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Abstract: Recently, a quasi-fractional order gradient descent (QFGD) algorithm was proposed and
successfully applied to solve system identification problem. The QFGD suffers from the overparame-
terization problem and results in estimating the redundant parameters instead of identifying only the
actual parameters of the system. This study develops a novel hierarchical QFDS (HQFGD) algorithm
by introducing the concepts of hierarchical identification principle and key term separation idea.
The proposed HQFGD is effectively applied to solve the parameter estimation problem of input
nonlinear autoregressive with exogeneous noise (INARX) system. A detailed investigation about the
performance of HQFGD is conducted under different disturbance conditions considering different
fractional orders and learning rate variations. The simulation results validate the better performance
of the HQFGD over the standard counterpart in terms of estimation accuracy, convergence speed
and robustness.

Keywords: fractional calculus; input nonlinear; nonlinear ARX systems; parameter estimation

1. Introduction

Fractional calculus has emerged as an important tool to effectively model a variety of
systems or processes that arise in the various applications relating to physics, engineering
and applied sciences [1–8]. Over the last decade, a trend of developing novel adaptive
algorithms based on strong foundations of fractional calculus can be seen [9–15]. The
idea of incorporating the fractional derivative into the conventional iterative procedure
of the least mean square (LMS) algorithm was first introduced in 2009 [16]. The fractional
derivative-based LMS, i.e., F-LMS, was then exploited to solve communication [17–19],
vibration rejection [20], control [21], recommender systems [22,23], power signal mod-
elling [24], signal processing [25] and time series prediction problems [26]. The variants
of the F-LMS were proposed to solve different identification and parameter estimation
problems [27–31]. Cheng et al. presented the concept of a variable initial value and pro-
posed an innovative F-LMS (IF-LMS) [32], and Chaudhary et al. applied the IF-LMS for
the parameter estimation of power signals [33]. Chen et al. compared the performance of
different fractional order gradient methods [34]. Wei. et al. suggested a modification to
handle a long memory property of fractional calculus and proposed a generalized fractional
order gradient method (GFGM) [35]. Liu et al. generalized the GFGM to solve convex
optimization problem with high dimensions, and proposed a quasi-fractional gradient
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(QFGD) method with theoretical analysis and convergence proof [36]. Furthermore, they
also applied QFGD to solve system identification problem through overparameterization
and estimated the redundant parameters instead of estimating only the actual parameters
of the system. In order to avoid the problem of overparameterization, we propose hierar-
chical QFGD (HQFGD) by integrating the hierarchical identification principle and key term
separation idea with QFGD for efficient parameter estimation. The hierarchical identifica-
tion principle decomposes the system into multiple subsystems, thus reducing the overall
dimensions of the system, and the key term separation technique allows one to avoid the
overparameterization issue [37–39]. In this study, we propose HQFGD method for efficient
parameter estimation of input nonlinear autoregressive exogenous noise (INARX) systems.
The INARX system belongs to a class of block-oriented nonlinear systems that are widely
used to model a variety of nonlinearities [40–43]. The main contributions of this study in
terms of salient features are summarized as:

• A novel hierarchical quasi-fractional gradient descent, HQFGD, algorithm is presented
by integrating the hierarchical identification theory and key term separation technique
with the quasi-fractional gradient method.

• The hierarchical identification procedure decomposes the system into subsystems,
thus reducing the overall dimensions of the system, and the key term separation
technique allows one to avoid the overparameterization issue.

• The accuracy and robustness of the proposed HQFGD is established through effective
parameter estimation of input nonlinear autoregressive exogenous noise, INARX,
systems under different disturbance conditions, fractional orders and learning rate
variations.

• The comparison with the standard counterpart validates the efficacy of the proposed
HQFGD scheme in terms of convergence sped and estimation accuracy.

The remainder of this paper is structured as follows: Section 2 gives the description
of the INARX system. Section 3 describes the HGD approach and Section 4 provides the
design of the hierarchical QFGD for INARX systems. Section 5 discusses the results of
numerical experimentation and Section 6 presents the conclusions with some future works.

2. Nonlinear ARX System Model

The governing mathematical relation of the INARX system with input x, output y,
and exogeneous noise n is written as [44,45]:

o(t) =
V(z)
W(z)

x(t) +
1

W(z)
n(t), (1)

where W(z), V(z) and x(t) are defined as

W(z) = 1 + w1z−1 + w2z−2+, . . . ,+wnw z−nw , (2)

V(z) = r0 + v1z−1 + v2z−2+, . . . ,+vnv z−nv , (3)

x(t) = u1γ1(x(t)) + u2γ2(x(t)) + . . . + upγp(x(t)). (4)

Rewriting (1) after rearranging,

o(t) = (1−W(z))o(t) + V(z)x(t) + n(t). (5)
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Putting Expressions (2)–(4) into (5), let v0 = 1, and considering x(t) as a key term,
apply key term separation:

o(t) = −
nw
∑

k=1
wko(t− k) +

nv
∑

k=0
vkx(t− k) + n(t)

= −
nw
∑

k=1
wko(t− k) + v0x(t) +

nv
∑

k=1
vkx(t− k) + n(t)

