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Abstract: The article proves that the state of a bilinear control system can be split uniquely into
generalized modes corresponding to the eigenvalues of the dynamics matrix. It is also shown that
the Gramians of controllability and observability of a bilinear system can be divided into parts
(sub-Gramians) that characterize the measure of these generalized modes and their interactions.
Furthermore, the properties of sub-Gramians were investigated in relation to modal controllability
and observability. We also propose an algorithm for computing the Gramians and sub-Gramians
based on the element-wise computation of the solution matrix. Based on the proposed algorithm,
a novel criterion for the existence of solutions to the generalized Lyapunov equation is proposed,
which allows, in some cases, to expand the domain of guaranteed existence of a solution of bilinear
equations. Examples are provided that illustrate the application and practical use of the considered
spectral decompositions.

Keywords: bilinear systems; eigenmode decomposition; spectral expansions; generalized Lyapunov
equation; Gramians; observability; controllability; small-signal analysis; numerical algorithm

1. Introduction

Monitoring the state of various technical, social, and biological systems using non-
linear mathematical models and modern information technology is a widely relied upon
trend in the development of modern civilization. An example is the state estimation and
control in modern electric power systems. Renewable energy sources and distributed gen-
eration, electric vehicles and charging networks, and the increased use of power electronics
pose new challenges for the monitoring and controling of complex oscillations in energy
systems [1]. New problems require the development of new methods for the analysis of
non-linear dynamic systems, including computational methods for their solutions.

Bilinear control systems represent an important class of non-linear systems, which
are linear in inputs and states, but they are not linear in both. Research in the field of
non-linear and “weakly non-linear” control systems described by the Volterra series dates
back more than half a century. In [2], a theory of realization was developed, and structural
decompositions of the Gramians of bilinear systems were investigated; furthermore, explicit
representations of the Gramian of a bilinear system were obtained in the form of a Volterra
series, and the conditions for its convergence were investigated. In [3,4], the multivariate
Laplace transform was used to construct a solution for systems with smooth non-linearities.
In [5], an iterative solution of the generalized Lyapunov equation was obtained, which was
first used to analyze the state of an electric power system. It was shown that a solution to
this equation exists if the linear part of the bilinear system is stable, and the input signal
and non-linearity matrices are bounded in the norm. In [6], these results were generalized
for multiple-input and multiple-output (MIMO) dynamical systems.

Research in the field of bilinear control systems is closely related to the problem of
model order reduction (MOR) by constructing an approximating model of a lower di-
mension. Among the methods for solving this problem, we note balanced truncation,
singular decomposition, the Krylov subspace method, optimal methods for the H2-norm of
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Gramians, and hybrid methods. For most of the methods, iterative algorithms for their im-
plementation have been developed, and conditions for the existence and uniqueness of the
solution of the corresponding generalized Lyapunov equations have been established [6–9].
In these studies, the squared H2-norm of Gramians of the bilinear system was used, and its
spectral expansions using singular values were obtained. To estimate the error between
the full and reduced models, energy functionals were introduced, and the corresponding
H2-norm optimal algorithms for the interpolation of bilinear systems were proposed.

Modal analysis and selective modal analysis are among the main methods for ana-
lyzing the stability of electric power systems with small deviations from the steady state.
These methods involve identifying dominant weakly stable modes of the power system and
are widely used in combination with other linear and non-linear analysis methods [1,10].
To assess bilinear effects in power systems analysis, the technique of normal forms [11],
modal series methods [12], and bilinear approximation [13] are used. These methods
consider the higher-order terms of the Taylor expansion in the system approximation and
use normal Poincaré forms. In [14], a method was proposed for the fast computation of
normal forms, considering the interaction of dominant modes. Ref. [15] proposes a hybrid
method combining selective modal analysis and Koopman mode decomposition.

In contrast to these methods, in this study, we consider the spectral decomposition,
not for the instantaneous dynamics of state variables, but for the Lyapunov functions,
which characterize the L2-norms of variables or signals in the time domain. This approach
allows us to consider the non-linear effects associated with the accumulation of influence
over time. For linear dynamic systems, Lyapunov functions are usually associated with the
controllability and observability Gramians, which characterize the integrated energy of the
input and output signals. The concept of Gramians was further generalized and interpreted
for deterministic bilinear systems using energy functionals [16]. For linear systems, ref. [7]
obtained singular expansions for infinite Gramians of controllability and observability
based on the diagonalization of the dynamics matrix. A more general form of the spectral
decomposition of Gramians into components (sub-Gramians) corresponding to the indi-
vidual eigenvalues of the system or their pairwise combinations was proposed in [17,18].
In [19], the spectral expansions for the Gramians of controllability and observability were
generalized to the case of bilinear continuous systems.

