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Abstract: Oscillations and oscillators appear in various fields and find applications in numerous
areas. We present an oscillator with infinite equilibria in this work. The oscillator includes only
nonlinear elements (quadratic, absolute, and cubic ones). It is different from common oscillators, in
which there are linear elements. Special features of the oscillator are suitable for secure applications.
The oscillator’s dynamics have been discovered via simulations and an electronic circuit. Chaotic
attractors, bifurcation diagrams, Lyapunov exponents, and the boosting feature are presented while
measurements of the implemented oscillator are reported by using an oscilloscope. We introduce a
random number generator using such an oscillator, which is applied in biomedical image encryp-
tion. Moreover, the security and performance analysis are considered to confirm the correctness of
encryption and decryption processes.

Keywords: chaos; nonlinear oscillations; bifurcation diagram; analog circuit; random number
generator; biomedical image encryption

1. Introduction

Nonlinear systems are studied widely because of their complex dynamics [1–5]. It is a
challenge to analyze the solutions of such systems. In fact, numerical approaches have been
attempted in numerous studies. In addition to limit cycles, chaos can appear in nonlinear
systems [6]. Chaos become famous after Lorenz’s investigations [7]. Chaos was reported in
various systems such as the spherical system [8], the plasma model [9], the jerk circuit [10],
the modified logistic map [11], the complex Rikitake model [12], and the glucose-insulin
system [13]. Interestingly, the application areas were promoted by the irregular dynamics
of a chaotic system [14–16]. Recent applications include the steganography protocol [17],
the substitution box [18], secure smart grids [19], the pseudo-random generator [20],
communication for IoT [21], liquid mixtures [22], and Hash function realization [23].

Recent years have seen the emergence of systems with special equilibria [24]. Typically,
we can refer to systems with infinite equilibria [25]. Jafari and Sprott used quadratic terms
to propose line equilibium [25]. In the work [26], the authors applied absolute and quadratic
terms to get a gallery of systems, in which equilibria are located on lines and curves. Li et al.
utilized a memristor to design a memristive circuit with infinite equilibria [27]. By adding
a memristive device into a system with one stable equilibrium, Pham et al. obtained a
system having infinite equilibria [28]. Equilibrium points on a butterfly-like curve and two
circles were explored by Sambas et al. [29,30]. Although the presence of infinite equilibria
has received considerable critical attention [31,32], there are still issues which should be
considered further [24].
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The purpose of this investigation is to explore an oscillator with infinite equilibria.
Interestingly, there is an absence of linear terms in such an oscillator. The dynamics and
feasibility of the oscillator are explored by using simulations and an electronic circuit. In
addition, the application of the oscillator is illustrated via biomedical image encryption.
The novelty and contribution of our work is summarized as follows.

• We introduce an oscillator without linear terms.
• There are infinite equilibria in the oscillator.
• The oscillator displays the boosting feature, which is useful for generating a signal with

flexible amplitudes.
• Physical realization of the oscillator is reported.
• Special features of the oscillator are suitable for secure applications.

2. Oscillator and Oscillator’s Dynamics

By applying nonlinear elements (quadratic, absolute, and cubic ones), we introduce
an oscillator in the following form:

ẋ = yz
ẏ = x3 − y3

ż = −ay3 − bxy + c|x|
(1)

In Equation (1), positive parameters are a, b, and c. We set

yz = 0 (2)

x3 − y3 = 0 (3)

− ay3 − bxy + c|x| = 0 (4)

for finding oscillator’s equilibrium. From Equations (3) and (4) we have

ax3 + bx2 − c|x| = 0 (5)

It is simple to see that the root of Equation (5) depends on the parameters a, b, c. For a = 0.1
and c = 0.5 and b ∈ [1, 2.5], Equation (5) has three real roots. As a result, the oscillator has
two symmetrical equilibria (E∗1,2) and a line of equilibria (E∗3 ):

E∗1 (α, α, 0) (6)

E∗2 (−α,−α, 0) (7)

E∗3 (0, 0, z∗) (8)

The bifurcation diagram is presented in Figure 1 for the parameter b. We fixed a = 0.1,
c = 0.5 and the initial conditions (0.1, 0.1, 0.1). The oscillator displays chaos for some
windows of b. Figure 2 illustrates chaotic attractor when b = 1. We observe the coexisting
of chaotic attractors as shown in Figure 3. Such attractors are asymmetric.

In Equation (1), the state z appears one time on the right side of equations. Therefore,
a parameter k can be included into Equation (1) to control the state z as follows:

ẋ = y(z + k)
ẏ = x3 − y3

ż = −ay3 − bxy + c|x|
(9)

Boosting feature is, in fact, linear shift of coordinates of the state space. For example, boosting
feature is reported for k = 0, 5,−5 (see Figure 4). Obviously, by changing the value of k the
attractors are varied along the z axis. It is noted that the linear term ky is only appeared
in Equation (9) when we include the parameter k into the Equation (1). Is this case, the
oscillator can generate a signal with flexible amplitudes or a positive-amplitude signal (z).
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(a) (b)

Figure 1. Changing the value of parameter b (a) Bifurcation diagram, and (b) Lyapunov exponents of
the oscillator.