= −
nw
∑

k=1
wko(t− k) +

nv
∑

k=1
vkx(t− k) +

p
∑

i=1
uiγi(x(t)) + n(t)

(6)

The information vector is defined as:

Ωw(t) = [−o(t− 1),−o(t− 2), . . . ,−o(t− nw)]
T ∈ Rnw

Ωv(t) = [x(t− 1), x(t− 2), . . . , x(t− nv)]
T ∈ Rnv

γ(t) =
[
γ1(u(t)), γ2(u(t)), . . . , γp(u(t))

]T ∈ Rp
(7)

and the corresponding parameter vectors are:

w = [w1, w2, . . . , wnw ]
T ∈ Rnw

v = [v1, v2, . . . , vnv ]
T ∈ Rnv

u =
[
u1, u2, . . . , up

]T ∈ Rp
(8)

Putting (7) and (8) into (6), the output of the INARX system using key term separa-
tion [37] is written as:

o(t) = ΩT
w(t)w + ΩT

v (t)v + γT(t)u + n(t). (9)

3. Hierarchical Gradient Descent Method

The brief overview of hierarchical identification based gradient descent (HGD) is
presented in this section. The intermediate variables are defined as:

ow(t) = o(t)−ΩT
v (t)v− γT(t)u, (10)

ov(t) = o(t)−ΩT
w(t)w− γT(t)u, (11)

ou(t) = o(t)−ΩT
w(t)w−ΩT

v (t)v, (12)

Decomposing (9) into three sub-systems:

ow(t) = ΩT
w(t)w + n(t), (13)

ov(t) = ΩT
v (t)v + n(t), (14)

ou(t) = γT(t)u + n(t). (15)

From (13)–(15), the cost functions are defined as:

Jw(w) =
(

ow(t)−ΩT
w(t)w

)2
, (16)

Jv(v) =
(

ov(t)−ΩT
v (t)v

)2
, (17)

Ju(u) =
(

ou(t)− γT(t)u
)2

. (18)



Mathematics 2021, 9, 3302 4 of 14

The following update rules are obtained by minimizing cost functions (16)–(18)
through the gradient descent approach:

ŵ(t) = ŵ(t− 1) + α1Ωw(t)
[
ow(t)−ΩT

w(t)ŵ(t− 1)
]

= ŵ(t− 1) + α1Ωw(t)
[
o(t)−ΩT

v (t)v(t− 1)− γT(t)û(t− 1)−ΩT
w(t)ŵ(t− 1)

] (19)

v̂(t) = v̂(t− 1) + α2Ωv(t)
[
or(t)−ΩT

v (t)v̂(t− 1)
]

= v̂(t− 1) + α2Ωv(t)
[
o(t)−ΩT

w(t)ŵ(t− 1)− γT(t)û(t− 1)−ΩT
v (t)v̂(t− 1)

] (20)

û(t) = û(t− 1) + α3γ(t)
[
ou(t)− γT(t)û(t− 1)

]
= û(t− 1) + α3γ(t)

[
o(t)−ΩT

w(t)ŵ(t− 1)−ΩT
v (t)v̂(t− 1)− γT(t)û(t− 1)

] (21)

There are unmeasurable inner terms in Ωv(t) of (19)–(21), whose estimation is de-
fined as:

Ω̂v(t) =
[
x̂(t− 1), x̂(t− 2), . . . , x̂(t− nv)

]T , (22)

x̂(t) =
p

∑
i=1

ûi(t)γi(x(t)) = γT(t)û(t). (23)

Replacing Ωv(t) with Ω̂v(t) in (19)–(21) gives the HGD for INARX identification:

ŵ(t) = ŵ(t− 1) + α1Ωw(t)
[
o(t)− Ω̂T

v (t)v(t− 1)− γT(t)û(t− 1)−ΩT
w(t)ŵ(t− 1)

]
, (24)

v̂(t) = v̂(t− 1) + α2Ωv(t)
[
o(t)−ΩT

w(t)ŵ(t− 1)− γT(t)û(t− 1)− Ω̂T
v (t)v̂(t− 1)

]
, (25)

û(t) = û(t− 1) + α3γ(t)
[
o(t)−ΩT

w(t)ŵ(t− 1)− Ω̂T
v (t)v̂(t− 1)− γT(t)û(t− 1)

]
. (26)

4. Hierarchical Quasi Fractional Gradient Descent Method

In this section, the design of the proposed hierarchical quasi fractional gradient descent
HQFGD is presented. The general iterative update rule of QFGD for a multi-variable
function f (s) is written as reported in the recent literature [36]:

s(t) = s(t− 1)− α

Γ(2− µ)
∇ f (s)|t=t−1 �

[ −−−−−−−−−−−−−−−−−−−→
‖(s(t− 1)− s(t− 2) + ε)1−µ‖

]
, (27)

where 0 < µ < 2 is the fractional order, α is the learning rate, ε is a vector of small numbers,
∇ is the conventional first order gradient, ‖·‖ denotes the 2 norms of a vector, and �
represents the Hadamard product. The search direction in QFGD is produced through
the Hadamard product between the direction of the fractional gradient and another vec-
tor on the basis of the fractional gradient direction, as described in [36]. This helps in
avoiding zigzag during gradient descent search by rotating the fractional gradient direc-

tion. Thus, ∇ f (s)|t=t−1 �
[ −−−−−−−−−−−−−−−−−−−→
‖(s(t− 1)− s(t− 2) + ε)1−µ‖

]
is called the QFGD direction.