The purpose of this study is to develop and provide a rationale for the application of
the spectral expansions of the Gramians proposed in [19] for the analysis and monitoring
of bilinear systems. As the state of a bilinear system is not the sum of eigenmodes as in the
linear case, a number of important theoretical questions arise. How should eigenmodes
be viewed and interpreted in a bilinear system? What interpretation can be given to the
spectral expansions of the Gramians in [19]? What is their connection with the expansion
of the Gramians in linear systems?

Main Contribution

As spectral expansions of states of bilinear systems are closely related to the corre-
sponding expansions of states of linear systems, in Section 2, we first consider the concepts
of modal controllability and observability for a linear dynamical system. The following new
results were obtained: Criteria for modal controllability and observability are proposed
(Propositions 3 and 5), and a relation is established between the eigenmodes of the linear
system and sub-Gramians of controllability and observability (Propositions 7 and 9).

The main theoretical results are presented in Section 3. We show that the solution
of a bilinear system under any control can be split uniquely into generalized modes cor-
responding to the eigenvalues of the dynamics matrix (Proposition 11). The definitions
of sub-Gramians are proposed in a new form, and their relationship with the definitions
in [19] are clarified (Property 4). The conditions for the existence of sub-Gramians (Prop-
erty 1) and their consistency with the concept of sub-Gramians in linear theory (Property 3)
are established.
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In [19], expressions for sub-Gramians were proposed in the form of solutions to the
modal Lyapunov equations. In this study, the same quantities are derived as the sums
of squared convolution kernels arising in the Volterra series expansion of the state of the
bilinear system. Moreover, it is proved (in Property 4) that if these quantities exist, then for
a stable matrix of dynamics, they coincide with the definition in [19]. Although the new
definition of sub-Gramians essentially coincides with the definition in [19], it allows us to
establish a relation between sub-Gramians and the corresponding generalized modes of
a bilinear system, namely, to prove that sub-Gramians characterize some measure of the
corresponding generalized eigenmodes and their pairwise scalar products (Proposition 5)
under the condition that controls are small enough. From a theoretical point of view,
this result provides a conceptual justification for the concept of sub-Gramians for bilinear
systems. From the point of view of applications, it allows one to make energy-based
estimates of individual generalized modes and their pairwise interactions in the system.
Such estimates, in turn, can become the basis for stability analysis and optimal control in
bilinear dynamical systems.

Section 4 proposes an iterative algorithm for computing the Gramians and sub-
Gramians based on the element-wise computation of the solution matrix on an eigenvector
basis. This algorithm is similar to the algorithms in [20]. However, based on the proposed
algorithm, a novel criterion for the existence of solutions to the generalized Lyapunov
equation is formulated (Theorem 4), which, in some cases, allows the expansion of the
domain of guaranteed existence of a solution of bilinear equations. At the end of Section 4,
some examples that illustrate the application and practical use of the considered spectral
decompositions are presented.

2. Spectral Expansions of Gramians of Linear Systems
2.1. Eigenmode Decompositions of the Dynamics of a Linear System

In this section, we consider the eigen-decomposition of the dynamics of a linear
stationary system, which will be required for further presentation. Consider a linear
dynamical system of the form {

ẋ = A x + B u
y = C x

, (1)

where x ∈ Rn is the state vector, and y ∈ Rl , u ∈ Rm are the output signal and control,
respectively. A, B, C are real matrices. Suppose that the dynamics matrix A has a simple
spectrum σ(A) = {λ1, λ2, . . . , λn}.

Proposition 1. A matrix A with a simple spectrum can be represented as

A = λ1 R1 + λ2 R2 + · · ·+ λn Rn, (2)

where Ri are the matrices of residues in the decomposition of the resolvent of matrix A:

(Is− A)−1=
R1

s− λ1
+

R2

s− λ2
+ · · ·+ Rn

s− λn
. (3)

Proof. When all eigenvalues are distinct, the residue matrices of the resolvent of matrix A
can be calculated using the normalized right and left eigenvectors as Ri = uivT

i (see [21]).
Then, representation (2) directly follows from the eigen decomposition of matrix A.

