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1. Introduction

The geometry of 3-dimensional Riemannian spaces has special importance owing
to Thurston’s conjecture (see [1]). In particular, spherical geometry, one of the eight
Thurston geometries, is of primary relevance (cf. [2]). Remarkable examples of manifolds
corresponding to this geometry are provided by the Poincaré dodecahedral space, three-
dimensional spheres, and also lens spaces. We will focus our study on three-dimensional
spheres, these spaces being of special importance also from the perspective of their own
elegant geometry.

On the other hand, on a three-dimensional almost contact metric manifold (N, Ψ, ζ, η, g),
there is a special structure depending on two smooth functions α and β on N, known
as a trans-Sasakian structure, which leads to the concept of a trans-Sasakian manifold
(N, Ψ, ζ, η, g, α, β) (cf. [3]). It is known that beyond dimension three, a trans-Sasakian
manifold (N, Ψ, ζ, η, g, α, β) is a cosymplectic manifold, an α-Sasakian manifold, or a β-
Kenmotsu manifold (cf. [4]), and because of this, almost all recent studies have been
performed to elucidate the geometry of trans-Sasakian 3-manifolds (see, e.g., [5–8]). In
this article, we shall use the abbreviation TRSM (N, Ψ, ζ, η, g, α, β) for a 3-dimensional
trans-Sasakian manifold (N, Ψ, ζ, η, g, α, β). A basic problem in studying the geometry of
trans-Sasakian spaces consists in finding conditions under which such a space is homothetic
to a Sasakian manifold (cf. [6,9–17]). Naturally, a 3-dimensional sphere S3(c) of constant
curvature c is a TRSM (S3(c), Ψ, ζ, η, g, α, β) with α =

√
c and β = 0 (see next section).

This leads to the following question: under what conditions is a compact and simply
connected TRSM (N, Ψ, ζ, η, g, α, β) isometric to S3(c)? Our goal is to get an answer to
this question, providing a characterization of three-dimensional spheres using compact
and simply connected trans-Sasakian 3-manifolds of type (α, β). A key role in this will be
played by the famous Fischer–Marsden equation (see [18]). Recall that the Fischer–Marsden
differential equation on a 3-dimensional Riemannian manifold (N, g) is as follows:

(∆ f )g + f Ric = H f , (1)

where H f is the Hessian of function f , ∆ is the Laplace operator, and Ric is the Ricci tensor
of (N, g).
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We are going to specifically answer the question raised above by showing that a
compact and simply connected TRSM (N, Ψ, ζ, η, g, α, β) with Ricci operator satisfying a
Codazzi-type condition and β satisfying the differential Equation (1), and also with scalar
curvature bounded above by a certain bound involving functions α and β, is isometric to a
3-sphere (see Theorem 1).

2. Preliminaries

Consider a 3-dimensional almost contact metric manifold (N, Ψ, ζ, η, g), where Ψ is a
(1, 1)-tensor field, ζ is a unit vector field, and η is the smooth 1-form dual to ζ with respect
to the Riemannian metric g satisfying (cf. [19–21])

Ψ2 = −I + η ⊗ ζ, Ψζ = 0, η ◦Ψ = 0, g(ΨE1, ΨE2) = g(E1, E2)− η(E1)η(E2), (2)

for all E1, E2 ∈ X(N), where X(N) is the Lie algebra of smooth vector fields on N. If there
are smooth functions α and β defined on an almost contact metric manifold (N, Ψ, ζ, η, g)
satisfying

(DΨ)(E1, E2) = α(g(E1, E2)ζ − η(E2)E1) + β(g(ΨE1, E2)ζ − η(E2)ΨE1), (3)

then we get a TRSM (N, Ψ, ζ, η, g, α, β), where

(DΨ)(E1, E2) = DE1 Ψ(E2)−Ψ(DE1 E2), E1, E2 ∈ X(N)

and D is the Levi–Civita connection with respect to the metric g (cf. [10–13,15–17,22]). We
see that Equations (2) and (3) imply

DEζ = −αΨ(E) + β(E− η(E)ζ), E ∈ X(N). (4)

The Ricci tensor Ric of a Riemannian manifold (N, g) gives a symmetric (1, 1) tensor
field S, called Ricci operator, defined by

Ric(E1, E2) = g(SE1, E2), E1, E2 ∈ X(N).