Further details about QFGD can be seen in [36].
Minimizing the cost functions (16)–(18) by using (27), the iterative update relations of

the QFGD for w, v, u are written as:
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ŵ(t) = ŵ(t− 1) +
α1Ωw(t)
Γ(2− µ)

[
ow(t)−ΩT

w(t)ŵ(t− 1)
]
�
[ −−−−−−−−−−−−−−−−−−−−−→
‖(ŵ(t− 1)− ŵ(t− 2) + ε)1−µ‖

]
, (28)

v̂(t) = v̂(t− 1) +
α2Ωv(t)
Γ(2− µ)

[
ov(t)−ΩT

v (t)v̂(t− 1)
]
�
[−−−−−−−−−−−−−−−−−−−−−→
‖(v̂(t− 1)− v̂(t− 2) + ε)1−µ‖

]
, (29)

û(t) = û(t− 1) +
α3γ(t)

Γ(2− µ)
[ou(t)− γ(t)û(t− 1)]�

[−−−−−−−−−−−−−−−−−−−−−→
‖(û(t− 1)− û(t− 2) + ε)1−µ‖

]
. (30)

Using (10)–(12) in (28)–(30), respectively:

ŵ(t) = ŵ(t− 1) +
α1Ωw(t)ew(t)

Γ(2− µ)
�
[ −−−−−−−−−−−−−−−−−−−−−→
‖(ŵ(t− 1)− ŵ(t− 2) + ε)1−µ‖

]
, (31)

v̂(t) = v̂(t− 1) +
α2Ωv(t)ev(t)

Γ(2− µ)
�
[−−−−−−−−−−−−−−−−−−−−−→
‖(v̂(t− 1)− v̂(t− 2) + ε)1−µ‖

]
, (32)

û(t) = û(t− 1) +
α3γ(t)eu(t)

Γ(2− µ)
�
[−−−−−−−−−−−−−−−−−−−−−→
‖(û(t− 1)− û(t− 2) + ε)1−µ‖

]
, (33)

where ew, ev and eu are defined as:

ew(t) =
[
o(t)− γT(t)û(t− 1)−ΩT

v (t)v̂(t− 1)−ΩT
w(t)ŵ(t− 1)

]
,

ev(t) =
[
o(t)−ΩT

w(t)ŵ(t− 1)− γT(t)û(t− 1)−ΩT
v (t)v̂(t− 1)

]
,

eu(t) =
[
o(t)−ΩT

w(t)ŵ(t− 1)−ΩT
v (t)v̂(t− 1)− γT(t)û(t− 1)

]
.

Using (22)–(23) to replace Ωv(t) with estimate Ω̂v(t) in (31)–(33) gives the hierarchical
QFGD method for parameter estimation of INARX systems:

ŵ(t) = ŵ(t− 1) + α1Ωw(t)ew(t)
Γ(2−µ)

�
[ −−−−−−−−−−−−−−−−−−−−−→
‖(ŵ(t− 1)− ŵ(t− 2) + ε)1−µ‖

]
ew(t) =

[
o(t)− γT(t)û(t− 1)− Ω̂T

v (t)v̂(t− 1)−ΩT
w(t)ŵ(t− 1)

] (34)

v̂(t) = v̂(t− 1) + α2Ωv(t)ev(t)
Γ(2−µ)

�
[−−−−−−−−−−−−−−−−−−−−−→
‖(v̂(t− 1)− v̂(t− 2) + ε)1−µ‖

]
ev(t) =

[
o(t)−ΩT

w(t)ŵ(t− 1)− γT(t)û(t− 1)− Ω̂T
v (t)v̂(t− 1)

] (35)

û(t) = û(t− 1) + α3γ(t)eu(t)
Γ(2−µ)

�
[−−−−−−−−−−−−−−−−−−−−−→
‖(û(t− 1)− û(t− 2) + ε)1−µ‖

]
eu(t) =

[
o(t)−ΩT

w(t)ŵ(t− 1)− Ω̂T
v (t)v̂(t− 1)− γT(t)û(t− 1)

] (36)

Putting µ = 1 into (34)–(36) reduces the HQFGD to conventional HGD (24)–(26). The
overall graphical flow of the study is presented in Figure 1.
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5. Results and Discussion

In this section, results of the proposed HQFGD are presented for parameter estimation
of INARX system, and detail analyses is conducted regarding estimation accuracy, conver-
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gence speed and robustness of the scheme. Considering the following INARX system for
numerical experimentation [37]:

W(z) = 1 + w1z−1 + w2z−2 = 1 + 1.35z−1 + 0.75z−2,

V(z) = v1z−1 + v2z−2 = 0.25z−1 + z−2,

x(t) = u1γ1(x(t)) + u2γ2(x(t)) = 0.5x(t) + 0.9x2(t).

