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Abstract: We present some solutions of the three-dimensional Laplace equation in terms of linear
combinations of generalized hyperogeometric functions in prolate elliptic geometry, which simulates
the current tokamak shapes. Such solutions are valid for particular parameter values. The derived
solutions are compared with the solutions obtained in the standard toroidal geometry.

Keywords: Laplace equation; Heun equation; analytic solution; cap-cyclide geometry; standard
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1. Introduction

In 2019, the European Union (27 countries) produced a total of around 617.52 Mtoe
of electricity for its energy consumption needs, of which 100.63 Mtoe concern solid fossil
fuels [1]. To produce energy of this magnitude, large quantities of fuel are required, at great
expense. Fusion energy can provide a viable alternative energy source to fossil fuels.

One of the biggest obstacles to fusion is the question of how to hold the reactants long
enough for the energy production to exceed the energy input. It is essential to understand
the dynamics and confinement of plasma.

Recently, these types of experiments have been carried out with the help of Tokamak
devices, which use a powerful magnetic field to confine the plasma to a toroidal shape. The
tokamak is one of several types of magnetic confinement devices developed to produce
controlled thermonuclear fusion energy. As of 2021, it is the leading candidate for a
practical fusion reactor.

A crucial component in this task is the magnetohydrodynamic equilibrium (MHD)
which defines the geometry of the confinement magnetic field. The MHD equations
produce a second-order nonlinear differential equation known as the Grad–Shafranov
equation [2,3], which is the equilibrium equation in MHD ideal for a two-dimensional
plasma (e.g., axial-symmetric toroidal plasma in a tokamak). In axisymmetry the Grad–
Shafranov equation is given by:

∂2ψ

∂R2 −
1
R

∂ψ

∂R
+

∂2ψ

∂Z2 = µ0RJφ,

where Jφ is the toroidal plasma current, ψ is the flux function and (R, θ∗,Z) are the standard
cylindrical coordinates.

The literature contains a large amount of scientific articles that address the tokamak
balance problem, adopting different approaches.
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For example, if the reference system is oblate toroidal, the Grad–Shafranov equation in
vacuum admits an analytic solution highlighted in the works [4,5]. In case the source term
assumes simple forms, the existence of analytical solutions of the nonlinear Grad–Shafranov
equation has been shown [6–9].

The problem of finding the solution of the Grad–Shafranov equation was also ad-
dressed from the numerical point of view, through the development of some predictive
equilibrium codes [10–14]. Semi-analytical methods have also been adopted in [15,16].

An interesting approach to analytically solve the Grad–Shafranov equation with non-
constant source terms through the technique of separable variables was used in [17,18].

The exact analytical solution of the Grad–Shafranov equation in vacuum has been
found only if the reference system has a standard circular shape or has an oblate elliptical
toroidal geometry [4,5]. Both of these geometries are unsuitable for current tokamak
experiments, which are all based on prolate elliptical geometry. In 2019, Crisanti cite
Crisanti observed that, in axisymmetry, the Grad–Shafranov equation of vacuum coincides
with the Laplace equation for the toroidal component of the vector potential. Cristanti
faces the problem of finding the analytical solution for the Grad–Shafranov equation in
vacuum (and therefore also of the Laplace equation) when the reference system is written
in toroidal prolate elliptic cap-cyclide coordinates. A detailed study of the geometric and
metric properties of these coordinates allows us to elaborate the analytical solution of
both equations in terms of the Wangerin functions, the analytical expression of which is,
however, not known.

The work of Crisanti [19] opens up the possibility of creating a reconstructive code
of equilibrium based on an elongated geometry. Wangerin functions were first evaluated
in [4]. However, to use them in a budget code, an independent evaluation and a cross-check
will be required [19]. Furthermore, it will be necessary to evaluate the derivatives, to derive
the poloidal magnetic field and find the Green’s function for this [19] geometry.

The literature shows us a wide range of scientific articles that address the problem of the
analytical solution of the Laplace equation (in its various variants), see for example [20–24].

In this article, starting from the recent work of Crisanti [19], we transform the Laplace
equation into the Heun equation, and based on the work of A.M. Ishkhanyan [25], we
provide an analytical solution of the Laplace equation for some parameter values. Since
the Laplace equation and the Grad–Shafranov equation differ by one sign, the procedure
presented in this manuscript can be repeated to find the analytical solution of the Grad–
Shafranov equation. In Section 2, we introduce the cap-cyclide geometry and, through
some transformations of variables, we pass from the Grad–Shafranov equation to the Heun
equation. In Section 3, we define the standard toroidal geometry as a special case of the
cap-cyclide geometry. In Section 4 we find the analytical solution of the Laplace equation
valid in standard toroidal geometry. In Section 5 we find the analytical solution of the
Laplace equation in cap-cyclide coordinates for some parameter values. In Section 6, we
present the conclusions.