From the representation of the residue matrices through the eigenvectors and the or-
thogonality of the eigenvectors, it follows that the residue matrices Ri satisfy the following
the orthogonality property:

Ri Rj = Ri δij , (4)
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where δij is the Kronecker delta. Thus, representation (2) of matrix A is separable in the sense
that all terms in it are orthogonal to each other in accordance with (4). If the matrices Ri of
residues are known, then using (2)–(4), one can easily find all the powers of the matrix A

Ak = ∑
i

λk
i Ri , k = 0,±1,±2, . . . , (5)

and the summation index here and in the following are assumed to be from one to n.
Substituting (5) into the Taylor expansion of the matrix exponent of A, we obtain

eAt = ∑
i

Ri eλit . (6)

Proposition 2 (Eigenmode decomposition). Solution, control, and output signal of linear
system (1) are separable with respect to the eigenmodes, i.e., there is a representation

x(t) = ∑
i

xi(t) , u(t) = ∑
i

ui(t) , y(t) = ∑
i

yi(t) , where

xi(t) = Rix(t) = Ri eλitx0 + Beλit
t∫

t0

e−λiτui(τ)dτ , (7)

ui(t) = B#RiBu(t) , yi(t) = Cxi(t) = CRix(t) ,

x0 = x(t0) is the initial position of the system, and B# denotes the Moore–Penrose inverse. The
system (1) splits into separate subsystems{

ẋi(t) = λi xi(t) + B ui(t)
yi(t) = C xi(t)

, i = 1, · · · , n . (8)

Recall that the Moore–Penrose inverse matrix B# exists and is unique for any complex
or real matrix B and it is defined by four conditions: (i) BB#B = B, (ii) B#BB# = B#, (iii) BB#

is Hermitian, and (iv) B#B is Hermitian.

Proof. The expression (7) for xi(t) = Rix(t) is obtained by multiplying the solution to (1):

x(t) = eAtx0 + eAt
∫ t

t0

e−Aτ B u(τ) dτ

on the left by Ri, taking into account property (4) and also that RieAt = Rieλit, e−Aτ =

∑j Rje
−λjτ , Bui(τ) = RiBu(τ). If we differentiate (7), we obtain (8).

The expression (7) for xi(t) = Rix(t) determines the dynamics of the eigenmode
corresponding to the eigenvalue λi in system (1). The corresponding mode in the output
signal is determined by the expression yi(t) = Cxi(t).

2.2. Modal Observability and Controllability of a Linear System

In this section, by analogy with the classical definitions of an observable and control-
lable linear system, we introduce the corresponding concepts for individual eigenmodes.
We also establish simple criteria for modal controllability and observability for a linear
stationary system (1).

Definition 1. The mode corresponding to the eigenvalue λi is observable in the linear system (1)
at the moment t0, when yi(t, t0, x0, u = 0) ≡ 0 at t ≥ t0 if, and only if, xi(t0) = 0.

According to (7), the observability of a mode in a stationary system (1) is entirely
determined by the matrices Ri and C. Therefore, we can also discuss the modal observability
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of a pair {C, Ri}. For stationary systems, modal observability can be verified using the
following simple criterion.

Proposition 3. The mode corresponding to λi in the linear system (1) is observable. if, and only if,
CRi 6= 0.

Proof. If the stationary pair {C, Ri} is modally observable, then CRix0 6= 0 holds for any
Rix0 6= 0, that is, for some x0 6= 0, CRix0 6= 0 is fulfilled, and therefore CRi 6= 0. If
CRi 6= 0, then there is some x0 6= 0 such that CRix0 6= 0. Let us now choose an arbitrary
Ri x̃0 6= 0. It is easy to show that the vectors Rix0 and Ri x̃0 are both eigenvectors of
matrix A corresponding to the eigenvalue λi. Because, by assumption, the spectrum of
σ(A) is simple, these vectors are proportional, that is, Ri x̃0 = αRix0, α ∈ C. Therefore,
CRi x̃0 = αCRix0 6= 0, that is, the pair {C, Ri} is modally observable.

One can check the observability of the system by checking the observability of its
individual modes.

Proposition 4. The stationary system (1) is observable (identifiable) if, and only if, each mode is
observable (identifiable).

Proof. It follows from the definitions and equivalence of the following statements

∀i : yi(t, t0, x0, u = 0) ≡ 0 at t ≥ t0 <=> y(t, t0, x0, u = 0) ≡ 0 at t ≥ t0 ;

∀i : xi(t0) = 0 <=> x(t0) = 0. �

However, individual modes can be observable when the dynamical system (1) as a
whole is unobservable.

Similarly, one can consider the concept of modal controllability and obtain a criterion
for modal controllability.

Definition 2. The mode corresponding to the eigenvalue λi in the linear system (1) is controllable,
if for each event (t0, x0 = xi(t0)), there is a control u(t), which brings the system to the zero state
in a finite time.