The parameters to be estimated are:

Φ = [w, v, u]T = [w1, w2 v1, v2 u1, u2]
T = [1.35, 0.75, 0.25, 1, 0.5, 0.9]T (37)

The following evaluation metrics are developed to measure the estimation perfor-
mance of the HQFGD for INARX

Fitness =
‖Φ− Φ̂‖
‖Φ‖ , (38)

MSE = mean
(
Φ− Φ̂

)2, (39)

where ‖·‖ denotes the 2 norms of a vector. The simulations are conducted in Matlab, where
the input signal with length is randomly generated with zero mean and unit variance, while
the disturbance/noise signal is generated with normal distribution and constant variance.
The considered input-output data length is 30,000. The performance of the HQFGD is
assessed for two learning rates (α = 0.0005, 0.001), five fractional orders (µ = 0.7, 0.8, 0.9,
1.0, 1.1, 1.2) and three disturbance levels (σ = 0.02, 0.09, 0.2).

The fitness iterative plots of the HQFGD based on the learning rate parameter are
presented in Figure 2 for µ = 0.8, 1.0, 1.2 and σ = 0.02, 0.2. It is seen that the convergence
speed of the HQFGD is faster for higher value of α but at the cost of more steady state mis
adjustments, while the smaller value of α is good in steady state dynamics with smooth
convergence curve but suffers from slow convergence speed. Thus, the small value of the
learning rate (α = 0.0005) is selected, and the tabular presentation of the iterative fitness
values is given in Supplementary Tables S1–S3 for σ = 0.02, 0.09 and 0.2, respectively.
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The fitness iterative plots of the HQFGD based on the fractional order variations are
presented in Figure 3 for σ = 0.02, 0.09 and 0.2. The results indicate that the HQFGD is
convergent for all considered fractional orders with relatively better convergence speed in
the cases of µ = 0.8 and 0.9. The presented results further indicate that the HQFGD is robust
against disturbances, with little decrease in the accuracy level for high noise variance.
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The parameter estimation accuracy of the HQFGD is presented through parameter
iterative plots and is given in Figure 4 for µ = 0.8, 1, 1.2, σ = 0.02 and α = 0.0005. The
results show that the HQFGD accurately estimated the parameters of INARX system for all
fractional order variations with relatively better convergence speed in the case of µ = 0.8.
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The performance of the HQFGD for parameter estimation of INARX system is fur-
ther assessed through MSE-based evaluation metrics, and the results are presented in
Tables 1 and 2 for α = 0.0005 and 0.001, respectively, in the case of all fractional orders and
disturbance levels. These MSE results further verify the fitness-based results, showing that
the HQFGD is accurate and convergent for all fractional orders. The HQFGD is relatively
better regarding convergence speed than the conventional HGD for µ = 0.8 and 0.9, while
the HQFGD is relatively better than the HGD with regard to final accuracy for µ = 1.1
and 1.2.

Table 1. MSE results of HQFGD for different noise levels for α = 0.0005.

Noise µ w1 w2 v1 v2 u1 u2 MSE

0.02 0.7 1.3499 0.7503 0.2504 1.0004 0.4998 0.9004 9.71 × 10−8

0.8 1.3498 0.7503 0.2504 1.0004 0.4998 0.9004 9.01 × 10−8

0.9 1.3498 0.7503 0.2503 1.0004 0.4999 0.9004 8.01 × 10−8

1.0 1.3498 0.7502 0.2502 1.0004 0.4999 0.9004 6.92 × 10−8

1.1 1.3497 0.7502 0.2500 1.0004 0.4999 0.9003 6.75 × 10−8

1.2 1.3496 0.7500 0.2496 1.0006 0.4999 0.9003 1.24 × 10−7

0.09 0.7 1.3496 0.7511 0.2516 1.0012 0.4994 0.9014 1.28 × 10−6

0.8 1.3496 0.7511 0.2516 1.0012 0.4994 0.9013 1.21 × 10−6

0.9 1.3496 0.7510 0.2515 1.0011 0.4995 0.9013 1.10 × 10−6

1.0 1.3496 0.7510 0.2513 1.0011 0.4995 0.9012 9.53 × 10−7

1.1 1.3495 0.7508 0.2510 1.0011 0.4995 0.9012 7.77 × 10−7

1.2 1.3495 0.7507 0.2505 1.0011 0.4996 0.9011 6.10 × 10−7

0.2 0.7 1.3486 0.7531 0.2546 1.0036 0.4983 0.9038 1.05 × 10−5

0.8 1.3487 0.7530 0.2544 1.0035 0.4984 0.9037 9.87 × 10−6

0.9 1.3487 0.7528 0.2542 1.0033 0.4984 0.9036 9.07 × 10−6

1.0 1.3488 0.7527 0.2539 1.0031 0.4985 0.9035 8.05 × 10−6

1.1 1.3488 0.7525 0.2535 1.0029 0.4986 0.9033 6.81 × 10−6

1.2 1.3489 0.7523 0.2528 1.0028 0.4988 0.9030 5.00 × 10−6

Φ 1.3500 0.7500 0.2500 1.0000 0.5000 0.9000 0
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Table 2. MSE results of HQFGD for different noise levels for α = 0.001.