(a)

(b) (c)

Figure 2. Chaotic attractors displayed for b = 1 (a) x-y plane, (b) x-z plane, and (c) y-z plane.
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(a)

(b) (c)

Figure 3. Coexisting attractors (a) x-y plane, (b) x-z plane, and (c) y-z plane for b = 2.3 with
(x(0), y(0), z(0)) = (0.1, 0.1, 0.1) (black) and (x(0), y(0), z(0)) = (0,−1, 0) (red).

(a)

(b) (c)

Figure 4. (a) Boosting bifurcation and boosting attractors in (b) z-x plane, and (c) z-y plane. Here
colors for k = 0, 5,−5 are black, blue, and red, respectively.
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Moreover, in order to choose the parameter values according to a desired behavior
and explore well the dynamics of the investigated system, we provide two-parameter
bifurcation diagrams computed respectively in (a− b) and (a− c) planes in Figure 5. The
initial conditions are fixed by (0.1, 0.1, 0.1) and the used parameter step is 0.005.

Figure 5 shows the various dynamical behaviors exhibited by the investigated os-
cillator (1) according to the value of the Largest Lyapunov Exponent (LLE). The lowest
values of LLE are marked with blue, while the highest ones are indicated with dark red.
The system in these ranges of parameters displays globally periodic and chaotic behaviors.
Periodic oscillations are located in blue regions where LLE ≤ 0, while chaotic ones are
positioned in green, red and black regions where LLE > 0. The white regions correspond
to the unbounded solutions. Figure 5 plays an important role in the engineering system.
Indeed, it helps the designer to choose the values of the system parameters according to
the desired behavior. It also supports the understanding of the dynamical behavior of the
system for the set of initial conditions (0.1, 0.1, 0.1). However, other types of coexisting
attractors are out of the scope of Figure 5.

(a) (b)

Figure 5. Dynamical behaviors map. (a) 0 ≤ a ≤ 0.2 and 1 ≤ b ≤ 2.5 for c = 0.5, (b) 0 ≤ a ≤ 0.2 and
0 ≤ c ≤ 0.8 for b = 1. The initial conditions are (0.1, 0.1, 0.1).

3. Oscillator Implementation

The mathematical model of a system can be transformed to its equivalent electronic
circuit using basic modules (addition and integration). We design and implement an
electronic circuit to reproduce the dynamics of an oscillator (1) and confirm the numerical
analyses carried out in the preceding section. The proposed electronic circuit diagram for
system oscillator (1) is given in Figure 6.

Considering the voltage across the capacitor Vx, Vy, Vz, the corresponding circuit state
equations can be expressed as

dVx
dt = 1

10R1C VyVz
dVy
dt = 1

100R2C V3
x − 1

100R3C V3
y

dVz
dt = − 1

100RaC V3
y − 1

10RbC VxVy +
1

RcC |Vx|
(10)
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(a)

(b)

Figure 6. (a) Circuit diagram of oscillator (1), (b) absolute function circuit. The circuit includes
quadruple operational amplifiers (TL084), and analog multiplier chips (AD 633JN) which are used to
realize the cubic and quadrature nonlinearities, capacitors and resistors.

For the selected parameters of oscillator (1) a = 0.1, b = 1, c = 0.5 and the initial
voltages of capacitors (Vx, Vy, Vz) = (0.1V, 0.1V, 0.1V), the circuit elements are C = 10 nF,
R = 10 kΩ, R1 = 1 kΩ, R2 = R3 = 100 Ω, Ra = 1 kΩ, Rb = 1 kΩ, and Rc = 20 kΩ.
The chaotic attractors of the circuit are captured from the breadboard by using an analog
oscilloscope (see Figure 7).

The experimental results in Figure 7 confirm that the proposed electronic circuit
reproduces well the dynamics of oscillator (1). In addition, it is also possible to use the
integrator-based oscillator design in the case of the boosting feature. By adding a resistor
and an operational amplifier, the value of parameter k can be realized.
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(a)

(b) (c)

Figure 7. Chaotic attractors (a) Vx-Vy, (b) Vx-Vz, and (c) Vy-Vz captured from the electronic circuit of
oscillator (1) implemented in breadboard for the following values of electronic components C = 10 nF,
R = 10 kΩ, R1 = 1 kΩ, R2 = R3 = 100 Ω, Ra = 1 k Ω, Rb = 1 kΩ, and Rc = 20 kΩ. The initial
voltage of the capacitors are (Vx, Vy, Vz) = (0.1V, 0.1V, 0.1V).