Furthermore, the scalar curvature s is defined by

s = TrS.

We have the following relations on a trans-Sasakian manifold (cf. [15–17]):

ζ(α) = −2αβ, (5)

S(ζ) = Ψ(∇α)−∇β + 2(α2 − β2)ζ − ζ(β)ζ, (6)

where ∇α, ∇β are gradients of functions α, β respectively. Note that Equation (4) implies

divζ = 2β. (7)

Thus, on a compact TRSM (N, Ψ, ζ, η, g, α, β), using Equation (7), one finds∫
N

β = 0.

For a smooth function σ on a Riemannian manifold (N, g), the Hessian operator Aσ of
σ is defined by

Aσ(E) = DE∇σ, E ∈ X(N), (8)
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while the Hessian Hσ is given by

Hσ(E1, E2) = g(Aσ(E1), E2), E1, E2 ∈ X(N).

The Laplace operator ∆ on a Riemannian manifold (N, g) is defined by

∆σ = div(∇σ).

We also have
∆σ = TrAσ.

Next, we shall show that the sphere S3(c) of constant curvature c has a trans-Sasakian
structure. It is clear that S3(c) is an embedded surface in the Euclidean space R4 with unit
normal ξ and shape operator B given by B = −

√
cI. Using complex structure J on R4 that

is compatible with the Euclidean metric 〈, 〉 and makes
(
R4, J, 〈, 〉

)
a Kähler manifold, we

define an operator Ψ on S3(c) by

JE = Ψ(E) + η(E)ζ, E ∈ X(S3(c)), (9)

where ζ = −Jξ is the unit vector field on S3(c), η is the 1-form dual to ζ with respect to the
induced metric g on S3(c), and Ψ(E) is the projection of JE on S3(c). Then, it follows that
the quadruplet (Ψ, ζ, η, g) satisfies (2) by virtue of the properties of the operator J, that is,(
S3(c), Ψ, ζ, η, g

)
is an almost contact metric manifold. Now, the fundamental equations of

the hypersurface S3(c) ⊂ R4 are

DE1 E2 = DE1 E2 −
√

cg(E1, E2)ξ, DE1 ξ =
√

cE1, E1, E2 ∈ X(S3(c)), (10)

where D is the Euclidean connection on R4, and D is the induced Riemannian connection
on S3(c). Taking the covariant derivative in Equation (9) and using ζ = −Jξ, as well as
Equation (10) and the fact that J is parallel, we get

(DΨ)(E1, E2) =
√

c(g(E1, E2)ζ − η(E2)E1), E1, E2 ∈ X(S3(c)).

This proves that S3(c) has a trans-Sasakian structure (Ψ, ζ, η, g, α, β), where α =
√

c
and β = 0.

3. A Characterization of 3-Spheres

We are interested in characterizing 3-spheres using a TRSM (N, Ψ, ζ, η, g, α, β). In
the following result, we see that the combination of the Fischer–Marsden differential
equation and an upper bound on the scalar curvature involving the functions α, β helps us
in reaching the goal.

Theorem 1. Let (N, Ψ, ζ, η, g, α, β) be a 3-dimensional compact and simply connected trans-
Sasakian manifold. Then, the following three conditions are satisfied if and only if α is a nonzero
constant and (N, g) is isometric to the sphere S3(α2):

(1) β is a solution of Fischer–Marsden differential Equation (1);
(2) The scalar curvature s satisfies the inequality: sβ2 ≤ 4

(
α2 − β2)β2;

(3) The Ricci operator S satisfies the Codazzi condition:

(DS)(E, ζ) = (DS)(ζ, E), E ∈ X(N). (11)

Proof. Suppose (N, Ψ, ζ, η, g, α, β) satisfies the hypothesis of the Theorem. Then, we have

(∆β)g + βRic = Hβ (12)

and
β2
(

α2 − β2 − s
4

)
≥ 0, (13)
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as well as Equation (11).
Using Dζ ζ = 0 (an outcome of Equation (4)), we get

Hβ(ζ, ζ) = ζζ(β).