Noise µ w1 w2 v1 v2 u1 u2 MSE

0.02 0.7 1.3498 0.7507 0.2509 1.0010 0.4997 0.9006 4.46 × 10−7

0.8 1.3498 0.7507 0.2509 1.0010 0.4997 0.9006 4.27 × 10−7

0.9 1.3498 0.7506 0.2509 1.0009 0.4997 0.9005 4.00 × 10−7

1.0 1.3498 0.7506 0.2508 1.0009 0.4998 0.9005 3.64 × 10−7

1.1 1.3498 0.7506 0.2508 1.0008 0.4998 0.9005 3.20 × 10−7

1.2 1.3498 0.7505 0.2507 1.0007 0.4998 0.9005 2.70 × 10−7

0.09 0.7 1.3494 0.7524 0.2530 1.0036 0.4991 0.9020 5.41 × 10−6

0.8 1.3494 0.7523 0.2530 1.0035 0.4991 0.9019 5.19 × 10−6

0.9 1.3494 0.7522 0.2529 1.0033 0.4991 0.9019 4.85 × 10−6

1.0 1.3494 0.7521 0.2528 1.0031 0.4991 0.9019 4.41 × 10−6

1.1 1.3494 0.7519 0.2527 1.0028 0.4991 0.9018 3.88 × 10−6

1.2 1.3494 0.7518 0.2526 1.0024 0.4992 0.9017 3.27 × 10−6

0.2 0.7 1.3482 0.7567 0.2580 1.0106 0.4973 0.9055 4.36 × 10−5

0.8 1.3481 0.7562 0.2580 1.0103 0.4974 0.9054 4.14 × 10−5

0.9 1.3480 0.7559 0.2578 1.0098 0.4974 0.9054 3.86 × 10−5

1.0 1.3480 0.7556 0.2576 1.0091 0.4974 0.9052 3.51 × 10−5

1.1 1.3480 0.7552 0.2573 1.0083 0.4975 0.9051 3.08 × 10−5

1.2 1.3481 0.7547 0.2569 1.0073 0.4976 0.9049 2.59 × 10−5

Φ 1.3500 0.7500 0.2500 1.0000 0.5000 0.9000 0

6. Conclusions

The following are the main conclusions:

• A novel design of hierarchical quasi-fractional gradient descent, HQFGD, is presented
for effective parameter estimation of input nonlinear autoregressive systems with
exogeneous disturbance, i.e., INARX systems.

• The HQFGD is developed by incorporating the hierarchical identification principle and
key term separation idea into the structure of QFGD. The hierarchical identification
procedure decomposes the INARX system into different subsystems and reduces the
computational complexity of the conventional counterpart.

• The HQFGD effectively estimates the parameters of the INARX system by considering
only the actual system parameters and avoiding estimation of the redundant parame-
ters due to overparameterization problems caused by the product of the cross terms.

• The HQFGD is accurate, robust, and convergent in comparison with the standard
counterpart for parameter estimation of INARX systems.

• The HQFGD is relatively better with regard to convergence speed than the conven-
tional HGD for µ = 0.8 and 0.9, while the HQFGD is relatively better than the HGD as
regards final accuracy for µ = 1.1 and 1.2.

In future, one may exploit the proposed methodology for solving complex estimation
problems [46,47] with hysteresis/dead zone nonlinearities [48,49] and investigate the
recently introduced fractional derivative definitions for designing novel fractional gradient
methods [50–52] to solve complex optimization problems [53–55].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9243302/s1. Results of fitness adaptation of the HQFGD in tabular form are given as a
supplementary material in Supplementary Tables S1–S3 for 0.02, 0.09 and 0.2 noise levels, respectively.

Author Contributions: Conceptualization, N.I.C. and Z.A.K.; methodology, N.I.C. and M.A.Z.R.;
software, N.I.C.; validation, M.A.Z.R. and Z.A.K.; resources, K.M.C. and A.H.M.; writing—original
draft preparation, N.I.C.; writing—review and editing, Z.A.K. and M.A.Z.R.; project administration,
K.M.C. and A.H.M.; funding acquisition, K.M.C. and A.H.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

https://www.mdpi.com/article/10.3390/math9243302/s1
https://www.mdpi.com/article/10.3390/math9243302/s1


Mathematics 2021, 9, 3302 12 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge the kind help and great support of the late J.A. Tenreiro
Machado in developing the new paradigm of fractional order adaptive algorithms by exploring the
applications of fractional calculus in adaptive methods. He motivated us to explore the applications of
novel fractional order algorithms to solve different parameter estimation and nonlinear identification
problems.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus, 1st ed.; Springer: Dordrecht, The Netherlands, 2007;

Volume 4.
2. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16,

1140–1153. [CrossRef]
3. Tejado, I.; Pérez, E.; Valério, D. Fractional calculus in economic growth modelling of the group of seven. Fract. Calc. Appl. Anal.