4. Random Number Generator (RNG) Using the Oscillator

In this section, we use the oscillator (1) to design random number generators (RNG)
for biomedical image encryption applications. RNGs are aperiodic, more complex and
have high entropy values. Therefore, the prediction of long-term solutions is not possible.
These features are very suitable for chaos-based secure communications. The obtained
numbers from an RNG process must pass the NIST-800-22 statistical tests before being
used for an engineering application such as image encryption. Random number generators
are commonly exploited in some relevant applications including authentication, game
programming, data hiding, secure communication and encryption [33–36]. The random
number generators are designed to be used for biomedical image encryption algorithms.
The block diagram in Figure 8 shows the main steps in the designing process of random
number generators based on oscillator (1).

The procedure of RNG starts by considering oscillator (1) as a source of chaotic
generator. The system parameters (a = 0.1, b = 1, and c = 0.5) and initial conditions
(0.1, 0.1, 0.1) are used. After that, oscillator (1) is discretized via fourth-order Runge Kutta
algorithm with time step4t = 0.001. The output results (x, y and z) are presented as float
numbers. To increase the possibility to receive more successful test results in RNG, the
float numbers are converted into 32 bits binary format. This conversion is done using the
following MATLAB command: dec2bin(typecast(single(floatnumber),‘uint32’),32). The
binary numbers from the outputs signals x, y and z are used to obtain RNG. Bits of low
digits with high sensitivity are selected to construct the RNG. The following formulas
are used: rngx+ = x(8LSBs), rngy+ = y(8LSBs) and rngz+ = z(8LSBs) and 1 Mbit binary
sequence for NIST-800-22 statistical tests is generated.
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Figure 8. Block diagram explaining the main steps of the designing process of random number
generators based on oscillator (1).

NIST-800-22 tests are performed to verify the randomness of the random number
generation’s results. The NIST-800-22 test consists to 16 different tests, including frequency,
runs, rank, serial and random excursions tests. A sequence of bits is therefore valid for
engineering applications when it passes all the NIST tests. Note that a test will be counted
successful when the p-value is greater than 0.01. The generated random numbers from
the outputs (x, y, z) passed all tests, which are recorded in Table 1. Considering the
results of Table 1, the generated random numbers are effectively random and can be used
for biomedical image encryption with high quality and good security. It is noted that
“Nooverlapping templates”, in NIST tests “Random Excursions”, and “Random Excursions
Variant” contains 148, 8, and 18 sub items, respectively. All the sub items have passed
the NIST test. The value of “Nooverlapping templates" given in Table 1 has been selected
randomly. The values of “Random Excursions”, and “Random Excursions Variant” in
Table 1 are selected for x = −1.

Table 1. Results of NIST-800-22 tests.

Test-Name
p-Value

Result
X Y Z

Frequency 0.01736 0.50790 0.49918 Passed

Block-frequency 0.18189 0.14409 0.18861 Passed

Runs 0.96599 0.15381 0.21472 Passed

Longest runs of ones 0.06335 0.65267 0.74264 Passed

Rank 0.49885 0.49928 0.44669 Passed

DFT 0.79219 0.30442 0.02589 Passed

No overlapping templates 0.05985 0.07790 0.00453 Passed

Overlapping templates 0.28548 0.37728 0.79657 Passed

Universal 0.07618 0.99902 0.35890 Passed

Linear complexity 0.79980 0.22241 0.94489 Passed

Serial test 1 0.08187 0.68489 0.22395 Passed

Serial test 2 0.03409 0.70814 0.11562 Passed

Approximate entropy 0.43162 0.72734 0.61123 Passed

Cumulative sums (forward) 0.02610 0.82875 0.45276 Passed
Cumulative sums (reverse) 0.01303 0.55867 0.49918 Passed

Random excursions
0.53667 0.68853 0.46270 Passedx = −1

Random excursions variant
0.83784 0.44510 0.53585 Passedx = −1
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5. Biomedical Images Encryption Based on RNG Obtained from the Oscillator

Based on the developed RNG in preceding section, a biomedical images encryption
algorithm is proposed. The security and performance analysis of the proposed encryption
algorithm are performed.

5.1. Proposed Biomedical Images Encryption Algorithm

The main objective here is to combine the RNG obtained from oscillator (1) with the
corresponding bits numbers of each pixel provided from the biomedical image. The cipher
image does not need to be decrypted by anyone who is not authorized to discover a part
or full information contained by the original biomedical image. The biomedical images
are used here to illustrate the importance of the personal medical data protection during
the transmission of these data for a medical diagnostic. The proposed biomedical image
encryption process is presented in Figure 9.

Figure 9. The proposed biomedical image encryption process.