1.1. Hypergeometric Functions

Definition 1. A hypergeometric series is formally defined as a power series

c0 + c1z + c2z2 + ... = ∑
n≥0

cnzn, (1)

in which the ratio of successive coefficients is a rational function of n, that is

cn+1

cn
=

A(n)
B(n)

, (2)

with A(n) and B(n) polynomials in n.
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It is customary to assume c0 to be 1. The polynomials A(n) and B(n) can be factored
into linear factors of the form (aj + n) and (bk + n) respectively, where the aj and bk are
complex numbers. For historical reasons, it is assumed that (1 + n) is a factor of B(n).

The ratio between consecutive coefficients now has the form

cn+1

cn
=

c(a1 + n) · · · (ap + n)
d(b1 + n) · · · (bq + n)(1 + n)

, (3)

where c and d are the leading terms of A(n) and B(n). The series then has the form

1 +
a1 · · · ap

b1 · · · bq · 1
cz
d
+

a1 · · · ap

b1 · · · bq · 1
(a1 + 1) · · · (ap + 1)

(b1 + 1) · · · (bq + 1) · 2

( cz
d

)2
+ · · · , (4)

or, by scaling z by the appropriate factor and rearranging

1 +
a1 · · · ap

b1 · · · bq

z
1!

+
a1(a1 + 1) · · · ap(ap + 1)
b1(b1 + 1) · · · bq(bq + 1)

z2

2!
+ · · · (5)

This series is usually denoted by

pFq(a1, . . . , ap; b1, . . . , bq; z). (6)

The series, if convergent, defines a generalized hypergeometric function, which may then
be defined over a wider domain of the argument by analytic continuation.

Historically, the most important are the functions of the form 2F1(a1, a2; b1; z). These
are sometimes called Gauss’s hypergeometric functions.

1.2. Heun Functions

Definition 2. The local Heun function H(a, Q; α, β, γ, δ; z) (Karl L. W. Heun 1889) is the solution
of Heun’s differential equation, that is

d2H
dz2 +

(
γ

z
+

δ

z− 1
+

ε

z− a

)
dH
dz

+
αβz−Q

z(z− 1)(z− a)
H = 0, (7)

where ε is a real number such that the Fuchsian condition

γ + δ + ε = α + β + 1, (8)

is satisfied. This relation is needed to ensure regularity of the point at ∞.
Function H(a, Q; α, β, γ, δ; z) is holomorphic and such that H(a, Q; α, β, γ, δ; 0) = 1.
The local Heun function is called a Heun function if it is regular at z = 1, and is called

a Heun polynomial if it is regular at all three finite singular points z = 0, 1, a.
The complex number Q is called the accessory parameter. Heun’s equation has four

regular singular points: 0, 1, a and ∞ with exponents (0, 1− γ), (0, 1− δ), (0, 1− ε), and
(α, β).

2. From Grad–Shafranov Equation to Heun Equation

Starting from [19], the vacuum Grad–Shafranov equation are tackled in the elliptical
prolate toroidal cap-cyclide coordinates framework.

In axisymmetric cylindrical coordinates (R, ϑ∗,Z), ∂

∂ϑ∗
= 0, the vacuum Grad–

Shafranov equation is given by:

∂2ψ

∂R2 −
1
R

∂ψ

∂R
+

∂2ψ

∂Z2 = 0. (9)
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This equation is formally similar to the Laplace equation:

∂2ψ

∂R2 +
1
R

∂ψ

∂R
+

∂2ψ

∂Z2 = 0. (10)

(Note that Equations (9) and (10) differ for a sign in the first derivative part).
Consequently, it is obvious that any analytical solution found for the Laplace equation

will be correlated to the analytical solution of the Grad–Shafranov equation.
For the present toroidal elongated tokamak, the most appropriate coordinate system

is the cap-cyclide one [26], that is

x =
Λ

asΓ
sn(µ, k)dn(ν, k1) cos φ,

y =
Λ

asΓ
sn(µ, k)dn(ν, k1) sin φ,

z =

√
kΠ

2asΓ
,

(11)

where (x, y, z) are the standard Cartesian coordinates, dn, cn, and sn are the Jacobi elliptic
functions, as is a dimensional scale parameter and

Λ = 1− dn2(µ, k)sn2(ν, k1),

Γ = sn2(µ, k)dn2(ν, k1) +

[
Λ√

k
+ cn(µ, k)dn(µ, k)sn(ν, k1)cn(ν, k1)

]2
,

Π =
Λ2

k
−
[
sn2(µ, k)dn2(ν, k1) + cn2(µ, k)dn2(µ, k)sn2(ν, k1)cn2(ν, k1)

]
.

