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Abstract: Jensen-type inequalities for the recently introduced new class of (h, g; m)-convex func-
tions are obtained, and certain special results are indicated. These results generalize and extend
corresponding inequalities for the classes of convex functions that already exist in the literature.
Schur-type inequalities are given.
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1. Introduction

A convex function is one whose epigraph is a convex set, or, as in the basic definition:

A function f : I ⊆ R→ R is said to be convex function if

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) (1)

holds for all points x and y in I and all λ ∈ [0, 1].

It is called strictly convex if the inequality (1) holds strictly whenever x and y are distinct
points and λ ∈ (0, 1). If − f is convex (respectively, strictly convex) then we say that f
is concave (respectively, strictly concave). If f is both convex and concave, then f is said
to be affine.

The following lemma is equivalent to the definition of a convex function.

Lemma 1 ([1], p. 2). Let x1, x2, x3 ∈ I be such that x1 < x2 < x3. The function f : I → R is
convex if and only if the following inequality holds

(x3 − x2) f (x1) + (x1 − x3) f (x2) + (x2 − x1) f (x3) ≥ 0.

By mathematical induction, we can extend the inequality (1) to the convex combi-
nations of finitely many points in I and next to random variables associated to arbitrary
probability spaces. These extensions are known as the discrete Jensen inequality and the
integral Jensen inequality, respectively.

Theorem 1 (The discrete Jensen inequality). A real-valued function f defined on an interval I
is convex if and only if for all x1, . . . , xn in I and all scalars λ1, . . . , λn in [0, 1] with ∑n

i=1 λi = 1
we have

f

(
n

∑
i=1

λixi

)
≤

n

∑
i=1

λi f (xi).

The above inequality is strict if f is strictly convex, all the points xi are distinct and all scalars
λi are positive.

Proving Jensen’s inequality in a more general setting is the main motivation for this
paper. We will use the recently introduced new class of convexity:
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Definition 1 ([2]). Let h be a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0 and g be a
positive function on I ⊆ R. Let m ∈ (0, 1]. A function f : I → R is said to be (h, g; m)-convex
function if it is nonnegative and if

f (λx + m(1− λ)y) ≤ h(λ) f (x)g(x) + m h(1− λ) f (y)g(y) (2)

holds for all x, y ∈ I and all λ ∈ (0, 1).
If (2) holds in the reversed sense, then f is said to be (h, g; m)-concave function.

This class generalizes quite a number of different convexities which exist in the
literature. For different choices of functions h, g and parameter m in (2), an (h, g; m)-convex
function becomes P-function [3], h-convex function [4], m-convex function [5], (h− m)-
convex function [6], (s, m)-Godunova–Levin function of the second kind [7], exponentially
convex function [8], exponentially s-convex in the second sense [9], and so on. For example,
setting h(λ) = λs, s ∈ (0, 1], g(x) = e−αx, α ∈ R, the (h, g; m)-convexity reduces to
exponentially (s, m)-convexity in the second sense from [10]:

f (λx + m(1− λ)y) ≤ λs

eαx f (x) +
(1− λ)s

eαy m f (y). (3)

More on properties of (h, g; m)-convex functions can be found in [2]. Here are a few of
them:

Lemma 2 ([2]). If f : I → [0, ∞) is an (h, g; m)-convex function such that f (0) = 0, g(x) ≤ 1
and h(λ) ≤ λ, then f is a starshaped, that is f (λx) ≤ λ f (x).

Proposition 1 ([2]). Let h1, h2 be nonnegative functions on J ⊆ R, (0, 1) ⊆ J, h1, h2 6≡ 0,
such that

h2(λ) ≤ h1(λ), λ ∈ (0, 1).

Let g be a positive function on I ⊆ R and m ∈ (0, 1]. If f : I → [0, ∞) is an (h2, g; m)-convex
function, then f is an (h1, g; m)-convex.

Proposition 2 ([2]). Let h be a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0 and g be a
positive function on I ⊆ R. Let m ∈ (0, 1] and α > 0. If f1, f2 : I → [0, ∞) are (h, g; m)-convex
function, then f1 + f2 and α f1 are (h, g; m)-convex.

Proposition 3 ([2]). Let h be a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0 and g be
a positive increasing function on I ⊆ R. Let 0 < n < m ≤ 1. If f : I → [0, ∞) is an
(h, g; m)-convex function such that f (0) = 0, g(x) ≤ 1 and h(λ) ≤ λ, then f is (h, g; n)-convex.

Proposition 4 ([2]). Let h1, h2 be nonnegative functions on J ⊆ R, (0, 1) ⊆ J, h1, h2 6≡ 0 and let

h(t) = max{h1(t), h2(t)}, t ∈ J.

