

Condition [λ1g2e−αT > Λg1 + δ(1− e−αT)] indicates that for ∀t ∈ [0, T], ξT(t)Lξ(t) <
g2. From Definition 2, system (5) is finite-time bounded with regard to (g1, g2, T, L, δ). The
proof is now finished.

Remark 1. Condition (9) is not a standard form of LMIs. In order to verify that this condition
is equivalent to the relation of LMIs, let λi, i = 1, 2, 3, . . ., 31 be some positive scalars with the
following.

λ1 I ≤ P̃1 ≤ λ2 I, 0 ≤ W̃1 ≤ λ3 I, 0 ≤ P̃2 ≤ λ4 I, 0 ≤ W̃2 ≤ λ5 I,
0 ≤ P̃3 ≤ λ6 I, 0 ≤ R̃1 ≤ λ7 I, 0 ≤ R̃2 ≤ λ8 I, 0 ≤ R̃T

2 ≤ λ9 I,
0 ≤ R̃3 ≤ λ10 I, 0 ≤ R̃4 ≤ λ11 I, 0 ≤ R̃5 ≤ λ12 I, 0 ≤ R̃T

5 ≤ λ13 I,
0 ≤ R̃6 ≤ λ14 I, 0 ≤ R̃7 ≤ λ15 I, 0 ≤ R̃8 ≤ λ16 I, 0 ≤ R̃T

8 ≤ λ17 I,
0 ≤ R̃9 ≤ λ18 I, 0 ≤ P̃4 ≤ λ19 I, 0 ≤ P̃5 ≤ λ20 I, 0 ≤ P̃6 ≤ λ21 I,
0 ≤ P̃7 ≤ λ22 I, 0 ≤ P̃8 ≤ λ23 I, 0 ≤ P̃9 ≤ λ24 I, 0 ≤ P̃10 ≤ λ25 I,
0 ≤ P̃11 ≤ λ26 I, 0 ≤ P̃12 ≤ λ27 I, 0 ≤ P̃13 ≤ λ28 I. 0 ≤ P̃14 ≤ λ29 I,
0 ≤ P̃15 ≤ λ30 I. 0 ≤ P̃16 ≤ λ31 I.

Consider the following.

λ1 = λmin(P̃1), λ2 = λmax(P̃1), λ3 = λmax(W̃1), λ4 = λmax(P̃2),
λ5 = λmax(W̃2), λ6 = λmax(P̃3), λ7 = λmax(R̃1), λ8 = λmax(R̃2),
λ9 = λmax(R̃T

2 ), λ10 = λmax(R̃3), λ11 = λmax(R̃4), λ12 = λmax(R̃5),
λ13 = λmax(R̃T

5 ), λ14 = λmax(R̃6), λ15 = λmax(R̃7), λ16 = λmax(R̃8),
λ17 = λmax(R̃T

8 ), λ18 = λmax(R̃9), λ19 = λmax(P̃4), λ20 = λmax(P̃5),
λ21 = λmax(P̃6), λ22 = λmax(P̃7), λ23 = λmax(P̃8), λ24 = λmax(P̃9),
λ25 = λmax(P̃10), λ26 = λmax(P̃11), λ27 = λmax(P̃12), λ28 = λmax(P̃13),
λ29 = λmax(P̃14), λ30 = λmax(P̃15), λ31 = λmax(P̃16).

3.2. Finite-Time Stability Analysis

Remark 2. If there is an external disruption κ(t) = 0, system (5) changes into the following.

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t)))
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

ξ(t) = φ(t), t ∈ [−h̄, 0].

 (28)
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By (8), we provide additional notation for finite-time stability analysis for (28).

∑̃ =
[
Π(i,j)

]
22×22

. (29)

We obtain that Π(1,1) −Π(22,22) is the same as in Theorem 1. Then, we define the following:

η̃(t) =
[
ξ(t), y(t), f (ξ(t)), f (ξ(t− µ(t))), ξ(t− µ(t)), ξ(t− µM),∫ t

t−µ(t)
y(s)ds,

∫ t−µ(t)

t−µM

y(s)ds, f (ξ(t− µM)),
∫ t

t−µ(t)
ξ(s)ds,

∫ t−µ(t)

t−µM

ξ(s)ds,

ξ̇(t),
1

µM

∫ t

t−µM

ξ(s)ds,
1

µ2
M

∫ t

t−µM

∫ t

t−µM

ξ(s)ds,
1

µ3
M

∫ t

t−µM

∫ t

t−µM

∫ t

t−µM

ξ(s)ds,

∫ t

t−µM

ξ(u)du,
∫ t

−µM

∫ t

u
ξ(λ)dλdu,

∫ t

t−µ(t)
ξ̇(s)ds,

∫ t−µ(t)

t−µM

ξ̇(s)ds,

ξ̇(t− τ(t)),
∫ t

t−ρ(t)
f (ξ(s))ds

]
,

and construct a new theorem that follows Corollary 1.

Corollary 1. For ‖ C ‖ < 1, system (28) with κ(t) = 0 is finite-time stable if there exist positive
symmetric matrices Pi, Rj, i = 1, 2, 3, . . ., 16, j = 1, 2, 3, . . ., 9 any appropriate matrices

S, P13, R8, Qk, R7 ≥ 0, Zl , l = 1, 2 and Oe, e = 1, 2, 3, . . ., 8,
[

Rn+3n R2+3n
RT

2+3n R3+3n

]
≥

0,
[

P13 S
∗ P13

]
≥ 0, where n = 0, 1, 2, k = 1, 2, . . ., 14, positive diagonal matrices are Hp, Wp,

p = 1, 2 and positive real constants are µM, ρM, µd, τM, τd, α, g1, g2, T such that the
following symmetric linear matrix inequality holds:P5 M1 M2

∗ M3 M4
∗ ∗ M5

 ≥ 0, (30)

∑̃ < 0, (31)

λ1g2e−αT > Λg1, (32)

where κ(t) = 0 as described in Theorem 1.

Proof. Since the proof is identical to that of Theorem 1, it is excluded from this section.

3.3. Finite-Time Passivity Analysis

This section discusses the topic of finite-time passivity analysis investigated for the
following system.

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

z(t) = G1 f (ξ(t)) + G2κ(t), t ∈ R+

ξ(t) = φ(t), t ∈ [−h̄, 0].

 (33)

Theorem 2. For ‖ C ‖ < 1, system (43) is finite-time passivity if there exist positive symmetric
matrices Pi, Rj, Gt, i = 1, 2, 3, . . ., 16, j = 1, 2, 3, . . ., 9, t = 1, 2 any appropriate

matrices S, P13, R8, Qk, R7 ≥ 0, Zl , l = 1, 2 and Oe, e = 1, 2, 3, . . ., 8,
[

Rn+3n R2+3n
RT

2+3n R3+3n

]
≥

0,
[

P13 S
∗ P13

]
≥ 0, where n = 0, 1, 2, k = 1, 2, . . ., 14, positive diagonal matrices are Hp, Wp,
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p = 1, 2 and positive real constants are µM, ρM, µd, τM, τd, α, δ, β, g1, g2, T such that the
following symmetric linear matrix inequality holds:P5 M1 M2

∗ M3 M4
∗ ∗ M5

 ≥ 0, (34)

∑̂ =
[
Π̂(i,j)

]
23×23

< 0, (35)

λ1g2e−αT > Λg1 + δ(1− e−αT), (36)

where Π̂(i,j) = Π(i,j), i, j = 1, 2, . . ., 23 except Π̂4,19 = Π3,23 − GT
1 , Π̂23,3 = Π19,4 −

G1, Π̂23,23 = −βI − GT
2 − G2.

Proof. The following function is defined using the same Lyapunov–Krasovskii function as
Theorem 1.

V̇(t)− [αV(t) + 2κT(t)z(t)− βκT(t)κ(t)] ≤ ηT(t)∑̂η(t). (37)

∑̂ is show in (35), and then the following is the case.

V̇(t)− αV(t) ≤ 2κT(t)z(t)− βκT(t)κ(t). (38)

Then, multiplying (38) by e−αT and integrating it between 0 and T , we can obtain the
following:

V(t)e−αT ≤ 2
∫ T

0
e−αtκT(t)z(t)dt− β

∫ T

0
e−αtκT(t)κ(t)dt,

≤ 2
∫ T

0
κT(t)z(t)dt− βe−αT

∫ T

0
κT(t)κ(t)dt,

which implies the following.