For stationary systems, modal controllability can be verified using the following
simple criterion.

Proposition 5. The mode corresponding to λi in the linear system (1) is controllable if, and only if,
RiB 6= 0.

Proof. If RiB = 0, then it follows from (7) that mode xi(t) is not controllable. If RiB 6= 0,
then u(t) can always be chosen, such that

∫ t0+T

t0

e−λjτu(τ)dτ =

{
u0

i , j = i
0, j 6= i

, Rix0 = −RiBu0
i , j = 1, . . . , n

Then, in a finite time T, the control u(t) brings the system from state xi(t0) = Rix0 to
the zero state, i.e., the eigen-mode corresponding to λi is controllable.

According to Proposition 5, the controllability of a mode in a stationary system is
entirely determined by the matrices Ri and B. Thus, we can discuss the modal controllability
of the stationary pair {Ri, B}. The controllability of the system can be verified by checking
the controllability of its individual modes.

Proposition 6. A stationary linear system (1) is controllable if, and only if, each mode is control-
lable.
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Proof. If the system (1) is controllable, then each of its modes, by definition, is also control-
lable. Consider a system in which each mode can be controlled. Let at the moment t0, it is
in the state x0 6= 0. Let us choose modal control in the form

u(t) = ∑
i

ui(t) , ui(t) =
{

u0
i fi(t) , t ∈ [t0, t0 + T]

0, t /∈ [t0, t0 + T]
, (9)

where the set of scalar functions f1, f2, · · · , fn satisfies the condition

∀i, k = 1, · · · , n :
∫ t0+T

t0

e−λkt fi(t)dt = δik =

{
0 , i 6= k
1 , i = k

. (10)

As functions fi, for example, one can always choose piecewise constant functions on n
sections of the interval t ∈ [t0, t0 + T]. Substituting the control u(t) from (9) and (10) into
the solution to (1),

x(t) = eAtx0 + eAt
∫ t

t0

e−Aτ Bu(τ)dτ ,

we obtain
x(t) = ∑

i
xi(t) = ∑

i
(Rix0 + RiBu0

i )e
−λit , t ≥ t0 + T . (11)

Because all eigenvalues λi are simple, the vectors Rix0 and RiBu0
i coincide up to a

scalar factor with the corresponding right eigenvector of the system. In addition, according
to Proposition 5, RiB 6= 0 for all i. Therefore, it is always possible to choose vectors u0

i , such
that x(t) ≡ 0, t ≥ t0 + T in (11). Thus, system (1) is controllable.

The choice of the control u(t) in the form (9–10) also proves the following property:

Corollary 1. If an individual mode of system (1) is controllable, then there is a control ui(t) that
allows one to change this eigenmode arbitrarily on any finite interval without changing other
eigenmodes of the solution.

Note that individual modes can be controllable even when the dynamical system as a
whole is uncontrollable.

2.3. Spectral Decompositions of Gramians of a Linear System

In this section, we recall the basic facts about the observability and controllability
Gramians of the linear system (1) and their spectral expansions, and also offer a meaningful
interpretation of the corresponding spectral components in these expansions.

The Gramians of controllability and observability of a stable linear system (1) are, respec-
tively, the quantities

PC =
∫ ∞

0
eAtBBTeAT tdt, PO =

∫ ∞

0
eAT tCTCeAtdt , (12)

which are also solutions of the corresponding Lyapunov equations

APC + PC AT = −BBT , AT PO + PO A = −CTC . (13)

If x0 = x(0) is the initial state of system (1), then the integral energy of the output
signal at zero control is determined by the observability Gramian∫ ∞

0
yT(t) y(t)dt = xT

0 PO x0 . (14)
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If the state x0 is reachable, then the minimum energy for bringing the system from the
zero state to x0 and the corresponding optimal control û(t) are determined by the inverse
matrix of the controllability Gramian

inf
x(−∞)=0

∫ 0

−∞
ûT(t)û(t)dt = xT

0 P#
C x0 , û(t) = BTe−AT tP#

C x0 , −∞ < t < 0 , (15)

where P#
C is the Moore–Penrose inverse.