(12)

The variation range of new variables (µ, ν, φ) is defined as

0 ≤ µ ≤ K, 0 ≤ ν ≤ K′, 0 ≤ φ ≤ 2π.

Here K and iK are respectively the real and the imaginary complete elliptic integrals

K(k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

, iK′(k1) = i
∫ π

2

0

dθ√
1− k2

1 sin2 θ
, k2 + k2

1 = 1,

where k and k1 are respectively the parameter and the complementary parameter of the
elliptic integrals.

By varying the parameter k, the coordinate transformation (11) describes a large set
of quite different geometries [19]. For µ 7→ 0, independently of k, the geometry resembles
the standard toroidal geometry; for larger values of µ the shape of the constant µ surfaces
depend on the value of the k parameter. For k 7→ 0 the surfaces tends to a bean shape. For
intermediate values of k the surfaces can be either D or purely elliptical prolate shaped.
For k 7→ 1 all the surfaces are similar to the standard toroidal ones, independently of the
value of µ [19].

As it is proved in [26] and subsequently reported by Crisanti [19], the Laplace
Equation (10) in the cap-cyclide coordinates admits a quasi-separable solution of the type

ψ(µ, ν, φ) =

√
Γ
Λ

M(µ)N(ν)Φ(φ), (13)
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where the functions M(µ), N(ν), Φ(φ) satisfy the following ordinary differental equations

d2M
dµ2 +

cn(µ, k)dn(µ, k)
sn(µ, k)

dM
dµ

+

[
k2sn2(µ, k)− α2 − α3

(
k2sn2(µ, k) +

1
sn2(µ, k)

)]
M = 0,

d2N
dν2 − k2 cn(ν, k)sn(ν, k)

dn(ν, k)
dN
dν

+

[
−dn2(ν, k) +

α2

k2 + α3

(
dn2(ν, k) +

k2

dn2(ν, k)

)]
N = 0,

d2Φ
dφ2 + α3Φ = 0,

(14)

with α2 = p2 and α3 = q2, p and q being constants, not necessarily integers [26].
In the rest of the paper, we refer to the Equation (14) as the Laplace equations.
The analytic solution of (14)3 is obtained immediately and is written as:

Φ(φ) = c1 cos(
√

α3φ) + c2 sin(
√

α3φ), c1c2 ∈ R. (15)

From [19], by substituting z1 = sn2(µ, k) and z2 = dn2(ν, k), (0 ≤ z1, z2 ≤ 1) the two
equations for M(µ) and N(ν) can be written as

d2Z
dz2 +

1
2

(
1

z− 1
+

1
z− a

+
2
z

)
dZ
dz

+
1
4

A0 + A1z + A2z2

(z− 1)(z− a)z2 Z = 0, (16)

where 
(z, a, A0, A1, A2) =

(
z1,

1
k2 ,− q2

k2 ,− p2

k2 , 1− q2
)

, for equation in M(µ)

(z, a, A0, A1, A2) =

(
z2, k2,−q2k2,

p2

k2 , 1− q2
)

, for equation in N(ν),

(17)

Following [25] and applying the transformation

Z = zσu(z), σ = ±
√
−A0

4a
= ± q

2
, (18)

Equation (16) is reduced to the general Heun equation [25,27]

d2u
dz2 +

(
γ

z
+

δ

z− 1
+

ε

z− a

)
du
dz

+
αβz−Q

z(z− 1)(z− a)
u = 0, (19)

where

δ = ε =
1
2

, γ = 1 + 2σ, αβ = σ +
aA2 − A0

4a
, Q = σ

a + 1
2
− A0 + aA0 + aA1

4a
, (20)

and under Fuchsian condition (8)
α + β = γ. (21)

Remark 1. Knowing the solution u(z) of Heun’s Equation (19), it is consequential to go back to
the solution of Wangerin’s Equation (16) given by

Z(z) = zσu(z),

so that, the solution of the Equation (14)1,2 in terms of µ and ν is given by

M(µ) =
(

sn2(µ, k)
)σ

u(sn2(µ, k)), N(ν) =
(

dn2(ν, k1)
)σ

u(dn2(ν, k1))
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3. Standard Toroidal Geometry as a Particular Case of Cap-Cyclide Geometry

As already pointed out in [19,26], if k = 1 and µ→ 0, the cap-cyclide geometry reduces
to the standard toroidal one. Toroidal coordinates are a three-dimensional orthogonal
coordinate system that results from rotating the two-dimensional bipolar coordinate system
about the axis that separates its two foci. Thus, the two foci F1 and F2 in bipolar coordinates
become a ring of radius a in the xy plane of the toroidal coordinate system; the y-axis
is the axis of rotation. The focal ring is also known as the reference circle. The toroidal
coordinates are given by the following expressions [26]:

x = a
sinh µ

cosh µ− cos ν
cos φ,

y = a
sinh µ

cosh µ− cos ν
sin φ, (22)

z = a
sin ν

cosh µ− cos ν
,

together with sign(z) = sign( ˚ ) and a ∈ R. The ν coordinate of a point P equals the angle
F1PF2 and the µ coordinate equals the natural logarithm of the ratio of the distances d1 and
d2 to opposite sides of the focal ring

µ = ln
d1

d2
.