Let g1, g2 be positive functions on I ⊆ R and let m1, m2 ∈ (0, 1]. For i = 1, 2, let fi : I →
[0, ∞) be an (hi, gi; mi)-convex function. If the functions f1 g1 and f2 g2 are monotonic in the same
sense, i.e.,

[ f1(x)g1(x)− f1(y)g1(y)][ f2(x)g2(x)− f2(y)g2(y)] ≥ 0, x, y ∈ I,

and if c > 0 such that
h(λ) + m h(1− λ) ≤ c, λ ∈ (0, 1),

where m = max{m1, m2}, then f1 f2 is an (ch, g1g2; m)-convex function.
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In recent work, we investigated the Hermite–Hadamard inequality for (h, g; m)-convex
functions [2], its weighted version—the Féjer inequality [11] and Lah–Ribarič inequality
from which the inequalities of Giaccardi, Popoviciu and Petrović for (h, g; m)-convex
functions are obtained [12]. Here, we will obtain Schur-type inequalities in Section 2 and
Jensen-type inequalities in Section 3 for (h, g; m)-convex functions, which will generalize
and extend corresponding inequalities for the classes of convex functions that already exist
in the literature. For this, we need super(sub)multiplicative functions:

Definition 2. A function h : J → R is said to be a supermultiplicative function if

h(xy) ≥ h(x)h(y) (4)

for all x, y ∈ J.
If inequality (4) is reversed, then h is said to be a submultiplicative function. If the equality

holds in (4), then h is said to be a multiplicative function.

2. Schur Type Inequalities

We start with a result related to the definition of (h, g; m)-convex functions.

Proposition 5. Let f be a nonnegative (h, g; m)-convex function on I ⊆ R, where h is a non-
negative supermultiplicative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0, g is a positive function on I
and m ∈ (0, 1]. Then, for x1, x2, x3 ∈ I, x1 < x2 < x3 with x3 − x2, x2 − x1, x3 − x1 ∈ J the
following inequality holds

h(x3 − x2) f (x1)g(x1)− h(x3 − x1) f (x2) + m h(x2 − x1) f
( x3

m

)
g
( x3

m

)
≥ 0. (5)

If f is an (h, g; m)-concave function where h is a submultiplicative function, then inequality (5)
is reversed.

Proof. Let f be an (h, g; m)-convex function and x1, x2, x3 ∈ I. From the assumptions,
we have

x3 − x2

x3 − x1
∈ (0, 1) ⊆ J,

x2 − x1

x3 − x1
∈ (0, 1) ⊆ J

and
x3 − x2

x3 − x1
+

x2 − x1

x3 − x1
= 1.

Since h is a supermultiplicative function and x3 − x2, x2 − x1, x3 − x1 ∈ J, we obtain

h(x3 − x2) = h
(

x3 − x2

x3 − x1
· (x3 − x1)

)
≥ h

(
x3 − x2

x3 − x1

)
h(x3 − x1)

and also

h(x2 − x1) ≥ h
(

x2 − x1

x3 − x1

)
h(x3 − x1).

Assume h(x3 − x1) > 0. If we set in (2) λ = x3−x2
x3−x1

, x = x1, y = x3, then we obtain

f (x2) = f
(

λx + m(1− λ)
y
m

)
≤ h(λ) f (x)g(x) + m h(1− λ) f

( y
m

)
g
( y

m

)
= h

(
x3 − x2

x3 − x1

)
f (x1)g(x1) + m h

(
x2 − x1

x3 − x1

)
f
( x3

m

)
g
( x3

m

)
(6)

≤ h(x3 − x2)

h(x3 − x1)
f (x1)g(x1) + m

h(x2 − x1)

h(x3 − x1)
f
( x3

m

)
g
( x3

m

)
.
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Hence, (5) is proven.
Analogously follows reversed inequality (5) if f is an (h, g; m)-concave function where

h is a submultiplicative function.

Recall the Schur inequality:

If x, y, z are positive numbers and if λ is real, then

xλ(x− y)(x− z) + yλ(y− z)(y− x) + zλ(z− x)(z− y) ≥ 0

with equality if and only if x = y = z.

This inequality follows from (5) for f (x) = xλ, λ ∈ R , h(x) = 1
x , g ≡ 1 and m = 1.

A related inequality was proved in [13] by Mitrinović and Pečarić:

(x1 − x2)(x1 − x3) f (x1) + (x2 − x1)(x2 − x3) f (x2) + (x3 − x1)(x3 − x2) f (x3) ≥ 0

where f is a Godunova–Levin function that is an (h, g; m) ≡ (x−1, 1; 1)-convex function:

f (λx + (1− λ)y) ≤ f (x)
λ

+
f (y)

1− λ
.