In [17], the spectral decompositions of Gramians (12) were proposed. In [18], they
were generalized to a more general class of solutions of the matrix Krein equations. The
eigenterms of the expansions are represented using the residues of the resolvent of the
matrix A. Let us formulate this result for Equation (13) in the following form:

Theorem 1 ([18]). If λ∗i + λj 6= 0 for all λi, λj ∈ σ(A), Then, for any matrices B and C, there is
a unique solution of the Lyapunov Equation (13), and it is presented in the form

P =
n

∑
i=1

P̃i =
n

∑
i,j=1

Pij, P̃i =
n

∑
j=1

Pij , (16)

where the spectral components for the controllability and observability Gramians, respectively, are
given by

P̃C
i = −

{
RiBBT(λi I + A∗)−1

}
Herm

, PC
ij =

{
−1

λi + λ∗j
RiBBT R∗j

}
Herm

, (17)

P̃O
i = −

{
R∗i CTC(λ∗i I + A)−1

}
Herm

, PO
ij =

{
−1

λ∗i + λj
R∗i CTCRj

}
Herm

, (18)

where {·}Herm denotes the Hermitian part of the matrix, and Ri and Rj are the matrix residues (3)
that correspond to the eigenvalues λi and λj.

The eigenterms P̃i and Pij in expressions (16) are called in [17] the sub-Gramians and
pairwise sub-Gramians, respectively. They characterize the contribution of the correspond-
ing eigenmodes or their pairs to the energy variation of the system, determined by the
corresponding Gramian over an infinite time interval. The following statement holds:

Proposition 7 (Interpretation of observability sub-Gramians). For system (1) with zero con-
trol, the value xT

0 P̃O
i x0 is the cross-correlation between the output signal y(t) and its i-th modal

component at a lag of zero. The value xT
0 PO

ij x0 is the cross-correlation between the i-th and j-th
modal components of the output signal at a lag of zero.

Proof. Considering that y(t) = CeAtx0 and yi(t) = CRieλitx0, we obtain

1
2

∫ ∞

0
(y∗i y + y∗yi)dt =

1
2

xT
0

∫ ∞

0
(eλ∗i tR∗i CTCeAt + eAT tCTCRieλit)dt x0 = xT

0 P̃O
i x0

Similarly, we directly verify that 1
2

∫ ∞
0 (y∗i yj + y∗j yi)dt = xT

0 PO
ij x0.

Similar to the Lyapunov Equation (13) hold for Gramians, the corresponding modal
Lyapunov equations hold for sub-Gramians.
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Proposition 8. Under the conditions of Theorem 1, the observability sub-Gramians P̃O
i and PO

ij in
expansions (16) and (18) satisfy the following modal Lyapunov equations:

AT P̃O
i + P̃O

i A = −1
2

(
R∗i CTC + CTCRi

)
, (19)

AT PO
ij + PO

ij A = −1
2

(
R∗i CTCRj + R∗j CTCRi

)
. (20)

Proof. This is verified by the direct substitution of (18) into (19) and (20).

Similar statements are proved for controllability sub-Gramians.

Proposition 9 (Interpretation of controllability sub-Gramians). For system (1) and reachable
state x0, consider problem (15) of finding the required control û(t) with the minimum energy. Then,
the value xT

0 (P#
C)

T P̃C
i P#

Cx0 is the cross-correlation between the optimal control û(t) and its i-th
modal component at a lag of zero. The value xT

0 (P#
C)

T PC
ij P#

Cx0 is the cross-correlation between the
the i-th and j-th modal components of the optimal control at a lag of zero.

Proposition 10. Under the conditions of Theorem 1, the controllability sub-Gramians P̃C
i and PC

ij
in (16) and (17) satisfy the following modal Lyapunov equations:

AP̃C
i + P̃C

i AT = −1
2

(
RiBBT + BBT R∗i

)
,

APC
ij + PC

ij AT = −1
2

(
RiBBT R∗j + RjBBT R∗i

)
.

3. Spectral Decompositions of Gramians of a Bilinear Control System

In this section, we extend the results obtained for linear systems to the case of bilinear
control systems. In particular, we introduce the concept of a generalized eigenmode and
prove that the state of the bilinear system can be uniquely split into generalized modes
corresponding to the eigenvalues of the dynamics matrix. Further, we recall some known
facts about the controllability and observability Gramians of bilinear systems and propose
their spectral decomposition into parts (sub-Gramians) corresponding to the spectrum of the
dynamics matrix. We prove that individual sub-Gramians characterize some measure of
the corresponding generalized eigenmodes or their pairwise scalar products.