V(t) ≤ 2eαT
∫ T

0
κT(t)z(t)dt− β

∫ T

0
κT(t)κ(t)dt. (39)

Due to V(t) ≥ 0, it is reasonable to obtain it from (39) and the following:∫ T

0
κT(t)z(t)dt ≥ γ

∫ T

0
κT(t)κ(t), (40)

where γ = βe−αT

2 . As a result, we may infer that system (33) is finite-time passive. This
completes the proof.

Remark 3. When E = 0, C = 0 and H = 0 system (5) changes to delayed neural network, the
following is the case.

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))). (41)

By (8), we consider system (41) without finite-time stability condition and same proof line of
Theorem 1. Moreover, the system is said to be asymptotically stable:

¯∑ =
[
Π(i,j)

]
19×19

, (42)

where Π̄12,12 = Π12,12 − P14 − τMP15, Π̄4,4 = Π3,3 − ρ2
MP16, and the parameters are as defined

in Theorem 1. Then, we define the following.
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η̄(t) =
[
ξ(t), y(t), f (ξ(t)), f (ξ(t− µ(t))), ξ(t− µ(t)), ξ(t− µM),

∫ t

t−µ(t)
y(s)ds,

∫ t−µ(t)

t−µM

y(s)ds, f (ξ(t− µM)),
∫ t

t−µ(t)
ξ(s)ds,

∫ t−µ(t)

t−µM

ξ(s)ds, ξ̇(t),
1

µM

∫ t

t−µM

ξ(s)ds,

1
µ2

M

∫ t

t−µM

∫ t

t−µM

ξ(s)ds,
1

µ3
M

∫ t

t−µM

∫ t

t−µM

∫ t

t−µM

ξ(s)ds,
∫ t

t−µM

ξ(u)du,

∫ t

−µM

∫ t

u
ξ(λ)dλdu,

∫ t

t−µ(t)
ξ̇(s)ds,

∫ t−µ(t)

t−µM

ξ̇(s)ds
]
.

4. Numerical Examples

Simulation examples are provided in this part to show the feasibility and efficiency of
theoretic solutions. Five examples are given in this part to demonstrate the key theoretical
conclusions that have been offered.

Example 1. Consider the following matrix parameters for the neutral-type neural networks:

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t)

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds,

with the following.

A =

[
3.6 0
0 3.6

]
, Gb =

[
−0.34 0
−0.1 −0.1

]
, Gd =

[
0.1 0.2
−0.15 −0.18

]
,

Gc =

[
−0.5 0
0.2 0.5

]
, H =

[
0.41 0.5
0.69 −0.31

]
.

Let the following be the case:

τM = 0.2, g1 = 0.4, T = 6, ρM = 0.1,
α = 0.10, δ = 0.005, µd = 0.5, τd = 0.2,

and µM = 1.3, F1 = diag{0, 0}, F2 = diag{1, 1}. Using the MATHLAB tools to solve LMIs
(8) and (9), we may obtain g2 = 7.8794, indicating that the neutral system under consideration
is finite-time bounded. The activation function is described by f (ξ(t)) = 2|cos(t)|, and we
allow discrete time-varying delays to satisfy µ(t) = 0.8 + 0.5|sin(t)|, ρ(t) = 0.1|sin(t)| and
τ(t) = 0.2|cos(t)|.

Example 2. Consider the following matrix parameters for the neutral-type neural networks ma-
trix parameters:

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

z(t) = G1 f (ξ(t)) + G2κ(t),

with the following.

A =

[
1.5 0
0 1.5

]
, Gb =

[
1.1 0.2
−0.1 −1.1

]
, Gd =

[
0.2 0
0.2 −0.2

]
,

Gc =

[
−0.5 0.3
0.2 0.1

]
, H =

[
0.4 −0.2
0.3 −0.14

]
, G1 =

[
0.1 0.2
−0.01 0.4

]
,

G2 =

[
0.2 −0.6
0.3 0.2

]
.
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Let the following be the case:

µM = 2.4, τM = 1.2, g1 = 0.5, T = 5, g2 = 6,
α = 0.10, δ = 1, µd = 0.9, τd = 0.2, ρM = 0.1,

then F1 = diag{0, 0}, F2 = diag{0.5, 0.9}. Using the MATHLAB tools to solve LMIs (35) and (36),
we may obtain γ = 17.4493, indicating that the neutral system under consideration is finite-
time passive. The activation function is described by f (ξ(t)) = [0.5|sin(t)|, 0.9|cos(t)|], and we
allow discrete time-varying delays to satisfy µ(t) = 0.1 + 0.1|sin(t)|, ρ(t) = 1.1|sin(t)| and
τ(t) = 1 + 0.2|cos(t)|.

