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Abstract: In this paper, Clifford-valued fuzzy neural networks with proportional delays, whose leakage
term coefficients are also Clifford numbers, are considered. Based on the Banach fixed point theorem
and differential inequality technique, we use a direct method to obtain the existence, uniqueness, and
global attractivity of pseudo almost periodic solutions for the considered networks. Finally, we provide
a numerical example to illustrate the feasibility of our results. Our results are new.
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1. Introduction

The Clifford-valued neural network is a generalization of a real-valued neural network,
complex-valued neural network, and quaternion-valued neural network, and has been
shown superior to a real-valued neural network [1,2]. Because the multiplication of Clifford
algebra does not meet the commutative law, there are few results on the dynamics of
Clifford-valued neural networks [3–11]. Many existing results are obtained by decomposing
a Clifford-valued system into a real-value system [3–6]. Therefore, it is a meaningful and
challenging work to study the dynamics of Clifford-valued systems via a direct method;
that is, without decomposing Clifford-valued systems into real-valued systems [7–11].

Since time delay is inevitable in modeling real systems, in recent years, as an important
mathematical model, systems with proportional time delays play important roles in many
application fields, such as physics, biological systems, neural network systems, and control
science [12,13]. Therefore, many scholars have studied the dynamics of neural networks
with proportional delays. For example, in [14], the existence and global attractiveness of
pseudo almost periodic solutions for a class of fuzzy cellular neural networks with multiple
proportional delays are obtained by using the fixed point theorem of contractive mapping
and differential inequality technique, in [15], the existence, uniqueness, and exponential
stability of anti-periodic solutions for recurrent neural networks with multiple delays are
established by using the Lyapunov method and inequality technique. In [16], the finite time
synchronization problem of a class of fuzzy cellular neural networks with time-varying
coefficients and proportional delays is investigated. In [17], a class of competitive neural
networks with multiple proportional delays is studied, and a new sufficient condition for
the global exponential stability of such a network is obtained.

On the other hand, in the mathematical modeling of practical problems, uncertainty or
fuzziness is a factor to be considered. On the basis of traditional cellular neural networks,
fuzzy cellular neural networks [18] were first proposed in 1996. They are neural networks
that incorporate fuzzy logic into the structure of traditional cellular neural networks. They
have important applications in image processing and pattern recognition; therefore, fuzzy
neural networks have been widely studied [14–21].
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In addition, almost periodic oscillation and pseudo almost periodic oscillation are im-
portant dynamics of neural networks. Many authors have studied the existence and stability
of almost periodic solutions [5,13] and pseudo almost periodic solutions [22–26] of neural
networks, including stochastic neural networks [27] and fuzzy neural networks [28,29].

Moreover, recently, the existence and global exponential stability of (µ, ν)-pseudo
almost periodic solutions to a class of Clifford-valued higher order Hopfield neural net-
works, with bounded multiple discrete delays whose leakage term coefficients are also
Clifford numbers, is studied in [30]. Proportional delays are a class of unbounded delays.
Neural networks with proportional delays are a class of neural networks with important
theoretical and application values. However, up until now, the results of almost periodic
oscillation of neural networks with proportional delays and whose leakage term coefficient
s are also Clifford numbers, have not been reported.

Inspired by the above analysis, the purpose of this paper is to study the existence and
attraction of pseudo almost periodic solutions for a class of Clifford-valued fuzzy neural
networks with proportional delays and whose leakage term coefficients are also Clifford
numbers. To the best of our knowledge, this is the first paper to study the existence and
attractivity of pseudo almost periodic solutions of Clifford-valued neural networks with
proportional delay and whose leakage coefficients are also Clifford numbers.

The rest of the paper is arranged as follows. In Section 2, we review some concepts,
introduce some lemmas, and give the model’s description. In Section 3, by using the direct
method, we establish the existence of pseudo almost periodic solutions for the network
under consideration. In Section 4, we study the global attractivity of pseudo almost periodic
solutions. In Section 5, we give a numerical example to illustrate the feasibility of our
results. Finally, we draw a brief conclusion in Section 6.