Next inequality is of Schur type for (x−k, g; m)-convex (and concave) functions, ob-
tained for h(x) = 1

xk , k ∈ R:

Corollary 1. Let f be a positive (x−k, g; m)-convex function on I ⊆ R, where k ∈ R, g is a
positive function on I and m ∈ (0, 1]. Then, for x1, x2, x3 ∈ I, x1 < x2 < x3, the following
inequality holds

f (x1)g(x1)(x3 − x1)
k(x2 − x1)

k − f (x2)(x3 − x2)
k(x2 − x1)

k

+ m f
( x3

m

)
g
( x3

m

)
(x3 − x1)

k(x3 − x2)
k ≥ 0. (7)

If the function f is a positive (x−k, g; m)-concave function, then inequality (7) is reversed.

As an example of a special case, if we set h(x) = xs, s ∈ (0, 1], g(x) = e−αx, α ∈ R, then
we obtain following Schur type inequality for convexity (3), i.e., exponentially (s, m)-convex
functions in the second sense.

Corollary 2. Let f be an exponentially (s, m)-convex function in the second sense on I ⊆ R,
where s, m ∈ (0, 1]. Then, for x1, x2, x3 ∈ I, x1 < x2 < x3 the following inequality holds

(x3 − x2)
s

eαx1
f (x1)− (x3 − x1)

s f (x2) +
m(x2 − x1)

s

e
α
m x3

f
( x3

m

)
≥ 0. (8)

If the function f is an exponentially (s, m)-concave function in the second sense, then inequal-
ity (8) is reversed.

Remark 1. Using special functions for h and/or g, as well as choosing a fixed parameter for m,
Schur-type inequalities for different types of convexity can be derived. For instance, setting g ≡ 1
and m = 1 in (5) and (7), we obtain results for h-convex functions given in [4].

3. Jensen-Type Inequalities for (h, g; m)-Convex Functions

We continue with Jensen-type inequalities for (h, g; m)-convex functions, where h is
supermultiplicative function. In the following, for n ∈ N, let

Pn =
n

∑
i=1

pi, (9)
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Xn =
1
Pn

n

∑
i=1

pixi, (10)

Gn
i =

n

∏
j=i

g(Xj), i ≥ 1. (11)

We will set empty products equal to 1, for example Gn
n+1 =

n

∏
j=n+1

g(Xj) ≡ 1.

Notice that P1 = p1, X1 = x1 and Gn
n = g(Xn). The following recursive formulas hold

Gn
i = g(Xi) · Gn

i+1, i = 1, . . . , n, (12)

Gn
i = Gn−1

i · g(Xn), i = 1, . . . , n. (13)

Theorem 2 (The Jensen inequality for an (h, g; m)-convex function). Let p1, . . . , pn be positive
real numbers. Let f be a nonnegative (h, g; m)-convex function on [0, ∞) such that I ⊆ [0, ∞),
where h is a nonnegative supermultiplicative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0, g is a positive
function on [0, ∞) and m ∈ (0, 1]. Then, for x1, . . . , xn ∈ I the following inequality holds

f

(
1
Pn

n

∑
i=1

pixi

)
≤ h

(
p1

Pn

)
f (x1)Gn−1

1

+m
n

∑
i=2

h
(

pi
Pn

)
f
( xi

m

)
g
( xi

m

)
Gn−1

i . (14)

If f is an (h, g; m)-concave function where h is a submultiplicative function, then inequal-
ity (14) is reversed.

Proof. We will prove the theorem by the mathematical induction.
If n = 2, then (14) is equivalent to (2) with λ = p1

P2
, 1− λ = p2

P2
, x = x1 and y = x2

m
(notice, G1

1 = g(X1) = g(x1) and G1
2 ≡ 1).

Assume that (14) holds for n− 1. Then, for p1, . . . , pn and x1, . . . , xn, we have

f

(
1
Pn

n

∑
i=1

pixi

)
= f

(
m

pn

Pn

xn

m
+

Pn−1

Pn

n−1

∑
i=1

pi
Pn−1

xi

)

≤ m h
(

pn

Pn

)
f
( xn

m

)
g
( xn

m

)
+ h
(

Pn−1

Pn

)
f

(
n−1

∑
i=1

pi
Pn−1

xi

)
g

(
n−1

∑
i=1

pi
Pn−1

xi

)

≤ m h
(

pn

Pn

)
f
( xn

m

)
g
( xn

m

)
+ h
(

Pn−1

Pn

)[
h
(

p1

Pn−1

)
f (x1)Gn−2

1

+m
n−1

∑
i=2

h
(

pi
Pn−1

)
f
( xi

m

)
g
( xi

m

)
Gn−2

i

]
g(Xn−1).