3.1. Partitioning the Solution into Generalized Modes of the Matrix A

Consider a bilinear control system of the form [5,6]

ẋ(t) = Ax(t) +
m

∑
j=1

Nj x(t)uj(t) + Bu(t) , y(t) = Cx(t) , (21)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are the state, input, and output vectors, respectively,
and A, N1, · · · , Nm, B, and C are the real matrices. Assume that the initial state is x(0) = 0,
and the system input satisfies u(t) = 0, t < 0. Then, the solution of (21) can be considered
as a solution to the following recursive system of linear equations:

ẋ(1)(t) = Ax(1)(t) + B u(t) ,

ẋ(k)(t) = Ax(k)(t) +
m

∑
j=1

Njx(k−1)(t)uj(t) + B u(t) , k = 2, 3, · · · (22)
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Solving the systems (22) sequentially, we obtain

x(1)(t) =
∫ ∞

0
eAτ1 B u(t− τ1)dτ1 ,

x(2)(t) = x(1)(t) +
m

∑
j2=1

∫ ∞

0

∫ ∞

0
eAτ2 .Nj2 eAτ1 B u(t− τ2 − τ1)uj2(t− τ2)dτ1dτ2 , · · · ,

x(k)(t) = x(k−1)(t) +
m

∑
j2,··· ,jk=1

∫ ∞

0
· · ·

∫ ∞

0
eAτk Njk · · · e

Aτ2 .Nj2 eAτ1 B u(t− τ1 − · · · − τk)

uj2(t− τ2 · · · − τk) · · · ujk (t− τk) dτ1dτ2 · · · dτk , k = 3, · · · (23)

It was proved in [22] that if the sequence x(k)(t) in (23) converges (that is, the corre-
sponding Volterra series of corrections converges), then it converges to the solution of (21),
that is,

x(t) = lim
k→∞

x(k)(t) . (24)

It was proved in [23] that this sequence always converges if matrix A is stable, input
control is bounded, and all the matrices Nj are sufficiently bounded in norm. In what follows,
we assume that the corresponding Volterra series converges, and the limit (24) exists.

From (23), it follows that the solution to the bilinear system (21) is constructed as the
sum of (i) the solution of its linear part x(1)(t), (ii) the bilinear correction x(2)(t)− x(1)(t)
generated by the linear part, (iii) the bilinear correction x(3)(t)− x(2)(t) generated by the
first correction, etc. Moreover, all non-linear corrections of the form x(k)(t)− x(k−1)(t), k =
2, 3, · · · are integral transformations of the linear part x(1)(t) of order k with respect to
control, that is,

x(t) = x(1)(t) +
∞

∑
k=1

Fkx(1)(t) , where

Fx(t) =
m

∑
j=1

∫ ∞

0
eAτ Nj x(t− τ) uj(t− τ) dτ . (25)

Moreover, according to our assumption, the integral operator F in (25) is a contraction.
The solution x(1)(t) of the linear part of the system (21) can be divided into eigenmodes

of the matrix A, in accordance with the definitions (7) in Section 2.1.

x(1)(t) = ∑
i

x(1)i (t) , where

x(1)i (t) = Ri x(1)(t) =
∫ ∞

0
eλiτ Ri B u(t− τ) dτ , (26)

where Ri is the residue matrix in (3) corresponding to λi.

Definition 3. The generalized mode of the bilinear system (21) corresponding to the eigenvalue
λi of the matrix A is the sum of the mode x(1)i (t) of the linear part of the system and non-linear
corrections generated by this mode, obtained in the course of solving the recursive system (22), i.e.,

xi(t) = x(1)i (t) +
∞

∑
k=1

Fkx(1)i (t) , (27)

where the integral operator F is defined in (25) and is assumed to be a contraction, and x(1)i is
defined in (26).

The significance of Definition 3 is justified by the following statement.
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Proposition 11. Let the initial state of the bilinear system (21) x(0) = 0, which satisfies u(t) = 0,
t < 0, and the Volterra series in (23) converges. Then, the solution of (21) is uniquely split into
generalized modes (27), corresponding to the eigenvalues of matrix A.

x(t) = ∑
i

xi(t) . (28)

Proof. By constructing the sequence in (23),

x(k)(t) = x(1)(t) +
k−1

∑
j=1

Fjx(1)(t)

According to Proposition 2, the solution of the linear part x(1)(t) is uniquely decom-
posed into eigenmodes

x(1)(t) =
n

∑
i=1

x(1)i (t)

Since the integral operator F is linear, we obtain

x(k)(t) =
n

∑
i=1

x(1)i (t) +
k−1

∑
j=1

Fj

(
n

∑
i=1

x(1)i (t)

)
=

n

∑
i=1

(
x(1)i (t) +

k−1

∑
j=1

Fjx(1)i (t)

)
=

n

∑
i=1

x(k)i (t)

If Volterra series ∑k(x(k)(t) − x(k−1)(t)) in (23) converges, then according to [22],
the sequence {x(k)(t)} converges to the solution of (21). Due to the convergence of the
sequence {x(k)(t)}, the sequences {x(k)i (t)} for each i also converge to xi(t) in (27), since
they are obtained by multiplying {x(k)(t)} by constant matrices Ri. Therefore, taking the
limit k→ ∞ in the previous equation, we obtain the assertion of the proposition.