2. Model Description and Preliminaries

The real Clifford algebra over Rm is defined as

A =

{
∑

A∈Ω
xAeA, xA ∈ R

}
,

where Ω = {∅, 1, 2, · · · A, · · · , 12 · · ·m}, eA = eh̄1 eh̄2 · · · eh̄k
= eh̄1 h̄2···h̄k

for A = h̄1h̄2 · · · h̄k,
1 < h̄1 < h̄2 < · · · < h̄k < m. In addition, e∅ = e0 = 1 and eh̄, h̄ = 1, 2, . . . , m are said to
be Clifford generators and satisfy e2

p = 1, p = 1, 2, . . . , s, e2
p = −1, p = s + 1, s + 2, . . . , m,

epeq + eqep = 0, p 6= q, where p, q = 1, 2, . . . , m.
For x = ∑A xAeA ∈ A, we define ‖x‖A = max

A
{|xA|} and for x = (x1, x2, . . . , xn)T ∈

An, we define ‖x‖An = max
1≤p≤n

{‖xp‖A}, then (A, ‖ · ‖A) and (An, ‖ · ‖An) are Banach

spaces. For x = ∑A xAeA, we define xc = ∑
A 6=∅

xAeA and x∅ = x− xc.

According to [19], for x = ∑ xAeA, y = ∑ yAeA ∈ A, we define

x
∨

y = ∑(xA ∨ yA)eA and x
∧

y = ∑(xA ∧ yA)eA,

where xA ∨ yA = max{xA, yA}, xA ∧ yA = min{xA, yA}.
The model we want to study in this paper is as follows:

ẋi(t) =− ci(t)xi(t) +
n

∑
j=1

aij(t) f j(xj(t)) +
n

∑
j=1

bij(t)gj(xj(qijt)) +
n∨

j=1

αij(t)hj(xj(qijt))

+
n∧

j=1

βij(t)hj(xj(qijt)) +
n∨

j=1

Sij(t)vj(t) +
n∧

j=1

Tij(t)vj(t) + Ii(t), i = 1, 2, . . . , n, (1)

where n is the number of neurons in layers, xi(t) ∈ A represents the state of the ith unit
at time t, A is a Clifford algebra; ci(t) ∈ A is the rate with which the ith unit will reset its
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potential to the resting state in isolation when disconnected from the network and external
inputs; aij(t), bij(t) ∈ A correspond to the first-order and second-order connection weights
of the fuzzy neural network; αij(t) ∈ A is the fuzzy feedback MAX template; βij(t) ∈ A
is the fuzzy feedback MIN template; Sij(t) and Tij(t) ∈ A are the fuzzy feed-forward
MAX template and the fuzzy feed-forward MIN template; vj(t) ∈ A is the input of the jth
neuron; Ii(t) ∈ A stands for the external inputs; f j(t), gj(t), hj(t) ∈ A are the activation
functions; 0 < qij < 1 is the proportional coefficient of proportional delay.

For convenience, we will adopt the following notations:

c̄∅
i = inf

t∈R
{‖c∅

i (t)‖A}, c̄c
i = sup

t∈R
{‖cc

i (t)‖A}, a+ij = sup
t∈R
{‖aij(t)‖A},

b+ij = sup
t∈R
{‖bij(t)‖A}, α+ij = sup

t∈R
{‖αij(t)‖A}, β+

ij = sup
t∈R
{‖βij(t)‖A},

The initial values of system (1) are given by

xi(s) = ϕi(s), s ∈ [qt0, t0],

where ϕi ∈ C([qt0, t0],R), q = min
1≤j≤n

{qij}.

Let BC(R,An) be the collection of all bounded and continuous functions from R to
An. The space (BC(R,An), ‖ · ‖0) is a Banach space when it is endowed with the norm:

‖ f ‖0 = sup
t∈R
‖ f (t)‖An ,

where f ∈ BC(R,An).

Definition 1 ([20]). A function f ∈ BC(R,An) is called to an almost periodic function, if for
every ε > 0, there exists l = l(ε) > 0 such that for each interval with length l(ε), one can find a
number τ ∈ [a, a + l(ε)] satisfying

‖ f (t + τ)− f (t)‖An < ε, ∀t ∈ R.

All of these functions will be denoted by AP(R,An).