Since h is a supermultiplicative function, we obtain
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f

(
1
Pn

n

∑
i=1

pixi

)
≤ m h

(
pn

Pn

)
f
( xn

m

)
g
( xn

m

)
+ h
(

p1

Pn

)
f (x1)g(Xn−1)Gn−2

1

+m
n−1

∑
i=2

h
(

pi
Pn

)
f
( xi

m

)
g
( xi

m

)
g(Xn−1)Gn−2

i .

Now, we apply the recursive formula (13) to find inequality (14).

Remark 2. As before, if we use special h, g and m in (14), then we obtain Jensen-type inequalities
for different types of convexity. Hence, Theorem 2 is a generalization of Jensen’s inequality for
h-convex functions given in [4].

The last result is a conversion of Jensen’s inequality.

Theorem 3. Let p1, . . . , pn be a positive real numbers and [µ, M] ⊆ [0, ∞). Let f be a nonnegative
(h, g; m)-convex function on [0, ∞), where h is a nonnegative supermultiplicative function on
(0, ∞), g is a positive function on [0, ∞) and m ∈ (0, 1]. Then, for xi ∈ (µ, M) and M− xi

m > 0
(i = 1, . . . , n), the following inequalities hold

f

(
1
Pn

n

∑
i=1

pixi

)
− h
(

p1

Pn

)
f (x1)Gn−1

1

≤ m
n

∑
i=2

h
(

pi
Pn

)
f
( xi

m

)
g
( xi

m

)
Gn−1

i

≤ m
n

∑
i=2

h
(

pi
Pn

)[
h

(
M− xi

m
M− µ

)
f (µ)g(µ)

+m h

(
xi
m − µ

M− µ

)
f
(

M
m

)
g
(

M
m

)]
g
( xi

m

)
Gn−1

i . (15)

If f is an (h, g; m)-concave function where h is a submultiplicative function, then inequal-
ity (15) is reversed.

Proof. From (6) in Proposition 5, we have

f (x2) ≤ h
(

x3 − x2

x3 − x1

)
f (x1)g(x1) + m h

(
x2 − x1

x3 − x1

)
f
( x3

m

)
g
( x3

m

)
,

which gives us for x1 = µ, x2 = xi
m and x3 = M for i = 2, . . . , n

f
( xi

m

)
≤ h

(
M− xi

m
M− µ

)
f (µ)g(µ) + m h

(
xi
m − µ

M− µ

)
f
(

M
m

)
g
(

M
m

)
.

Notice, since m ≤ 1, then µ < xi
m , and by that assumption, we have xi

m < M. With this,
the h function can be applied.

If we multiply the above with

m h
(

pi
Pn

)
g
( xi

m

)
Gn−1

i ,

then, after adding all inequalities, from Theorem 2, (15) follows.

Remark 3. Corresponding conversions of Jensen’s inequality for different types of convexity can be
stated. However, the details are omitted.
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If, in (6), we let x1 = µ, x2 = xi, x3 = M and if we multiply such inequality with pi, then
after adding all inequalities for i = 1, . . . , n we obtain the discrete Lah–Ribarič inequality for an
(h, g; m) convex function

n

∑
i=1

pi f (xi) ≤
f (µ)g(µ)
h(M− µ)

n

∑
i=1

pih(M− xi)

+
m

h(M− µ)
f
(

M
m

)
g
(

M
m

) n

∑
i=1

pih(xi − µ).

Integral version of this inequality is given in [12] where one can also find more on how to
obtain the inequalities of Giaccardi, Popoviciu and Petrović for (h, g; m)-convex functions.

4. Conclusions

This article is a continuation of our work given in paper [2], where we first introduced
a new class of (h, g; m)-convex functions. Thus far, we have investigated inequalities of
Hermite–Hadamard and Féjer type as well as the Lah–Ribarič inequality with inequalities
of Giaccardi, Popoviciu and Petrovič [2,11,12]. In this paper, Schur- and Jensen-type
inequalities for (h, g; m)-convex functions are obtained. The goal is to generalize and
extend corresponding inequalities for the classes of convex functions that already exist in
the literature. We have opened research that we will further explore in future work.
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10. Qiang, X.; Farid, G.; Pečarić, J.; Akbar, S.B. Generalized fractional integral inequalities for exponentially (s, m)-convex functions. J.
Inequal. Appl. 2020, 2020, 70. [CrossRef]
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