The coordinate ranges are −π < ν ≤ π, µ ≥ 0 and 0 ≤ φ < 2π. Both geometries
(standard toroidal and cap-cyclide) are obtained by rotating a two-dimensional coordinate
system around the y axis, being respectively:

Table 1. Two-dimensional coordinate system of standard toroidal and cap-cyclide geometries.

Standard Toroidal Cap-Cyclide
xst = a

sinh µ

cosh µ− cos ν
,

zst = a
sin ν

cosh µ− cos ν
,


xcc =

Λ
asΓ sn(µ, k)dn(ν, k1)

zcc =
√

kΠ
2asΓ

If k = 1, then the two-dimensional coordinate system of cap-cyclide geometry becomes
xcc |k=1=

cosh(µ) sinh(µ)
as(cosh(2µ) + sin(2ν))

,

zcc |k=1=
cos(2ν)

2as(cosh(2µ) + sin(2ν))
.

Moreover, when µ is close to zero, then the cap-cyclide bi-dimensional system ap-
proaches standard toroidal geometry, as in the Figure 1.

We emphasize that even if in the limit for µ → 0 and k = 1, the two geometries
have the same shape, the metrics are different. In fact, the metric of the standard toroidal
geometry is not obtained as a particular case of that of the cap-cyclide geometry (as also
can be seen in [26]). This can also be noted in the formulas in Table 1: in fact even when
µ→ 0, xst 6= xcc and zst 6= zcc.
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Figure 1. Two-dimensional coordinate system of cap-cyclide geometry with k = 1 and µ close to 0.

In [26], the authors obtained the analytic solution of Laplace equation in standard
toroidal coordinates as

ψ(µ, ν, φ) =
√

cosh µ− cos νH(µ)Θ(ν)Φ(φ), (23)

where 
H(µ) = AP q

p− 1
2
(cosh µ) + BQq

p− 1
2
(cosh µ),

Θ(ν) = A sin(pν) + B cos(pν),

Φ(φ) = A sin(pφ) + B cos(pφ)

(24)

where P q
p− 1

2
, Qq

p− 1
2

are Legendre functions and A and B are constants.

4. Analytic Solution of Laplace Equation (14)1 in Standard Toroidal Geometry

In this section, we determine the analytic form of the solution of Equation (14)1 valid
in standard toroidal geometry in terms of hypergeometric functions.

In the case of standard toroidal geometry, since k = 1, then a = 1 and Equation (16)
becomes

d2Z
dz2 +

(
1

z− 1
+

1
z

)
dZ
dz

+
1
4

A0 + A1z + A2z2

(z− 1)2z2 Z = 0, (25)

with (z, a, A0, A1, A2) =
(
z1, 1,−q2,−p2, 1− q2), for equation in M(µ),

(z, a, A0, A1, A2) =
(
z2, 1,−q2, p2, 1− q2), for equation in N(ν).

(26)

After substitution (18), Equation (25) becomes

u′′(z) +
(

γ

z
+

δ + ε

z− 1

)
u′(z) +

αβz−Q
z(z− 1)2 u(z) = 0, (27)

where

δ = ε =
1
2

, γ = 1 + 2σ, αβ = σ +
1
4

, Q = σ +
2q2 − A1

4
. (28)

The last equation is the Heun Equation (19) for k = 1. Let

c =
1
2

(
γ− α− β−

√
(γ− α− β)2 − 4αβ + 4Q

)
.
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Since, in our case, Fuchsian condition reduces to α + β = γ, then

c = −
√

Q− αβ.

Following [28], consider the change of the dependent variable u(z) = (z− 1)cG(z).
After substitution, from Equation (27), we get a hypergeometric equation

z(z− 1)G′′(z) + [(2c + α + β + 1)z− γ]G′(z) + (c + α)(c + β)G(z) = 0, (29)

whose general solution is given by

G(z) = c1 2F1(c + α, c + β; γ; z) + (30)

+ c2(−1)1−γz1−γ
2F1(1 + c + α− γ, 1 + c + β− γ; 2− γ; z),

with c1, c2 ∈ C. Thus, the analytic solution of the Heun Equation (27) is given as

u(z) = (z− 1)c[c1 2F1(c + α, c + β; γ; z) + (31)

+ c2(−1)1−γz1−γ
2F1(1 + c + α− γ, 1 + c + β− γ; 2− γ; z)