Definition 2 ([20]). A function f ∈ BC(R,An) is said to be pseudo almost periodic, if it can be
written as f = f1 + f2, where f1 ∈ AP(R,An), f2 ∈ PAP0(R,An) and

PAP0(R,An) =

{
f ∈ BC(R,An)

∣∣∣∣ lim
T→+∞

1
2T

∫ T

−T
‖ f (t)‖An dt = 0

}
.

Lemma 1 ([20]). If f , g ∈ PAP(R,An), then f + g, f g ∈ PAP(R,An).

Lemma 2 ([20]). Let f ∈ C(A,An) satisfy the Lipschitz condition and g ∈ PAP(R,An), then
f (g(·)) ∈ PAP(R,An).

Lemma 3 ( [21]). If 0 < q < 1, t ∈ R, x ∈ PAP(R,An), then x(qt) ∈ PAP(R,An).

Using the same proof method as Lemma 2 in [14], we can prove

Lemma 4. Assume that x, y ∈ PAP(R,A), then we have x
∨

y, x
∧

y ∈ PAP(R,A).

Lemma 5 ([20]). The space (PAP(R,An), ‖ · ‖0) is a Banach space.

Similar to the proof of Corollary 1 in [18], one can easily show that
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Lemma 6. If αij, βij ∈ C(R,A), f ∈ C(R,A), x, y ∈ A. Then we have∥∥∥∥ n∧
j=1

αij(t) f j(x)−
n∧

j=1

αij(t) f j(y)
∥∥∥∥
A
≤

n

∑
j=1
‖αij(t)‖A‖ f j(x)− f j(y)‖A,

∥∥∥∥ n∨
j=1

βij(t) f j(x)−
n∨

j=1

βij(t) f j(y)
∥∥∥∥
A
≤

n

∑
j=1
‖βij(t)‖A‖ f j(x)− f j(y)‖A.

Lemma 7 ([20]). Let G(t) =
∫ t
−∞ e−

∫ t
s a(u)duF(s)ds, where a ∈ AP(R,R+) with inf

t∈R
a(t) > 0

and F ∈ PAP(R,An), then G ∈ PAP(R,An).

The assumptions used in this paper are as follows:

(H1)For i, j = 1, 2, . . . n, c∅
i ∈ AP(R,R+) with c̄∅

i > 0,cc
i , aij, bij, αij, βij ∈ PAP(R,A),

Sij, Tij, Ii ∈ PAP(R,A).
(H2)For j = 1, 2, · · · n, functions f j, gj, hj ∈ C(A,A) satisfy there exist constants

Kj, Lj, Mj, Nj, such that for any s, t ∈ A,

‖ f j(s)− f j(t)‖A ≤ Kj‖s− t‖A, ‖gj(s)− gj(t)‖A ≤ Lj‖s− t‖A,

‖hj(s)− hj(t)‖A ≤ Mj‖s− t‖A, ‖Ij(s)− Ij(t)‖A ≤ Nj‖s− t‖A,

and f j(0) = gj(0) = hj(0) = 0.
(H3)The constant

δ := max
1≤i≤n

{
1

c̄∅
i

(
c̄c

i +
n

∑
j=1

a+ij Kj +
n

∑
j=1

b+ij Lj +
n

∑
j=1

α+ij Mj +
n

∑
j=1

β+
ij Mj

)}
< 1.

3. Pseudo Almost Periodic Solutions

In this section, by the contracting mapping principle, we will study the existence of
pseudo almost periodic solutions of (1).

For i, j = 1, 2, . . . , n, we define

Fi(t, x) =− cc
i (t)xi(t) +

n

∑
j=1

aij(t) f j(xj(t)) +
n

∑
j=1

bij(t)gj(xj(qijt)) +
n∨

j=1

αij(t)hj(xj(qijt))

+
n∧

j=1

βij(t)hj(xj(qijt)) + Ii(t), i = 1, 2, . . . , n.