2019, 22, 139–157. [CrossRef]
4. Rashid, S.; Hammouch, Z.; Aydi, H.; Ahmad, A.G.; Alsharif, A.M. Novel computations of the time-fractional Fisher’s model via

generalized fractional integral operators by means of the Elzaki transform. Fractal Fract. 2021, 5, 94. [CrossRef]
5. Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science

and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [CrossRef]
6. Masood, Z. Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems. Mathematics 2021, 9, 2160. [CrossRef]
7. Valério, D.; Ortigueira, M.D.; Tenreiro, J.M.; Lopes, A.M. Continuous-time fractional linear systems: Steady-state responses. In

Volume 6 Applications in Control; De Gruyter: Berlin, Germany, 2019; pp. 149–174.
8. Christ, L.F.; Valério, D.; Coelho, R.M.; Vinga, S. Models of bone metastases and therapy using fractional derivatives. J. Appl.

Nonlinear Dyn. 2018, 7, 81–94. [CrossRef]
9. Pires, E.S.; Machado, J.T.; de Moura Oliveira, P.B.; Cunha, J.B.; Mendes, L. Particle swarm optimization with fractional-order

velocity. Nonlinear Dyn. 2010, 61, 295–301. [CrossRef]
10. Mousavi, Y.; Alfi, A. Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos Solitons

Fractals 2018, 114, 202–215. [CrossRef]
11. Ray, P.K.; Paital, S.R.; Mohanty, A.; Foo, Y.E.; Krishnan, A.; Gooi, H.B.; Amaratunga, G.A. A hybrid firefly-swarm optimized

fractional order interval type-2 fuzzy PID-PSS for transient stability improvement. IEEE Trans. Ind. Appl. 2019, 55, 6486–6498.
[CrossRef]

12. Muhammad, Y.; Khan, R.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. Design of fractional swarm intelligent computing with
entropy evolution for optimal power flow problems. IEEE Access 2020, 8, 111401–111419. [CrossRef]

13. Yousri, D.; Mirjalili, S. Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic,
chaotic with noise and hyper-chaotic financial systems. Eng. Appl. Artif. Intell. 2020, 92, 103662. [CrossRef]

14. Kiani-B, A.; Fallahi, K.; Pariz, N.; Leung, H. A chaotic secure communication scheme using fractional chaotic systems based on an
extended fractional Kalman filter. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 863–879. [CrossRef]

15. Wang, X.; Zhang, F.; Kung, H.T.; Johnson, V.C.; Latif, A. Extracting soil salinization information with a fractional-order filtering
algorithm and grid-search support vector machine (GS-SVM) model. Int. J. Remote Sens. 2020, 41, 953–973. [CrossRef]

16. Zahoor, R.M.A.; Qureshi, I.M. A modified least mean square algorithm using fractional derivative and its application to system
identification. Eur. J. Sci. Res. 2009, 35, 14–21.

17. Khan, A.A.; Shah, S.M.; Raja, M.A.Z.; Chaudhary, N.I.; He, Y.; Machado, J.A.T. Fractional LMS and NLMS Algorithms for Line
Echo Cancellation. Arab. J. Sci. Eng. 2021, 46, 9385–9398. [CrossRef]

18. Raja, M.A.Z.; Akhtar, R.; Chaudhary, N.I.; Zhiyu, Z.; Khan, Q.; Rehman, A.U.; Zaman, F. A new computing paradigm for the
optimization of parameters in adaptive beamforming using fractional processing. Eur. Phys. J. Plus 2019, 134, 275. [CrossRef]

19. Shah, S.M.; Samar, R.; Raja, M.A.Z.; Dynamics, N. Fractional-order algorithms for tracking Rayleigh fading channels. Nonlinear
Dyn. 2018, 92, 1243–1259. [CrossRef]

20. Yin, W.; Wei, Y.; Liu, T.; Wang, Y. A novel orthogonalized fractional order filtered-x normalized least mean squares algorithm for
feedforward vibration rejection. Mech. Syst. Signal Process. 2019, 119, 138–154. [CrossRef]

21. Chaudhary, N.I.; Ahmed, M.; Khan, Z.A.; Zubair, S.; Raja, M.A.Z.; Dedovic, N. Design of normalized fractional adaptive
algorithms for parameter estimation of control autoregressive autoregressive systems. Appl. Math. Model. 2018, 55, 698–715.
[CrossRef]

22. Khan, Z.A.; Chaudhary, N.I.; Zubair, S. Fractional stochastic gradient descent for recommender systems. Electron. Mark. 2019, 29,
275–285. [CrossRef]

http://doi.org/10.1016/j.cnsns.2010.05.027
http://doi.org/10.1515/fca-2019-0009
http://doi.org/10.3390/fractalfract5030094
http://doi.org/10.1016/j.cnsns.2018.04.019
http://doi.org/10.3390/math9172160
http://doi.org/10.5890/JAND.2018.03.007
http://doi.org/10.1007/s11071-009-9649-y
http://doi.org/10.1016/j.chaos.2018.07.004
http://doi.org/10.1109/TIA.2019.2938473
http://doi.org/10.1109/ACCESS.2020.3002714
http://doi.org/10.1016/j.engappai.2020.103662
http://doi.org/10.1016/j.cnsns.2007.11.011
http://doi.org/10.1080/01431161.2019.1654142
http://doi.org/10.1007/s13369-020-05264-1
http://doi.org/10.1140/epjp/i2019-12654-6
http://doi.org/10.1007/s11071-018-4122-4
http://doi.org/10.1016/j.ymssp.2018.09.024
http://doi.org/10.1016/j.apm.2017.11.023
http://doi.org/10.1007/s12525-018-0297-2