]
,

with c1, c2 ∈ C. Accordingly, the analytic solution of Equation (14)1 for k = 1 reads

M(µ) =
(
sn2(µ)

)σ(sn2(µ)− 1
)c[c1 2F1

(
c + α, c + β; γ; sn2(µ)

)
+ c2(−1)1−γ

(
sn2(µ)

)1−γ
2F1
(
1 + c + α− γ, 1 + c + β− γ; 2− γ; sn2(µ)

)]
,

(32)

with c1, c2 ∈ C. Similarly, the analytic solution of Equation (14)2 for k = 1 reads

N(ν) =
(

dn2(ν)
)σ(

dn2(ν)− 1
)c[

c1 2F1

(
c + α, c + β; γ; dn2(ν)

)
+ c2(−1)1−γ

(
dn2(ν)

)1−γ

2F1

(
1 + c + α− γ, 1 + c + β− γ; 2− γ; dn2(ν)

)]
.

(33)

5. Analytic Solutions of Laplace Equation (14)1 in Cap-Cyclide Geometry

In this section, we determine the analytical form of the solution of Equation (14)1 valid
in the cap-cyclide geometry in terms of hypergeometric functions and for particular values
of the parameters.

Let’s solve the Heun Equation (19) first.
Following [25], we impose that the following series developed around the singularity

z = a:

u =

(
z− a
1− a

)µ +∞

∑
n=0

cn

(
z− a
1− a

)n
, µ = 0, 1− ε (34)

is a solution of the Heun equation and that it reduces to a generalized hypergeometric
function.

Let q be integer. This condition will allow us to construct a solution in terms of
hypergeometric functions.

Let µ = 0. The generalized hypergeometric function rFs is defined as the series [29]

rFs

(
a1, ..., ar; b1, ..., bs;

z− a
1− a

)
=

∞

∑
n=0

cn

(
z− a
1− a

)n
,

where the coefficients satisfy the two-term recurrence relation

cn

cn−1
=

1
n

r

∏
k=1

(ak − 1 + n)

s

∏
k=1

(bk − 1 + n)
.
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Since q is integer, then γ is also integer. Assume that γ is negative, i.e., γ = −N, N =
1, 2, 3, .... Following [25], we set r = N + 2, s = N + 1, and

a1, ..., aN , aN+1, aN+2 = 1 + e1, ..., 1 + eN , α, β,

b1, ..., bN , bN+1 = e1, ..., eN , ε,

with e1, ..., eN being certain constants.
It can be shown that the Heun Equation (19) admits the following solution [25]

u = N+2F1+N

(
1 + e1, ..., 1 + eN , α, β; e1, ..., eN , ε;

z− a
1− a

)
. (35)

if and only if the following polynomial Π(n) in an auxiliary variable n is identically
zero [25]:

Π(n) = Rn
(α−1+n)(β−1+n)

n(ε−1+n) ∏N
k=1(ek + n) +Qn−1 ∏N

k=1(ek − 1 + n)+

+ Pn−2
(n−1)(ε−2+n)

(α−2+n)(β−2+n) ∏N
k=1(ek − 2 + n),

(36)

where
Rn = −an(ε− 1 + n),

Qn = n[(a− 1)(n + α + β) + a(n− 1)] + n(δ + aε) + aαβ−Q,

Pn = (1− a)(α + n)(β + n).

(37)

The term of degree N + 2 in Π(n) is automatically canceled, while the term of degree
N + 1 is zero owing to the Fuchsian condition. Then, by canceling the coefficients of the
polynomial Π(n), we obtain a system of N + 1 algebraic equations, N of which are used
to determine the N constants e1, ..., eN and the last equetion imposes a restriction on the
accessory parameter Q: this restriction is obtained by substituting the expressions of the
constants e1, ..., eN in the last equation thus arriving at a polynomial equation of degree
N + 1 in the variable Q.

Therefore, there are many solutions of Equation (19) in terms of a single generalized
hypergeometric function rFs if γ is a negative interger and the accessory parameter Q
satisfies a certain polynomial equation [25].

Similarly, another solution can be constructed in terms of a power series in the vicinity
of the singularity z = 1:

u =

(
z− 1
a− 1

)µ +∞

∑
n=0

cn

(
z− 1
a− 1

)n
, µ = 0, 1− δ. (38)

Let µ = 0. Such a series can be reduced to a generalized hypergeometric series for any
negative integer γ = −N, N = 1, 2, 3, ... [25], i.e.,

u = N+2F1+N

(
1 + s1, ..., 1 + sN , α, β; s1, ..., sN , δ;

z− 1
a− 1

)
. (39)

The accessory parameter Q and the parameters s1, s2, ..., sN involved in solution (39)
are determined from a system of N + 1 algebraic equations constructed by equating the
coefficients of the following polynomial Π̃(n) in an auxiliary variable n to zero [25]:

Π̃(n) = R̃n
(α−1+n)(β−1+n)

n(δ−1+n) ∏N
k=1(ek + n) + Q̃n−1 ∏N

k=1(ek − 1 + n)+

+ P̃n−2
(n−1)(δ−2+n)

(α−2+n)(β−2+n) ∏N
k=1(ek − 2 + n),

(40)
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where

R̃n = −n(δ− 1 + n),

Q̃n = n[(1− a)(n + α + β) + n− 1] + n(δ + aε) + αβ−Q, (41)

P̃n = (a− 1)(α + n)(β + n).