Obviously, if x = (x1, x2, · · · xn)T is a solution of the integral equation:

xi(t) =
∫ t

−∞
e−
∫ t

s c∅
i (u)du

[
Fi(s, x) +

n∨
j=1

Sij(s)vj(s) +
n∧

j=1

Tij(s)vj(s) + Ii(s)
]

ds, i = 1, 2, . . . , n,

then x is a solution of system (1).
Let B = (PAP(R,An), ‖ · ‖0) and

ϕ̃(t) =
( ∫ t

−∞
e−
∫ t

s c∅
1 (u)du

( n∨
j=1

S1j(s)vj(s) +
n∧

j=1

T1j(s)vj(s) + I1(s)
)

ds, · · · ,

∫ t

−∞
e−
∫ t

s c∅
n (u)du

( n∨
j=1

Snj(s)vj(s) +
n∧

j=1

Tnj(s)vj(s) + In(s)
)

ds
)T

.
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Define

Bδ =

{
ϕ ∈ B

∣∣∣∣‖ϕ− ϕ̃‖0 ≤
δN

1− δ

}
,

where δ is mentioned in (H3) and N is a positive constant satisfying N ≥ ‖ϕ̃‖0, then
we have

‖ϕ‖0 ≤ ‖ϕ− ϕ̃‖0 + ‖ϕ̃‖0 ≤
δN

1− δ
+ N =

N
1− δ

.

Theorem 1. If assumptions (H1)–(H3) hold, then system (1) has a unique pseudo almost periodic
solution in Bδ = {ϕ ∈ B|‖ϕ− ϕ̃‖0 ≤ δN

1−δ}.

Proof. Consider the mapping T : B→BC(R,An) defined by setting Tϕ = (T1 ϕ, T2 ϕ, · · ·,
Tn ϕ)T , where

(Ti ϕ)(t) =
∫ t

−∞
e−
∫ t

s c∅
i (u)du

[
Fi(s, x) +

n∨
j=1

Sij(s)vj(s) +
n∧

j=1

Tij(s)vj(s) + Ii(s)
]

ds.

By Lemmas 1–4, we obtain Fi ∈ PAP(R,A). Further, by Lemma 7, we have Tϕ ∈
PAP(R,A).

We will divide the rest of the proof into two steps.
Step 1, we will verify T : Bδ→Bδ is a self-mapping. For any ϕ ∈ Bδ, we have

‖Tϕ− ϕ̃‖0 ≤ sup
t∈R

{
max

1≤i≤n

{ ∫ t

−∞
e−
∫ t

s c∅
i (u)du

(
‖cc

i (s)ϕi(s)‖A +
n

∑
j=1
‖aij(s) f j(ϕj(s))‖A

+
n

∑
j=1
‖bij(s)gj(ϕj(qijs))‖A +

n

∑
j=1
‖αij(s)hj(ϕj(qijs))‖A

+
n

∑
j=1
‖βij(s)hj(ϕj(qijs))‖A

)
ds
}}

≤ sup
t∈R

{
max

1≤i≤n

{ ∫ t

−∞
e−
∫ t

s c∅
i (u)du

(
c̄c

i ‖ϕ‖0 +
n

∑
j=1

a+ij Kj‖ϕ‖0 +
n

∑
j=1

b+ij Lj‖ϕ‖0

+
n

∑
j=1

α+ij Mj‖ϕ‖0 +
n

∑
j=1

β+
ij Mj‖ϕ‖0

)
ds
}}

≤ max
1≤i≤n

{
1

c̄∅
i

(
c̄c

i +
n

∑
j=1

[
a+ij Kj + b+ij Lj + α+ij Mj + β+

ij Mj
])}
‖ϕ‖0

≤ δN
1− δ

.

Hence, ϕ(Bδ) ⊂ Bδ.
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Step 2, we will show T is a contractive mapping. For any ϕ, ψ ∈ Bδ, we find