Example 3. Consider the following matrix parameters for the neutral-type neural networks:

ξ̇(t)− Gc ξ̇(t− τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))) + Ge

∫ t

t−ρ(t)
f (ξ(s))ds,

with the following.

A =

[
4 0
0 4

]
, Gb =

[
1.3 0.4
0.9 0.2

]
, Gd =

[
0.6 0.2
0.3 −0.3

]
,

Gc =

[
−0.5 0
0.2 0.5

]
, H =

[
0.41 0.5
0.69 −0.31

]
, E =

[
0.4 −0.2
0.3 −0.3

]
.

Let the following be the case:

τM = 0.2, g1 = 3, T = 5, ρM = 1.1,
α = 0.001, δ = 0.005, µd = 0.1, τd = 0.1,

and µM = 0.1, F1 = diag{0, 0}, F2 = diag{2, 2}. Using the MATHLAB tools to solve LMIs
(8) and (9), we may obtain g2 = 0.5996, indicating that the neutral system under consideration
is finite-time stable. The activation function is described by f (ξ(t)) = 4|cos(t)|, and we allow
discrete time-varying delays to satisfy µ(t) = 0.8 + 0.5|sin(t)|, ρ(t) = 0.1|sin(t)| and τ(t) =
0.1 + 0.1|cos(t)|.

Example 4. Consider the following matrix parameters for the neural networks matrix parameters:

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))),

with the following:

A =

[
2 0
0 2

]
, Gb =

[
1 1
−1 −1

]
, Gd =

[
0.88 1

1 1

]
.

then F1 = diag{0, 0}, F2 = diag{0.4, 0.8}. Using the MATHLAB tools to solve LMIs (35) and (36),
we indicate that the neutral system under consideration is finite-time passive. In addition, the
acquired results are compared to previously published studies. The findings show that the stability
conditions presented in this paper are more effective than those found in previous research. By
solving Example 4 with LMI in Remark 3, we can obtain a maximum permissible upper bound µM
for different µd, as shown in Table 1.

Figure 1 provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as µ(t) = [3.6 + 0.9|sin(t)|], and the
activation function is set as f (ξ(t)) = [0.4tanh(x1(t)), 0.8tanh(x2(t))]T .

The permissible upper bound µM for various µd is shown in Table 1. Table 1 shows that the
conclusions of Remark 3 in this study are less conservative than those in [45–48], demonstrating
the effectiveness of our efforts. Table 1 shows the state variables’ temporal responses. The allowable
upper bounds of µM are listed in Table 1.
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Figure 1. It provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as µ(t) = [3.6+ 0.9|sin(t)|], and the activation
function is set as f (ξ(t)) = [0.4tanh(x1(t)), 0.8tanh(x2(t))]T .

Table 1. Allowable upper bound µM for various µd of Example 4.

Method µd = 0.8 µd = 0.9 Number of Variables

[45] 4.5940 3.4671 7.5n2+8.5n
[46] 4.8167 3.4245 13.5n2+13.5n
[47] 5.4428 3.6482 -
[48] 5.6384 3.7718 22n2+14n

Remark 3 6.5411 4.5074 23n2+23n

Example 5. Consider the following matrix parameters for the neural networks matrix parameters:

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t− µ(t))),

with the following:

A =

[
1.5 0
0 1.7

]
, Gb =

[
0.0503 0.0454
0.0987 0.2075

]
, Gd =

[
0.2381 0.9320
0.0388 0.5062

]
,

then F1 = diag{0, 0}, F2 = diag{0.3, 0.8}. The maximum delay bounds with µ calculated by
Remark 3, as and the recommended criteria are presented in the Table 2.

Figure 2 provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as µ(t) = [6.3190 + 0.55|sin(t)|], and
the activation function is set as f (ξ(t)) = [0.3tanh(x1(t)), 0.8tanh(x2(t))]T .