Mathematics 2021, 9, 3302 13 of 14

23. Khan, Z.A.; Zubair, S.; Chaudhary, N.I.; Raja, M.A.Z.; Khan, F.A.; Dedovic, N. Design of normalized fractional SGD computing
paradigm for recommender systems. Neural Comput. Appl. 2020, 32, 10245–10262. [CrossRef]

24. Chaudhary, N.I.; Aslam, M.S.; Baleanu, D.; Raja, M.A.Z. Design of sign fractional optimization paradigms for parameter
estimation of nonlinear Hammerstein systems. Neural Comput. Appl. 2020, 32, 8381–8399. [CrossRef]

25. Chaudhary, N.I.; Zubair, S.; Raja, M.A.Z. A new computing approach for power signal modeling using fractional adaptive
algorithms. ISA Trans. 2017, 68, 189–202. [CrossRef]

26. Shoaib, B.; Qureshi, I.M. Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction.
Chin. Phys. B 2014, 23, 050503. [CrossRef]

27. Cheng, S.; Wei, Y.; Sheng, D.; Chen, Y.; Wang, Y. Identification for Hammerstein nonlinear ARMAX systems based on multi-
innovation fractional order stochastic gradient. Signal Process. 2018, 142, 1–10. [CrossRef]

28. Chaudhary, N.I.; Raja MA, Z.; He, Y.; Khan, Z.A.; Machado, J.T. Design of multi innovation fractional LMS algorithm for
parameter estimation of input nonlinear control autoregressive systems. Appl. Math. Model. 2021, 93, 412–425. [CrossRef]

29. Aslam, M.S.; Chaudhary, N.I.; Raja, M.A.Z. A sliding-window approximation-based fractional adaptive strategy for Hammerstein
nonlinear ARMAX systems. Nonlinear Dyn. 2017, 87, 519–533. [CrossRef]

30. Zubair, S.; Chaudhary, N.I.; Khan, Z.A.; Wang, W. Momentum fractional LMS for power signal parameter estimation. Signal
Process. 2018, 142, 441–449. [CrossRef]

31. Chaudhary, N.I.; Zubair, S.; Aslam, M.S.; Raja, M.A.Z.; Machado, J.T. Design of momentum fractional LMS for Hammerstein
nonlinear system identification with application to electrically stimulated muscle model. Eur. Phys. J. Plus 2019, 134, 407.
[CrossRef]

32. Cheng, S.; Wei, Y.; Chen, Y.; Li, Y.; Wang, Y. An innovative fractional order LMS based on variable initial value and gradient order.
Signal Process. 2017, 133, 260–269. [CrossRef]

33. Chaudhary, N.I.; Latif, R.; Raja, M.A.Z.; Machado, J.T. An innovative fractional order LMS algorithm for power signal parameter
estimation. Appl. Math. Model. 2020, 83, 703–718. [CrossRef]

34. Chen, Y.; Gao, Q.; Wei, Y.; Wang, Y. Study on fractional order gradient methods. Appl. Math. Comput. 2017, 314, 310–321.
[CrossRef]

35. Wei, Y.; Kang, Y.; Yin, W.; Wang, Y. Generalization of the gradient method with fractional order gradient direction. J. Frankl. Inst.
2020, 357, 2514–2532. [CrossRef]

36. Liu, J.; Zhai, R.; Liu, Y.; Li, W.; Wang, B.; Huang, L. A quasi fractional order gradient descent method with adaptive stepsize and
its application in system identification. Appl. Math. Comput. 2021, 393, 125797. [CrossRef]

37. Chen, H.; Xiao, Y.; Ding, F. Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the
key term separation principle. Appl. Math. Comput. 2014, 247, 1202–1210. [CrossRef]

38. Ding, F.; Chen, H.; Xu, L.; Dai, J.; Li, Q.; Hayat, T. A hierarchical least squares identification algorithm for Hammerstein nonlinear
systems using the key term separation. J. Frankl. Inst. 2018, 355, 3737–3752. [CrossRef]

39. Ding, F.; Ma, H.; Pan, J.; Yang, E. Hierarchical gradient-and least squares-based iterative algorithms for input nonlinear output-
error systems using the key term separation. J. Frankl. Inst. 2021, 358, 5113–5135. [CrossRef]

40. Giri, F.; Bai, E.W. Block-Oriented Nonlinear System Identification, 1st ed.; Springer: London, UK, 2010; Volume 1.
41. Billings, S.A. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains; John Wiley &