‖Tϕ− Tψ‖0 ≤ sup
t∈R

{
max

1≤i≤n

{ ∫ t

−∞
e−
∫ t

s c∅
i (u)du(‖cc

i (s)(ϕi(s)− ψi(s))‖A

+
n

∑
j=1
‖aij(s)( f j(ϕj(s))− f j(ψj(s)))‖A

+
n

∑
j=1
‖bij(s)(gj(ϕj(qijs))− gj(ψj(qijs)))‖A

+
n

∑
j=1
‖αij(s)(hj(ϕj(qijs))− hj(ψj(qijs)))‖A

+
n

∑
j=1
‖βij(s)(hj(ϕj(qijs))− hj(ψj(qijs)))‖A

)
ds
}}

≤sup
t∈R

{
max

1≤i≤n

{ ∫ t

−∞
e−
∫ t

s c∅
i (u)du

(
c̄c

i ‖ϕ− ψ‖0

+
n

∑
j=1

a+ij Kj‖ϕ− ψ‖0 +
n

∑
j=1

b+ij Lj‖ϕ− ψ‖0

+
n

∑
j=1

α+ij Mj‖ϕ− ψ‖0 +
n

∑
j=1

β+
ij Mj‖ϕ− ψ‖0

)
ds
}}

≤ max
1≤i≤n

{
1

c̄∅
i

(
c̄c

i +
n

∑
j=1

a+ij Kj +
n

∑
j=1

b+ij Lj

+
n

∑
j=1

α+ij Mj +
n

∑
j=1

β+
ij Mj

)}
‖ϕ− ψ‖0

≤δ‖ϕ− ψ‖0.

Noticing that δ < 1, T is a contracting mapping. Therefore, system (1) possesses a unique
one pseudo almost periodic solution in Bδ. This completes the proof.

4. Global Attractivity

Our result on the global attractivity of pseudo almost periodic solutions of system (1)
is as follows:

Theorem 2. If conditions (H1)–(H3) hold, then system (1) has a unique pseudo almost periodic
solution x satisfying that there exist constants λ > 0 and M > 1, such that

‖x(t)− y(t)‖An ≤ M(‖ϕ− ψ‖ξ + ε)e−λ ln 1+t
1+t0 , t > t0,

where y is an arbitrary solution of system (1) with initial value ϕ, ψ is the initial value of x and
‖ϕ− ψ‖ξ = sup

s∈[qt0,t0]

‖ϕ(s)− ψ(s)‖An .

Proof. If x(t) is the pseudo almost periodic solution of system (1) with initial value ϕ and
y is an arbitrary solution of system (1) with the initial value ψ. Let z(t) = x(t)− y(t). Then,
for i = 1, 2, . . . , n, one gets
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z′i(t) =− ci(t)zi(t) +
n

∑
j=1

aij(t)( f j(xj(t))− f j(yj(t))) +
n

∑
j=1

bij(t)(gj(xj(qijt))− gj(xj(qijt)))

+
n∨

j=1

αij(t)(hj(xj(qijt))− hj(yj(qijt))) +
n∧

j=1

βij(t)(hj(xj(qijt))− hj(yj(qijt))). (2)

From (H3), for i = 1, 2, . . . , n, we have

sup
t≥0

{
− c̄∅

i +

(
‖cc

i (t)‖A +
n

∑
j=1
‖aij(t)‖AKj +

n

∑
j=1
‖bij(t)‖ALj

+
n

∑
j=1
‖αij(t)‖AMj +

n

∑
j=1
‖βij(t)‖AMj

)}
< 0. (3)

Let Ki be defined by

Ki(θ) = sup
t∈R

{
θ − c̄∅

i +

(
‖cc

i (t)‖A +
n

∑
j=1
‖aij(t)‖AKj +

n

∑
j=1
‖bij(t)‖ALje

θ ln 1
qij

+
n

∑
j=1
‖αij(t)‖AMje

θ ln 1
qij +

n

∑
j=1
‖βij(t)‖AMje

θ ln 1
qij

)}
, i = 1, 2, . . . , n,

where θ ∈ [0, min
1≤i≤n

c̄∅
i ]. Then, from (3), we have

Ki(0) = sup
t∈R

{
− c̄∅

i +

(
‖cc

i (t)‖A +
n

∑
j=1
‖aij(t)‖AKj +

n

∑
j=1
‖bij(t)‖ALj

+
n

∑
j=1
‖αij(t)‖AMj +

n

∑
j=1
‖βij(t)‖AMj

)}
< 0, i = 1, 2, . . . , n.

Since Ki(0) = 0, Ki(θ)→ ∞ as θ → ∞ and the continuity of Ki(θ), we can take a constant
λ ∈ (0, min

1≤i≤n
{c̄∅

i }), such that Ki(λ) < 0 and

sup
t∈R

{
λ

1 + t
− c̄∅

i +

(
‖cc

i (t)‖A +
n

∑
j=1
‖aij(t)‖AKj +

n

∑
j=1
‖bij(t)‖ALje

λ ln 1
qij

+
n

∑
j=1
‖αij(t)‖AMje

λ ln 1
qij +

n

∑
j=1
‖βij(t)‖AMje

λ ln 1
qij

)}

< sup
t∈R

{
λ− c̄∅

i +

(
‖cc

i (t)‖A +
n

∑
j=1
‖aij(t)‖AKj +

n

∑
j=1
‖bij(t)‖ALje

λ ln 1
qij

+
n

∑
j=1
‖αij(t)‖AMje

λ ln 1
qij +

n

∑
j=1
‖βij(t)‖AMje

λ ln 1
qij

)}
< 0, i = 1, 2, . . . , n.