From Table 2, it follows that Remark 3 provides significantly better results than [49–52] in the
case of µd = 0.4 and µd = 0.45. However, in cases where µd = 0.5 and µd = 0.55, the results are
slightly worse than in [21]. Additionally, the acquired results are compared to previously published
studies. The findings show that the stability conditions presented in this paper are more effective
than those found in previous research.
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Table 2. Allowable upper bound µM for various µd of Example 5.

Method µd = 0.4 µd = 0.45 µd = 0.5 µd = 0.55 Number of Variables

[49] 4.6569 3.7268 3.4076 3.2841 8n2+12n
[50] 4.5543 3.8364 3.5583 3.4110 13.5n2+21.5n
[51] 7.6697 6.7287 6.4126 3.2569 13.5n2+13.5n
[52] 8.3498 7.3817 7.0219 6.8156 7n2+11n

Remark 3 9.7901 7.6470 6.7875 6.3190 23n2+23n

Figure 2. It provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as µ(t) = [6.3190 + 0.55|sin(t)|], and the
activation function is set as f (ξ(t)) = [0.3tanh(x1(t)), 0.8tanh(x2(t))]T .

5. Conclusions

In this study, a novel result was presented. The new systems have been used to derive
the analysis of finite-time passivity analysis of neutral-type neural networks with mixed
time-varying delays. The time-varying delays are distributed, discrete and neutral, and the
upper bounds for the delays are available. We are investigating the creation of sufficient
conditions for finite boundness, finite-time stability and finite-time passivity, which has
not been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–
Park’s integral inequality, descriptor model transformation and zero equation use, and
then we used Wirtinger’s integral inequality technique. New finite-time stability necessary
conditions are constructed in terms of linear matrix inequalities to guarantee finite-time
stability for the system. Finally, numerical examples are presented to demonstrate the
result’s effectiveness, and our proposed criteria are less conservative than prior studies
in terms of larger time-delay bounds. By combining numerous integral components of
the Lyapunov–Krasovskii function with inequality, our results offered wider bounds of
time-delay than the previous literature (see Tables 1 and 2). Construction of an LMI variable
number based on integral inequalities yields less conservative stability criteria for interval
time-delay systems. We expect to be able to improve existing research and lead research
into other areas of application.
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Appendix A

For Π(i,j) = Π(j,i), i, j = 1, 2, 3, . . ., 23 where the following is the case:

Π(1,1) = −P1 A− AT P1 −QT
1 A− ATQ1 + QT

2 + Q2 + P3 + R1 + R4 − F1H1 + µ2
MP4

+M1T + M1T + µM M3 − 9P8 − 12P9 +
µ4

M
4

P10 − 2µ2
MP11 − P2 A− AP2

+µ2
MR7 − R9 −OT

2 A− ATO2 −OT
6 A− ATO6 − 4P12 − P13,

Π(1,2) = −QT
1 − ATQ10 + Q11 + µ2

MR8 − ATO5 −OT
6 ,

Π(1,3) = P1Gb + QT
1 Gb + R2 + R5 + F2H1 + P2Gb + OT

2 Gb − ATO3 + OT
6 Gb − ATO7,

Π(1,4) = P1Gc + QT
1 Gd + P2Gd + OT

2 Gd − ATO4 + OT
6 Gd − ATO8,

Π(1,5) = −QT
2 −QT

3 −MT
1 + M2 + µM M4 + R9 + P13 − S,

Π(1,6) = QT
3 + 3P8 − 2P12 + S,

Π(1,7) = −ATQ4 −QT
2 −Q5,

Π(1,8) = −ATQ7 + Q8 −QT
3 ,

Π(1,10) = −RT
8 ,

Π(1,12) = −W1F1 + W2F2 − AT NT
2 −O1 −OT

2 ,

Π(1,13) = 36P8 + 12P9 + 6P12,

Π(1,14) = −60P8 − 120P9,

Π(1,15) = 360P9,

Π(1,16) = 2µMP11,

Π(1,18) = Z1,

Π(1,21) = OT
6 Gc + OT

2 Gc + P1Gc + P2Gc,

Π(1,22) = OT
6 Ge + OT

2 Ge + P1Ge + P2Ge,

Π(1,23) = OT
6 H + OT

2 H + P1H + P2H,

Π(2,2) = −QT
10 −Q10 + µMP5 + µ2

MP6 +
µ2

M
2

P9 +
µ4

M
2

P11 + QT
14 + Q14 + µ2

MR9

−OT
5 −O5 + µ2

MP8,

Π(2,3) = QT
10Gb + OT

5 Gb −O7,

Π(2,4) = QT
10Gd + OT

5 Gd −O8,

Π(2,5) = −QT
11 −QT

12,

Π(2,6) = QT
12,

Π(2,7) = −Q4 −QT
11,

Π(2,8) = −Q7 −QT
12,

Π(2,12) = QT
13 −Q14,

Π(2,21) = OT
5 Gc,

Π(2,22) = OT
5 Ge,

Π(2,23) = OT
5 H,

Π(3,3) = R3 + R6 − H1 + OT
3 Gb + GT

b O3 + OT
7 Gb + GT

b O7 + µ2
MP12 + µ2

M MP13

+ρ2P16,
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Π(3,4) = OT
3 Gd + GT

d O4 + OT
7 Gd + GT

b O8,

Π(3,7) = GT
b Q4,

Π(3,8) = GT
b Q7,

Π(3,12) = W1 −W2 + GT
b N2 + GT

b O1 −OT
3 ,

Π(3,21) = OT
7 Gc + OT

3 Gc,

Π(3,22) = OT
7 Ge + OT

3 Ge,

Π(3,23) = OT
7 H + OT

3 H,

Π(4,4) = µdGdR3 − R3 − H2 + OT
4 Gd + GT

d O4 + OT
8 Gd + GT

d O8,

Π(4,5) = µdGdRT
2 − RT

2 + H2T F2T ,

Π(4,7) = GT
d Q4,

Π(4,8) = GT
d Q7,

Π(4,12) = GT
d N2 + GT

d O1 −OT
4 ,

Π(4,21) = OT
8 Gc + OT

4 Gc,

Π(4,22) = OT
8 Ge + OT

4 Ge,

Π(4,23) = OT
8 H + OT

4 H,

Π(5,5) = µdGdR1 − R1 + M1 + MT
1 −M2 −MT

2 + µM M3 + µM M5 − F1H2

−R9 − RT
9 − 2P13 + S + ST ,

Π(5,6) = M2 −MT
1 + µM M4 + R9 + P13 − S,

Π(5,7) = −Q5 −Q6,

Π(5,8) = −Q8 −Q9,

Π(5,10) = RT
8 ,

Π(5,11) = −RT
8 ,

Π(5,18) = −Z1,

Π(5,19) = Z2,

Π(6,6) = −P3 − R4 −M2 −MT
2 + µM M5 − 9P8 − R9 − 4P12 − P13,

Π(6,7) = Q6,

Π(6,8) = Q9,

Π(6,9) = −R5,

Π(6,11) = RT
8 ,

Π(6,13) = −24P8 + 6P12,

Π(6,14) = 60P8,

Π(6,19) = −Z2,

Π(7,7) = −QT
5 −Q5 − P6,

Π(7,8) = −Q8 −QT
6 − P6,

Π(8,8) = −QT
9 −Q9 − P6,

Π(9,9) = −R6,

Π(10,10) = −P4 − R7,

Π(11,11) = −P4 − R7,



Mathematics 2021, 9, 3321 24 of 26

Π(12,12) = −NT
2 − N2 + µ2

MP7 −QT
13 −Q13 −OT

1 A− ATO1 + P14 + τMP15,

Π(12,21) = OT
1 Gc,

Π(12,22) = OT
1 Ge,

Π(12,23) = OT
1 H,

Π(13,13) = −192P8 − 72P9 − 12P12,

Π(13,14) = 360P8 + 480P9,

Π(13,15) = −1080P9,

Π(14,14) = −720P8 − 3600P9,

Π(14,15) = 8640P9,

Π(15,15) = −21600P9,

Π(16,16) = −2P11,

Π(17,17) = −P10,

Π(18,18) = −ZT
1 − Z1 − P7,

Π(18,19) = −P7,

Π(19,19) = −ZT
2 − Z2 − P7,

Π(20,20) = −τMP15,

Π(21,21) = −P14 + τMP14,

Π(22,22) = −P16,

Π(23,23) = −αI, and the other are equal zero.
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