Moreover, on using Equation (6), we obtain

Ric(ζ, ζ) = 2
(

α2 − β2 − ζ(β)
)

.

Combining the last two equations with (12), we conclude

∆β + 2β
(

α2 − β2 − ζ(β)
)
= ζζ(β),

or
∆β + 2β

(
α2 − β2

)
= ζζ(β) + 2βζ(β). (14)

Using Equation (7), we derive

div(ζ(β)ζ) = ζζ(β) + 2βζ(β),

and inserting this in Equation (14), we obtain

β∆β + 2β2
(

α2 − β2
)
= βdiv(ζ(β)ζ).

But the above equation, in view of

div(βζ(β)ζ) = (ζ(β))2 + βdiv(ζ(β)ζ),

takes the form
β∆β + 2β2

(
α2 − β2

)
= div(βζ(β)ζ)− (ζ(β))2. (15)

Taking the trace in Equation (12), we get

3∆β + βs = ∆β,

that is
β∆β = −1

2
β2s,

and inserting it in Equation (15), we get

−1
2

β2s + 2β2
(

α2 − β2
)
= div(βζ(β)ζ)− (ζ(β))2.

Integrating the above equation, we have∫
M

2β2
[(

α2 − β2
)
− s

4

]
+
∫
M

(ζ(β))2 = 0.

Using inequality (13) in the above equation, we conclude

β2
[(

α2 − β2
)
− s

4

]
= 0 and ζ(β) = 0. (16)

Hence, we derive
β = 0 or α2 − β2 =

s
4

. (17)
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Now, summing Equation (11) over an orthonormal frame {w1, w2, w3} and using the
well-known identity

1
2
∇s =

3

∑
i=1

(DS)(wi, wi),

we get
1
2

ζ(s) = ζ(s).

Thus, we conclude
ζ(s) = 0.

We claim that α 6= 0. If we suppose α = 0, then (4) assumes the form

DEζ = β[E− η(E)ζ], E ∈ X(N),

and by virtue of the above equation, we derive immediately that η is closed. However, N
being simply connected, we have η = dh for some smooth function h on N. Thus, with
the assumption made, we get ζ = ∇h, and on compact N, there is a point p ∈ N such that
ζ(p) = 0, which is contrary to the fact that ζ is a unit vector field. Hence, we have α 6= 0.

We claim now that (17) always implies β = 0. Suppose that α2 − β2 = s
4 holds in

Equation (17). Then, using Equations (5) and (16), we get 2α(−2αβ) = 0, that is α2β = 0,
and as α 6= 0 on connected M (being simply connected), we get β = 0. Thus, in view of (17),
we derive that, indeed, we always have β = 0, and consequently, Equation (4) assumes the form

DEζ = −αΨ(E), E ∈ X(N), (18)

which proves that ζ is a Killing vector field, and therefore the flow of ζ consists of isometries
of N. We get

£ζS = 0,

which in view of Equation (18) gives

(DS)(ζ, E) = αS(Ψ(E))− αΨ(S(E)), E ∈ X(N).