Noting that

ln
1 + t

1 + qijt
≤ ln

1
qij

, t ≥ 0, i, j = 1, 2, . . . , n,

for any ε > 0, M > 1, we have that

‖z(t)‖An ≤ M(‖ϕ− ψ‖ξ + ε)e−λ ln 1+t
1+t0 , t ∈ [qt0, t0].
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We claim that

‖z(t)‖An ≤ M(‖ϕ− ψ‖ξ + ε)e−λ ln 1+t
1+t0 , t > t0. (4)

To prove (4) holds, we will prove for every d > 1, the following inequality holds.

‖z(t)‖An ≤ dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+t
1+t0 , t ∈ [t0,+∞). (5)

If (5) does not hold, then there must be some θ > 1, such that

{ ‖z(θ)‖An = dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0

‖z(t)‖An < dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+t
1+t0 , t ∈ [qt0, θ),

(6)

which combined with (2), for i = 1, 2, . . . , n, we have

‖zi(θ)‖A =

∥∥∥∥zi(t0)e
−
∫ θ

t0
c∅

i (u)du
+
∫ θ

t0

e−
∫ θ

s c∅
i (u)du

(
cc

i (s)zi(s)

+
n

∑
j=1

aij(s)( f j(xj(s))− f j(yj(s))) +
n

∑
j=1

bij(s)(gj(xj(qijs))− gj(yj(qijs)))

+
n

∑
j=1

βij(s)(hj(xj(qijs))− hj(yj(qijs)))

+
n

∑
j=1

αij(s)(hj(xj(qijs))− hj(yj(qijs)))ds
∥∥∥∥
A

)

≤‖zi(t0)‖Ae−
∫ θ

t0
c̄∅

i du
+
∫ θ

t0

e−
∫ θ

s c̄∅
i du
(
‖cc

i (t)‖A‖zi(s)‖A

+
n

∑
j=1
‖aij(s)‖AKj‖zj(s)‖A +

n

∑
j=1
‖bij(s)‖ALj‖zj(qijs)‖A

+
n

∑
j=1
‖αij(s)‖AMj‖zj(qijs)‖A +

n

∑
j=1
‖βij(s)‖AMj‖zj(qijs)‖A

)
ds

≤M(‖ϕ− ψ‖ξ + ε)e−
∫ θ

t0
c̄∅

i du
+ dM(‖ϕ− ψ‖ξ + ε)

∫ θ

t0

e−
∫ θ

s c̄∅
i du
(
‖cc

i (s)‖Ae−λ ln 1+s
1+t0

+
n

∑
j=1
‖aij(s)‖AKje

−λ ln 1+s
1+t0 +

n

∑
j=1
‖bij(s)‖ALje

−λ ln
1+qij s
1+t0

+
n

∑
j=1
‖αij(s)‖AMje

−λ ln
1+qij s
1+t0 +

n

∑
j=1
‖βij(s)‖AMje

−λ ln
1+qij s
1+t0

)
ds

=dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0

(
1
d

e−
∫ θ

t0
(c̄∅

i −
λ

1+u )du

+
∫ θ

t0

e−
∫ θ

s (c̄
∅
i −

λ
1+u )du

(
‖cc

i (s)‖A +
n

∑
j=1
‖aij(s)‖AKj +

n

∑
j=1
‖bij(s)‖ALje

λ ln 1+s
1+qij s

+
n

∑
j=1
‖αij(s)‖AMje

λ ln 1+s
1+qij s +

n

∑
j=1
‖βij(s)‖AMje

λ ln 1+s
1+qij s

)
ds
)
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≤dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0