The restrictions imposed on Q obtained from the polynomial Π(n) (36) and then from
the polynomial Π̃(n) (40) are identical.

The two solutions (35) and (39) are linearly independent, indeed their Wronskian
turns out to be:

W(z) = αβ
(a−1)e1e2...eN s1s2...sN δε

[
(1 + e1)(1 + e2)...(1 + eN)s1s2...sNδ·

· N+2FN+1
(
2 + e1, 2 + e2, ..., 2 + eN , 1 + α, 1 + β; 1 + e1, 1 + e2, ..., 1 + eN , 1 + ε; z−a

1−a
)
·

· N+2FN+1

(
1 + s1, 1 + s2, ..., 1 + sN , α, β; s1, s2, ..., sN , δ; z−1

a−1

)
+

+ e1e2...eN(1 + s1)(1 + s2)...(1 + sN)ε·

· N+2FN+1
(
1 + e1, 1 + e2, ..., 1 + eN , α, β; e1, e2, ..., eN , ε; z−a

1−a
)
·

· N+2FN+1

(
2 + s1, 2 + s2, ..., 2 + sN , 1 + α, 1 + β; 1 + s1, 1 + s2, ..., 1 + sN , 1 + δ; z−1

a−1

)]
6= 0

Thus, if γ = −N, N ∈ Z and Q satisfies a certain polynomial equation of N + 1 degree,
the general solution of the Heun Equation (19) is given by:

u(z) = c1 N+2FN+1
(
1 + e1, ..., 1 + eN , α, β; e1, ..., eN , ε; z−a

1−a
)
+

+ c2 N+2FN+1

(
1 + s1, ..., 1 + sN , α, β; s1, ..., sN , δ; z−1

a−1

)
, c1, c2 ∈ C.

(42)

Similarly, the general analytic solution of Laplace equation is given by:

M(µ) = sn2σ(µ, k)
[
c1 N+2FN+1

(
1 + e1, ..., 1 + eN , α, β; e1, ..., eN , ε; sn2(µ,k)−a

1−a

)
+

+ c2 N+2FN+1

(
1 + s1, ..., 1 + sN , α, β; s1, ..., sN , δ; sn2(µ,k)−1

a−1

)]
, c1, c2 ∈ C.

(43)

Now we write hypergeometric solution of the Heun equation for some values of
parameter γ.

5.1. Case: N = 0 ⇒ γ = 0

In this case, the Heun equation becomes

d2u
dz2 +

(
δ

z− 1
+

ε

z− a

)
du
dz

+
αβz−Q

z(z− 1)(z− a)
u = 0, (44)

and admits a solution in terms of the ordinary hypergeometric function:

u = c1 2F1

(
α, β; ε;

z− a
1− a

)
+ c2 2F1

(
α, β; δ;

z− 1
a− 1

)
, c1, c2 ∈ C. (45)

Since the Fuchsian condition (8) reduces to α + β = 0, from Equations (36) and (40),
we obtain the restriction on Q

Q = 0. (46)
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• σ =
q
2

From γ = 0, we get q = −1 and Fuchsian condition (8) α = −β. Furthermore, from
Equation (17)1 we obtain

a =
1
k2 , A0 = − 1

k2 , A1 = − p2

k2 , A2 = 0, for equation in M(µ). (47)

Since αβ = σ +
aA2 − A0

4a
, then from Equation (47), we get

α1,2 = ±1
2

, β1,2 = ∓1
2

.

The expression Q = σ
a + 1

2
− A0 + aA0 + aA1

4a
, together with Equation (46), gives

p2

4k2 = 0.

Thus we get p2 = 0. Consequently, Heun equation reduces to

u′′(z) +
(

1
2(z− 1)

+
1

2(z− a)

)
u′(z)− z

4z(z− 1)(z− a)
= 0, (48)

whose solution, ∀ k is given by

u = c1 2F1

(
1
2 ,− 1

2 ; 1
2 ; z−a

1−a

)
+ c2 2F1

(
1
2 ,− 1

2 ; 1
2 ; z−1

a−1

)
∀ z ∈ [0, 1]. (49)

Hence, the solution of the corresponding Wangerin Equation (16) ∀ k is given by

Z(z) = 1√
z

[
c1 2F1

(
1
2 ,− 1

2 ; 1
2 ; z−a

1−a

)
+

+ c2 2F1

(
1
2 ,− 1

2 ; 1
2 ; z−1

a−1

)]
∀ z ∈ (0, 1].