In Figure 9, the parameters and initial conditions of oscillator (1) are used as keys. The
RNG bits are used in the encryption and decryption processes. The original biomedical
image is converted into a pixel-based binary format. The bit array of the RNG process and
the biomedical image are transferred to an XOR operation to produce the cipher image.
The decryption process is realized by performing the same XOR operation of the RNG bits
with the cipher image. Therefore, the decrypted biomedical image is obtained.

5.2. Computational Results

The designed encryption method is analyzed by using three different biomedical
images, namely “Chest”, “Brain”, and “Lung” (256× 256 size). The computational re-
sults of the proposed encryption and decryption processes are provided in Figure 10 (see
Figure 10a–c for original biomedical images, Figure 10d–f for cipher biomedical images
and Figure 10g–i for decrypted biomedical images). We can see from Figure 10 that there is
no relationship between the original images (see Figure 10a–c) and their corresponding
encrypted ones (see Figure 10d–f). The decrypted images (see Figure 10g–i) seem to be
the same as the original ones. This means that the encryption process does not modify
the features of the original images. The encryption and decryption processes are realized
successfully with high quality and good security.
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Figure 10. Computational results of the proposed encryption process: (a–c) are original biomedical
images; (d–f) are encrypted biomedical images and (g–i) are decrypted biomedical images.

5.3. Security and Performance Analysis
5.3.1. Key Space Analysis

The key space size must be greater than 2100 [37]. The oscillator (1) consists of three
parameters and three initial conditions which are used as key as mentioned above. Fixing
the precision of the system to 2−17, the key space size will be 1017∗6 = 10102, which is much
larger than 2100. It is sufficient to withstand brute force attacks because of the large key
space.

5.3.2. Key Sensitivity Analysis

The system under scrutiny is very sensitive to initial conditions and parameter vari-
ations. The slight change of the key makes the chaotic sequence completely different,
and generates two different encrypted images. Hence, the encrypted image cannot be
decrypted correctly. Figure 11 presents the test when changing the secret key 10−17. Results
show the high sensitivity of the algorithm for secret key.
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Figure 11. Test results of key sensitivity, (a) x(0) + 10−17, (b) y(0) + 10−17, (c) z(0) + 10−17,
(d) a + 10−17, (e) b + 10−17, (f) c + 10−17, (g) correct key.

5.3.3. Information Entropy

An excellent parameter indicating randomness of a signal is information entropy. Its
evaluation uses the following expression

H(m) = −
N

∑
i=1

P(mi)log2(P(mi)) (11)

where N represents the total number of all possible occurrence of signal mi and P(mi)
represent the probability that the symbol mi appears. If the gray-scale source m =
{m1, m2, . . . , m256} emits 256 symbols with equivalent probability, then the entropy value
should be equal to 8 [38] which is the ideal value of entropy for true-random information.
The results of information entropy of the algorithm are displayed in Table 2. The infor-
mation entropy of the cipher image is closed to 8. This serves to conclude that the cipher
image is very random. Thus, the proposed algorithm has very good security performance.
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Table 2. Assessment of information entropy for original and encrypted images.

Entropy
Greyscale Images

Chest Brain Lung

Original image 7.6578 5.8389 6.8364

Encrypted version 7.9965 7.9952 7.9955

5.3.4. Noise Attacks

Noise attack is studied using Gaussian as well as Salt and Pepper noises. The mean
value of 0 and variance of 0.01, 0.03 and 0.05 (Gaussian noise) is added to the cipher images.
The recovery images are reported in Figure 12. Likewise, by introducing the noise intensity
of Salt and Pepper as 0.1, 0.3 and 0.5 in the cipher image, we obtain the recovery images in
Figure 13. The results of Figures 12 and 13 confirm the ability of the algorithm to avoid
noise attacks.

Figure 12. Gaussian noise attacks test. (a,e,i) encrypted images of Chest, Brain and Lung; (b,f,j)
decrypted image (variance 0.01); (c,g,k) decrypted image (variance 0.03) and (d,h,l)decrypted image
(variance 0.05) respectively for Chest, Brain and Lung images.
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Figure 13. Salt and pepper noise attacks test. (a,e,i) encrypted images of Chest, Brain and Lung;
(b,f,j) decrypted image (density 0.1); (c,g,k) decrypted image (density 0.3) and (d,h,l) decrypted
image (density 0.5) respectively for Chest, Brain and Lung images.

6. Conclusions

In this work, we have introduced an oscillator in which there are infinite equilibria. It is
worth noting that all terms in the oscillator are nonlinear. By investigating the oscillator, we
reported different oscillator features such as chaos, multistability, and boosting attractors.
moreover, the circuital attractors illustrated the oscillator’s feasibility, which is useful for
applications. We have implemented a random number generator using the oscillator’s
chaotic behavior. The random number generator showed good results when applying it to
the encryption of biomedical images.
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