Sons: Hoboken, NJ, USA, 2013; Volume 1.
42. Schoukens, J.; Ljung, L. Nonlinear system identification: A user-oriented road map. IEEE Control Syst. Mag. 2019, 39, 28–99.
43. Le, F.; Markovsky, I.; Freeman, C.T.; Rogers, E. Recursive identification of Hammerstein systems with application to electrically

stimulated muscle. Control Eng. Pract. 2012, 20, 386–396. [CrossRef]
44. Mehmood, A.; Zameer, A.; Chaudhary, N.I.; Raja, M.A.Z. Backtracking search heuristics for identification of electrical muscle

stimulation models using Hammerstein structure. Appl. Soft Comput. 2019, 84, 105705. [CrossRef]
45. Mehmood, A.; Zameer, A.; Chaudhary, N.I.; Ling, S.H.; Raja, M.A.Z. Design of meta-heuristic computing paradigms for

Hammerstein identification systems in electrically stimulated muscle models. Neural Comput. Appl. 2020, 32, 12469–12497.
[CrossRef]

46. Mehmood, A.; Chaudhary, N.I.; Zameer, A.; Raja, M.A.Z. Novel computing paradigms for parameter estimation in power signal
models. Neural Comput. Appl. 2020, 32, 6253–6282. [CrossRef]

47. Mehmood, A.; Shi, P.; Raja, M.A.Z.; Zameer, A.; Chaudhary, N.I. Design of backtracking search heuristics for parameter estimation
of power signals. Neural Comput. Appl. 2020, 33, 1479–1496. [CrossRef]

48. Prasad, V.; Mehta, U. Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-
zones using fractional differential equations. Mech. Syst. Signal Process. 2022, 167, 108568. [CrossRef]

49. Prasad, V.; Kothari, K.; Mehta, U. Parametric identification of nonlinear fractional Hammerstein models. Fractal Fract. 2020, 4, 2.
[CrossRef]

50. Atangana, A.; Shafiq, A. Differential and integral operators with constant fractional order and variable fractional dimension.
Chaos Solitons Fractals 2019, 127, 226–243. [CrossRef]

51. Ghanbari, B.; Atangana, A. A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in
image processing. Phys. A Stat. Mech. Appl. 2020, 542, 123516. [CrossRef]

http://doi.org/10.1007/s00521-019-04562-6
http://doi.org/10.1007/s00521-019-04328-0
http://doi.org/10.1016/j.isatra.2017.03.011
http://doi.org/10.1088/1674-1056/23/5/050503
http://doi.org/10.1016/j.sigpro.2017.06.025
http://doi.org/10.1016/j.apm.2020.12.035
http://doi.org/10.1007/s11071-016-3058-9
http://doi.org/10.1016/j.sigpro.2017.08.009
http://doi.org/10.1140/epjp/i2019-12785-8
http://doi.org/10.1016/j.sigpro.2016.11.026
http://doi.org/10.1016/j.apm.2020.03.014
http://doi.org/10.1016/j.amc.2017.07.023
http://doi.org/10.1016/j.jfranklin.2020.01.008
http://doi.org/10.1016/j.amc.2020.125797
http://doi.org/10.1016/j.amc.2014.09.070
http://doi.org/10.1016/j.jfranklin.2018.01.052
http://doi.org/10.1016/j.jfranklin.2021.04.006
http://doi.org/10.1016/j.conengprac.2011.08.001
http://doi.org/10.1016/j.asoc.2019.105705
http://doi.org/10.1007/s00521-020-04701-4
http://doi.org/10.1007/s00521-019-04133-9
http://doi.org/10.1007/s00521-020-05029-9
http://doi.org/10.1016/j.ymssp.2021.108568
http://doi.org/10.3390/fractalfract4010002
http://doi.org/10.1016/j.chaos.2019.06.014
http://doi.org/10.1016/j.physa.2019.123516


Mathematics 2021, 9, 3302 14 of 14

52. Atangana, A. Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before
vaccination? Chaos Solitons Fractals 2020, 136, 109860. [CrossRef]

53. Shi, L.; Wang, X.; Hou, H. Research on Optimization of Array Honeypot Defense Strategies Based on Evolutionary Game Theory.
Mathematics 2021, 9, 805. [CrossRef]

54. Posypkin, M.; Khamisov, O. Automatic Convexity Deduction for Efficient Function’s Range Bounding. Mathematics 2021, 9, 134.
[CrossRef]

55. Lera, D.; Posypkin, M.; Sergeyev, Y.D. Space-filling curves for numerical approximation and visualization of solutions to systems
of nonlinear inequalities with applications in robotics. Appl. Math. Comput. 2021, 390, 125660. [CrossRef]

http://doi.org/10.1016/j.chaos.2020.109860
http://doi.org/10.3390/math9080805
http://doi.org/10.3390/math9020134
http://doi.org/10.1016/j.amc.2020.125660

	Introduction 
	Nonlinear ARX System Model 
	Hierarchical Gradient Descent Method 
	Hierarchical Quasi Fractional Gradient Descent Method 
	Results and Discussion 
	Conclusions 
	References