Using Equation (11) in the above equation, we derive

(DS)(E, ζ) = αS(Ψ(E))− αΨ(S(E)), E ∈ X(N),

which in view of Equation (18) implies

DES(ζ) = −αΨ(S(E)), E ∈ X(N). (19)

Next, using β = 0 in Equation (6), we get

S(ζ) = Ψ(∇α) + 2α2ζ,

and inserting this equation in Equation (19) we obtain

DE

(
Ψ(∇α) + 2α2ζ

)
= −αΨ(S(E)), E ∈ X(N),

that is,

(DΨ)(E,∇α) + ΨAα(E) + 4αE(α)ζ − 2α3Ψ(E) = −αΨ(S(E)), E ∈ X(N),

where we have used Equations (8) and (18). Using now (3), (5), and β = 0 in the above
equation, we arrive at

5αE(α)ζ + ΨAα(E)− 2α3Ψ(E) = −αΨ(S(E)), E ∈ X(N), (20)
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which on taking the inner product with ζ gives

5αE(α) = 0,

that is, E
(
α2) = 0, E ∈ X(N). This proves that α is a constant. Hence, because we have

already shown that α 6= 0, we conclude that α is a nonzero constant. Now, the Equations (6)
and (20) become

S(ζ) = 2α2ζ and Ψ(S(E)) = 2α2Ψ(E),

and by operating Ψ on the second equation while using the first equation, we get

S(E) = 2α2E, E ∈ X(N). (21)

However, the above equation implies

s = 6α2. (22)

Now, using the following expression for the Riemannian curvature tensor field Rm of
a 3-dimensional manifold (N, g):

Rm(E1, E2)E3 = g(E2, E3)S(E1)− g(E1, E3)S(E2) + Ric(E2, E3)E1

−Ric(E1, E3)E2 −
s
2
{g(E2, E3)E1 − g(E1, E3)E2},

as well as Equations (21) and (22), we arrive at

Rm(E1, E2)E3 = α2{g(E2, E3)E1 − g(E1, E3)E2}, E1, E2, E3 ∈ X(N).

This proves that (N, g) is a space of constant curvature α2. As (N, g) is compact, it is
complete, and as it is also simply connected, it is isometric to S3(α2).

Conversely, we have seen in the previous section that S3(α2) admits a trans-Sasakian
structure (Ψ, ζ, η, g, α, β), where β = 0, and therefore β trivially satisfies Fischer–Marsden
Equation (1). Moreover, it is clear that the scalar curvature s of S3(α2) satisfies the equality
case of the inequality

sβ2 ≤ 4
(

α2 − β2
)

β2.

Furthermore, S = 2α2 I, with α constant, and this implies that S is parallel. Therefore,
S satisfies Equation (11). Hence, we conclude that all the requirements are attended by the
TRSM (S3(α2), Ψ, ζ, η, g, α, β).

Remark 1. Observe that if a Riemannian manifold (M, g) admits a non-trivial solution of the
Fischer–Marsden Equation (1), then the scalar curvature s is a constant (cf. [18]). However, we would
like to point out that in the statement of Theorem 1, the solution β of Equation (1) is not supposed to be a
non-trivial solution (actually, in the proof of the theorem, it turns out to be exactly zero), and therefore we
could not use the above argument to conclude the constancy of the scalar curvature.

Remark 2. The assumption of Theorem 1 that β is a solution of Fischer–Marsden Equation (1)
has the following justification. The two smooth functions involved in the definition of a trans-
Sasakian manifold (N, Ψ, ζ, η, g, α, β), namely α and β, could be natural candidates for solutions of
Equation (1). Moreover, our aim is at getting a characterization of a 3-dimensional sphere S3(c),
knowing that S3(c) admits a trans-Sasakian structure (Ψ, ζ, η, g, α, β), where α =

√
c and β = 0.

However, α =
√

c does not satisfy the Fischer–Marsden equation. Therefore, in view of our goal, the
assumption that α satisfies Equation (1) is ruled out. This motivates the hypothesis of Theorem 1
that function β involved in the definition of a trans-Sasakian manifold satisfies the Fischer–Marsden
equation. The proof of Theorem 1 shows that this assumption implies, in fact, that β is a trivial
solution of (1), provided that the scalar curvature of N satisfies a certain inequality and the Ricci
operator of N satisfies a Codazzi-type condition. Moreover, these assumptions also imply that α is a
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non-zero constant and N is a space of constant curvature, which ultimately leads to the conclusion
that N is isometric to S3(α2).
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