3.2. Spectral Decompositions of Gramians

The concept of controllability and observability Gramians for a bilinear system was
studied in [2]. The controllability Gramian of system (21) is defined as

PC =
∞

∑
k=1

P(k) =
∞

∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
GkBBTGT

k dτ1 · · · dτk , where

G1 = eAτ1 , Gk(τ1 · · · τk) = eAτk [N1Gk−1, · · · , NmGk−1], k = 2, 3, · · · (29)

It characterizes the input-to-state energy of the system [16]. Additionally, the following
statements hold:

Theorem 2 ([6]). The controllability (observability) Gramian exists if (i) A is stable, such that
||eAt|| ≤ βe−αt, t ≥ 0, α, β > 0. (ii) ||∑m

γ=1 NγNT
γ || < 2α/β2.

Theorem 3. If matrix A is stable and the controllability Gramian exists, then (i) system (1) is
controllable if, and only if, PC > 0 [2], and (ii) the Gramian PC satisfies the generalized Lyapunov
equation [5]

APC + PC AT +
m

∑
γ=1

NγPC NT
γ = −BBT . (30)
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A study in [6] (in Proposition 1) also showed that if the matrix A is stable, then
the terms of the series P(k) in (29) can be found as successive solutions of the following
recursive system of linear Lyapunov equations:

AP(1) + P(1)AT + BBT = 0 ,

AP(k) + P(k)AT +
m

∑
γ=1

NγP(k)NT
γ = 0 , k = 2, 3, · · · (31)

The following useful addition can be made to this statement.

Proposition 12. The controllability Gramian (29) of the bilinear system (21) is the sum of the
controllability Gramian P(1) of the linear part and the integrals of the Gram matrices formed by
convolution kernels that arise when calculating the non-linear corrections x(k)(t) − x(k−1)(t),
k = 2, 3, · · · in the recursive solution to system (22).

Proof. According to (31), P(1) in (29) is the controllability Gramian of the linear part of the
system (21), and the other terms P(k) are calculated in (29) as integrals of the Gram matrices:

P(k) =
∫ ∞

0
· · ·

∫ ∞

0
GkBBTGT

k dt1 · · · dtk ,

and it can be verified that these Gram matrices

GkBBTGT
k =

m

∑
jk=1

eAτk Njk Gk−1BBTGT
k−1NT

jk eATτk = · · · =

m

∑
j2,··· ,jk=1

eAτk Njk · · · e
Aτ2 Nj2 eAτ1 BBTeATτ1 NT

j2 eATτ2 · · ·NT
jk eATτk

are formed by convolution kernels, arising when calculating the corrections x(k)(t) −
x(k−1)(t), k = 2, 3, · · · in (23).

Definition 4. Controllability sub-Gramians and pairwise sub-Gramians of the bilinear
system (21) are, respectively, the matrices

P̃C
i =

∞

∑
k=1

P̃(k)
i =

1
2

∞

∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
Gk(RiBBT + BBT R∗i )G

T
k dτ1 · · · dτk , (32)

PC
ij =

∞

∑
k=1

P(k)
ij =

1
2

∞

∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
Gk(RiBBT R∗j + RjBBT R∗i )G

T
k dτ1 · · · dτk , (33)

where Ri and Rj are the residue matrices in (3) corresponding to the eigenvalues λi and λj of matrix
A, and the matrices Gk are defined in (29).

We now establish some basic properties of sub-Gramians (32) and (33) in Definition 4.

Property 1. Under the conditions of Theorem 2, sub-Gramians (32) and (33) exist.

Proof. Under the conditions of Theorem 2, the series in (32) and (33) are formed using
the same contracting operator F as a series (29) in the definition of Gramian. Therefore,
sub-Gramians exist.

Suppose, further, that the matrix A is stable and controllability sub-Gramians (32)
and (33) exist. Then the following properties are satisfied.
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Property 2. The sum over all sub-Gramians is Gramian (29)

PC =
n

∑
i=1

P̃C
i =

n

∑
i,j=1

PC
ij , P̃C

i =
n

∑
j=1

PC
ij . (34)

Proof. This is verified by the direct summation of expressions (32) and (33) considering
the uniform convergence of the series and integrals and the property of residue matrices
∑i Ri = I.

Property 3 (Consistency with linear theory). The sub-Gramians P̃(1)
i and P(1)

ij in (32) and (33)
are the controllability sub-Gramians of the linear part of system (21) in accordance with the
definitions (17) of Section 2.3.