(50)

The solution of the corresponding (14)1 equation ∀ 0 < k < 1 is given by

M(µ) =
1√

sn2(µ, k)

[
c1 2F1

(
1
2

,−1
2

;
1
2

;
sn2(µ, k)− a

1− a

)
+ (51)

+ c2 2F1

(
1
2

,−1
2

;
1
2

;
sn2(µ, k)− 1

a− 1

)]
,

∀ µ ∈ (0, K].

• σ = − q
2
⇒ The same solution as for q = 1!

5.2. Case N = 1, ⇒ γ = −1

In this case, the Heun equation becomes

d2u
dz2 +

(
−1

z
+

δ

z− 1
+

ε

z− a

)
du
dz

+
αβz−Q

z(z− 1)(z− a)
u = 0, (52)

and admits a solution in terms of the generalized hypergeometric function:

u = c1 3F2

(
1 + e1, α, β; e1, ε;

z− a
1− a

)
+ c2 3F2

(
1 + s1, α, β; s1, δ;

z− 1
a− 1

)
, c1, c2 ∈ C, (53)
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with constants e1, s1. Since the Fuchsian condition (8) reduces to α + β = −1, the polyno-
mials (36) and (40) give

e1 = − aαβ

Q
, s1 = −αβ

Q
. (54)

Besides, the accessory parameter Q satisfies the following polinomial equation of
second degree

2Q2 − (1 + a)Q + 2aαβ = 0. (55)

• σ =
q
2

From γ = −1, we get q = −2 and the Fuchsian condition (8) reads α = −β − 1.
Besides, from Equation (17) we obtain

a =
1
k2 , A0 = − 4

k2 , A1 = − p2

k2 , A2 = −3, for equation in M(µ) (56)

Since αβ = σ +
aA2 − A0

4a
, then from Equation (56), we get

α1 = −3
2

, β1 =
1
2

, α2 =
1
2

, β2 = −3
2

From Equation (55), we get the Q values

Q1,2 =
1
4

(
1 +

1
k2 ±

√
1 +

14
k2 +

1
k4

)
. (57)

The expression Q = σ
a + 1

2
− A0 + aA0 + aA1

4a
gives the relation between k and p

1 +
(

1±
√

1 + 1
k4 +

14
k2

)
k2 + p2

4k2 = 0. (58)

The Heun equation reduces to

u′′(z) +
(
−1

z
+

1
2(z− 1)

+
1

2(z− a)

)
u′(z)−

3
4 z + Q

z(z− 1)(z− a)
= 0 (59)

whose solution, ∀ k is given by

u = c1 3F2

(
1 + e1,−3

2
,

1
2

; e1,
1
2

;
z− a
1− a

)
+ c2 3F2

(
1 + s1,−3

2
,

1
2

; s1
1
2

;
z− 1
a− 1

)
, (60)

c1, c2 ∈ C and z ∈ [0, 1].

Hence, the solution of the corresponding Wangerin equation for any k is given by

Z(z) = 1
z
[
c1 3F2

(
1 + e1,− 3

2 , 1
2 ; e1, 1

2 ; z−a
1−a

)
+

+ c2 3F2

(
1 + s1,− 3

2 , 1
2 ; s1

1
2 ; z−1

a−1

)]
,

(61)

c1, c2 ∈ C and z ∈ (0, 1].
Consequently, the solution of the corresponding (14)1 is written as

M(µ) = 1
sn2(µ,k)

[
c1 3F2

(
− 3

2 , 1
2 , 1 + e1; 1

2 , e1; sn2(µ,k)−a
1−a

)
+

+ c2 3F2

(
− 3

2 , 1
2 , 1 + s1; 1

2 , s1; sn2(µ,k)−1
a−1

)]
,

(62)
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c1, c2 ∈ C and µ ∈ (0, K].

• σ = − q
2
⇒ The same solution as for q = 2.