(
1
d

e−
∫ θ

t0
(c̄∅

i −
λ

1+u )du

+
∫ θ

t0

e−
∫ θ

s (c̄
∅
i −

λ
1+u )du

(
‖cc

i (s)‖A +
n

∑
j=1
‖aij(s)‖AKj +

n

∑
j=1
‖bij(s)‖ALje

λ ln 1
qij

+
n

∑
j=1
‖αij(s)‖AMje

λ ln 1
qij +

n

∑
j=1
‖βij(s)‖AMje

λ ln 1
qij

)
ds
)

≤dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0

(
1
d

e−
∫ θ

t0
(c̄∅

i −
λ

1+u )du

+
∫ θ

t0

e−
∫ θ

s (c̄
∅
i −

λ
1+u )du

(
c̄∅

i −
λ

1 + s

)
ds
)

≤dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0

(
1−

(
1− 1

d

)
e−
∫ θ

t0
(c̄∅

i −
λ

1+u )du
)

<dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0 ,

this yields that,

‖z(θ)‖An < dM(‖ϕ− ψ‖ξ + ε)e−λ ln 1+θ
1+t0 ,

which contradicts (6). Hence, (5) holds. Letting d→ 1, we derive that (4) holds. The proof
is complete.

5. An Example

Our numerical example is as follows.

Example 1. In system (1), let n = m = 2, s = 0 and for i, j = 1, 2, take

xi(t) = x0
i (t)e0 + x1

i (t)e1 + x2
i (t)e2 + x12

i (t)e12,

f j(xj) =
1

25
e0sin2x1

j +
1
30

e1 tanh(x12
j + x0

j ) +
1
35

e2 sin x2
j +

1
40

e12tanh2x0
j ,

gj(xj) =
1

50
e0sin2x1

j +
1

52
e1 tanh(x12

j + x0
j ) +

1
80

e2tanh2x2
j +

1
55

e12 sin x0
j ,

hj(xj) =
1

100
e0sin2x0

j +
1

50
e1 sin(x1

j + x0
j ) +

1
70

e2 sin x2
j +

1
60

e12sin2x12
j ,

c1(t) = (3.1− 0.1 sin
√

5t)e0 + (2.1 + 0.2 sin t)e1 + (2− 0.5 cos
√

3t)e2 + (2 + 0.1 sin t)e12,

c2(t) = (3.1− 0.1 sin
√

5t)e0 + (2− 0.5 sin t)e1 + (2− 0.1 sin
√

3t)e2 + (2− 0.4 sin t)e12,(
I1(t)
I2(t)

)
=

(
2e0 sin t + e1 cos

√
3t + 0.3e2 sin

√
5t + 2e12 sin t

(2 sin t + 2
1+t2 )e0 + 0.5e1 cos

√
3t + 0.2e2 sin

√
2t + 2e12 cos t

)
,

(
a11(t) a12(t)
a21(t) a22(t)

)
=

(
0.02e0 sin

√
2t + 0.03e1 sin t 0.05e2 sin

√
2t + 0.05e12 cos

√
3t

0.02e1 sin
√

2t + 0.08e2 sin t 0.07e0 cos t + 0.09e12 sin
√

3t

)
,

(
b11(t) b12(t)
b21(t) b22(t)

)
=

(
0.01e0 sin t + 0.06e1 cos

√
5t 0.08e2 sin

√
7t + 0.09e12 cos

√
3t

0.05e1 sin t + 0.11e2 cos
√

2t 0.01e0 cos
√

6t + 0.03e12 sin
√

5t

)
,

(
α11(t) α12(t)
α21(t) α22(t)

)
=

(
0.01e0 sin

√
3t + 0.02e1 sin t 0.02e2 cos

√
2t + 0.05e12 sin

√
3t

0.02e1 sin t + 0.03e2 sin
√

2t 0.03e0 sin
√

3t + 0.01e12 cos
√

2t

)
,

(
β11(t) β12(t)
β21(t) β22(t)

)
=

(
0.03e0 sin t + 0.02e1 sin

√
3t 0.02e2 sin

√
2t + 0.03e12 sin

√
3t

0.08e1 sin
√

2t + 0.02e2 cos
√

3t 0.01e0 sin
√

3t + 0.04e12 sin
√

7t

)
,
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(
S11(t) S12(t)
S21(t) S22(t)