5.3. Positive Integer γ

Let γ now be a positive integer. Following [25], we apply a change of the dependent
variable in order to obtain a Heun equation with altered parameters and with a negative
characteristic exponent γ. Let u = z1−γw: this change transforms the Heun equation into
another Heun equation with the altered parameter γ∗ = 2− γ, i.e.,

w′′(z) +
(

γ∗

z
+

δ

z− 1
+

ε

z− a

)
w′(z) +

α∗β∗z−Q∗

z(z− 1)(z− a)
w(z) = 0, (63)

where α∗ = (α + 1− γ), β∗ = (β + 1− γ) and Q∗ = Q + (1− γ)(ε + aδ).
Then, for γ ≥ 2, we have a Heun equation with a zero or negative integer γ∗ = −N,

N = 1, 2, 3, ..... As a result, we obtain the solution

u = z1−γ
[
c1 N+2F1+N

(
e1 + 1, ..., eN + 1, α + 1− γ, β + 1− γ; e1, ..., eN , ε; z−a

1−a
)
+

+ c2 N+2F1+N

(
s1 + 1, ..., sN + 1, α + 1− γ, β + 1− γ; s1, ..., sN , δ; z−1

a−1

)]
.

(64)

The only exception is the case γ = 1: we do not know an rFs solution in this exceptional
case [25].

γ = 2

In this case, the Heun equation becomes

d2u
dz2 +

(
2
z
+

δ

z− 1
+

ε

z− a

)
du
dz

+
αβz−Q

z(z− 1)(z− a)
u = 0. (65)

• Let σ =
q
2

From γ = 2, we have q = 1 and from Fuchsian condition (8) we have α = 2− β.
Besides, from Equation (17) we obtain

a =
1
k2 , A0 = − 1

k2 , A1 = − p2

k2 , A2 = 0, for equation in M(µ) (66)

Since αβ = σ +
aA2 − A0

4a
, then from Equation (66), we get

α1 =
1
2

, α2 =
3
2

, β1 =
3
2

, β2 =
1
2

,

and expression Q = σ
a + 1

2
− A0 + aA0 + aA1

4a
gives

Q =
2 + 2k2 + p2

4k2 .

Consider the change u =
w
z

. We obtain another Heun equation that reads as:

d2w
dz2 +

(
γ∗

z
+

δ

z− 1
+

ε

z− a

)
dw
dz

+
α∗β∗z−Q∗

z(z− 1)(z− a)
w = 0, (67)
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with γ∗ = 0, α∗ = α− 1, β∗ = β− 1 and Q∗ = Q− (aδ + ε).
We already know the solution of Equation (67) which for any k is written as

w(z) = c1 2F1

(
α∗, β∗; ε;

z− a
1− a

)
+ c2 2F1

(
α∗, β∗; δ;

z− 1
a− 1

)
, α∗ =

1
2

, β∗ = −1
2

,

with c1, c2 ∈ C, (p∗)2 = 0 and Q∗ = 0. Consequently, Q = aδ + ε and we get the
relation between k and p

p2

4k2 = 0. (68)

Thus, the solution of the Heun Equation (65) for any k is given by

u(z) =
1
z

[
c1 2F1

(
α∗, β∗; ε;

z− a
1− a

)
+ c2 2F1

(
α∗, β∗; δ;

z− 1
a− 1

)]
, (69)

with α∗ =
1
2

, β∗ = −1
2

, c1, c2 ∈ C and z ∈ (0, 1].
Hence, the solution of the corresponding Wangerin equation for any k is given by

Z(z) =
1√
z

[
c1 2F1

(
α∗, β∗; ε;

z− a
1− a

)
+ c2 2F1

(
α∗, β∗; δ;

z− 1
a− 1

)]
, (70)

with α∗ =
1
2

, β∗ = −1
2

, c1, c2 ∈ C and z ∈ (0, 1].
The solution of the corresponding Equation (14)1 for any 0 < k < 1 is given by

M(µ) = 1√
sn2(µ,k)

[
c1 2F1

(
α∗, β∗; ε; sn2(µ,k)−a

1−a

)
+

+ c2 2F1

(
α∗, β∗; δ; sn2(µ,k)−1

a−1

)]
,

(71)

with α∗ =
1
2

, β∗ = −1
2

, c1, c2 ∈ C and µ ∈ (0, K]

• σ = − q
2
⇒ The same solution as for q = −1.

6. Conclusions and Discussion

In this paper, we have presented the analytic solution of Laplace’s Equation (14)1
in terms of linear combinations of generalized hypergeometric functions which hold for
integer values of γ and when the accessory parameter Q satisfies a particular polynomial
equation, the degree of which is related to the value of the integer γ. γ being an integer
is not a particularly significant limitation, since γ = 2σ + 1 = q + 1 and q is generally an
integer.

The second Laplace Equation (14)2 still remains to be solved: it too is reduced to
a Heun equation (but with different parameters) and can therefore be solved with the
technique applied here.

Once this is done, the complete solution of the three-dimensional Laplace Equation
is constructed.

At this respect, since the Laplace equation and the Grad–Shafranov equation differ by
one sign (plus instead of minus in the term of the first derivative), one can also apply the
technique presented in this manuscript to the Grad–Shafranov equation to construct its
solution in terms of a linear combination of hypergeometric functions. We will investigate
these latter aspects in future work.
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