)
=

(
0.05e0 sin

√
7t + 0.01e1 sin

√
3t 0.07e2 sin

√
7t + 0.02e12 sin

√
3t

0.03e1 sin
√

3t + 0.02e2 sin
√

2t 0.03e0 cos
√

2t + 0.05e12 sin
√

3t

)
,

(
T11(t) T12(t)
T21(t) T22(t)

)
=

(
0.01e0 sin

√
2t + 0.06e1 sin t 0.05e2 sin

√
3t + 0.05e12 cos

√
2t

0.02e1 sin t + 0.03e2 sin
√

2t 0.07e0 cos t + 0.09e12 sin
√

3t

)
,

v1(t) = v2(t) =
1

11
e0 sin

√
3t +

1
12

e1 cos
√

2t +
1
10

e2 sin
√

5t +
1
15

e12 sin t,

q11 = 0.5, q12 = 0.4, q21 = 0.4, q22 = 0.3.

By a simple calculation, we have

Kj =
1

25
, Lj =

1
50

, Mj =
1

50
, c̄∅

1 = c̄∅
2 = 3, c̄c

1 = 2.2, c̄c
2 = 2.5, q = 0.3,

a+11 = 0.03, a+12 = 0.05, a+21 = 0.08, a+22 = 0.09, b+11 = 0.06, b+12 = 0.09, b+21 = 0.05, b+22 = 0.03,

α+11 = 0.02, α+12 = 0.05, α+21 = 0.03, α+22 = 0.03, β+
11 = 0.03, β+

12 = 0.03, β+
21 = 0.08, β+

22 = 0.04.

Besides, we can get

1
c̄∅

1

(
c̄c

1 +
2

∑
j=1

a+1jKj +
2

∑
j=1

b+1j Lj +
2

∑
j=1

α+1j Mj +
2

∑
j=1

β+
1j Mj

)
≈ 0.7364 < 1,

1
c̄∅

2

(
c̄c

2 +
2

∑
j=1

a+2jKj +
2

∑
j=1

b+2j Lj +
2

∑
j=1

α+2j Mj +
2

∑
j=1

β+
2j Mj

)
≈ 0.8373 < 1

and δ ≈ 0.8373 < 1. Hence, conditions (H1)-(H3)of are verified. Consequently, by Theorem 2,
system (1) possesses a unique one pseudo almost periodic solution that is globally attractive (see
Figures 1–4).
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Figure 1. The states x0
1, x1

1, x2
1, x12

1 of (1) with different initial values.
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Figure 2. The states x0
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2 of (1) with different initial values.
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Figure 3. The stability of states x0
1, x1

1, x2
1, x12

1 of (1) with different initial values.

0 10 20 30 40 50

t

-0.5

0

0.5

1

1.5

x
20
(t

)

x
2

0
(s)=0.3

x
2

0
(s)=-0.4

x
2

0
(s)=0.1

x
2

0
(s)=0.4

0 10 20 30 40 50

t

-0.5

0

0.5

1

x
21
(t

)

x
2

1
(s)=0.3

x
2

1
(s)=-0.4

x
2

1
(s)=-0.1

x
2

1
(s)=0.4

0 10 20 30 40 50

t

-0.5

0

0.5

1

x
22
(t

)

x
2

2
(s)=0.4

x
2

2
(s)=-0.2

x
2

2
(s)=0.2

x
2

2
(s)=0.5

0 10 20 30 40 50

t

-0.5

0

0.5

1

1.5

x
21

2
(t

)

x
2

12
(s)=-0.2

x
2

12
(s)=0.3

x
2

12
(s)=-0.1

x
2

12
(s)=0.4

Figure 4. The stability of states x0
2, x1

2, x2
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2 of (1) with different initial values.

Remark 1. No known results can be used to draw the conclusion of Example 1.

6. Conclusions

In this paper, we studied the existence and global attractivity of pseudo almost periodic
solutions for a class of Clifford-valued fuzzy neural networks with proportional delays
whose leakage coefficients were also Clifford numbers by the direct method. Our results
are new. Our method can be used to study the existence and attractivity of pseudo almost
periodic solutions for other types of Clifford-valued neural networks with proportional
delays, and to study the existence and attractivity of almost automorphic solutions of
Clifford-valued neural networks with proportional delays.
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