Property 4. Controllability sub-Gramians of the bilinear system in (32) and (33) satisfy the
corresponding generalized modal Lyapunov equations

AP̃C
i + P̃C

i AT +
m

∑
γ=1

Nγ P̃C
i NT

γ = −1
2

(
RiBBT + BBT R∗i

)
, (35)

APC
ij + PC

ij AT +
m

∑
γ=1

NγPC
ij NT

γ = −1
2

(
RiBBT R∗j + RjBBT R∗i

)
. (36)

Proof. We can directly verify that when A is stable, the terms P̃(k)
i in (32) can be obtained

from the following Lyapunov equations:

AP̃(1)
i + P̃(1)

i AT +
1
2

(
RiBBT + BBT R∗i

)
= 0 ,

AP̃(k)
i + P̃(k)

i AT +
m

∑
γ=1

Nγ P̃(k−1)
i NT

γ = 0 , k = 2, 3, · · ·

We sum the first K equations. Because we assumed that sub-Gramians exist, that
is, the series in (32) and (33) converge, then, the series ∑K

k=1 P̃(k)
i converges uniformly as

K → ∞. Taking the limit K → ∞, we obtain (35). Similarly, we obtain (36).

Corollary 2. If Equation (30) has a unique solution and the sub-Gramians P̃C
i and PC

ij exist, then
they are defined as unique solutions to (35) and (36).

Proof. According to Property 4, sub-Gramians must satisfy (35) and (36). If (30) has a
unique solution, then the operator on the left-hand side of (30) is non-singular. Therefore
the sub-Gramians P̃C

i and PC
ij are defined uniquely by (35) and (36) for any matrix on the

right-hand side.

Choose the input control satisfying the conditions u(t) = 0, t < 0 and
∫ ∞

0 |u(t)|
2dt =

M2 < 1. Consider the set of vector functions

Ωu = { f (t) : f (t) =
∞

∑
k=0

Fk f (1)(t), f (1)(t) =
∫ ∞

0
G1(τ)B f u(t− τ)dτ} ,

where operator F is defined in (25), G1(τ) = eAτ as in (29), and B f is a matrix of appropriate
dimensions. Then for any x, y ∈ Ωu we define the scalar product as

(x, y)Ω =
∞

∑
k=1

M2k · Trace
(∫ ∞

0
· · ·

∫ ∞

0
GkBxB∗y GT

k dτ1 · · · dτk

)
, (37)
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where Gk are defined as in (29). This definition satisfies the axioms of linearity, commuta-
tivity and positive definiteness. Then, the following analog of Proposition 7 holds for the
sub-Gramians of the bilinear system.

Property 5. Suppose that in the bilinear system (21), the initial state is x(0) = 0, and the control
satisfies the condition u(t) = 0, t < 0. Then, for a sufficiently small control

∫ ∞
0 |u(t)|

2dt = M2 < 1,
the trace of controllability sub-Gramian P̃C

i estimates from above the value of the dot product (37) of
a solution vector x(t) with generalized mode xi(t) in (28), and the trace of pairwise sub-Gramian
PC

ij estimates from above the value of the dot product of a generalized mode xi(t) with generalized
mode xj(t)

|(x, xj)Ω| ≤ |Trace P̃C
i | ,

|(xi, xj)Ω| ≤ |Trace PC
ij | . (38)

The observability Gramian and observability sub-Gramian of system (21) are defined in
a similar manner. Properties similar to Properties 1–5 are satisfied for them. Gramian of
observability is defined as

PO =
∞

∑
k=1

P(k) =
∞

∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
QT

k CTCQkdτ1 · · · dτk , where

Q1 = eAτ1 , Qk(τ1 · · · τk) =
[

NT
1 QT

k−1, · · · , NT
mQT

k−1

]T
eAτk , k = 2, 3, · · · (39)

Definition 5. Observability sub-Gramians and pairwise sub-Gramians of the bilinear sys-
tem (21) are, respectively, the matrices

P̃O
i =

∞

∑
k=1

P̃(k)
i =

1
2

∞

∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
QT

k (R∗i CTC + CTCRi)Qk dτ1 · · · dτk , (40)

PO
ij =

∞

∑
k=1

P(k)
ij =

1
2

∞

∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
QT

k (R∗i CTCRj + R∗j CTCRi)Qk dτ1 · · · dτk . (41)

The observability sub-Gramians satisfy the following modal Lyapunov equations:

AT P̃O
i + P̃O

i A +
m

∑
γ=1

NT
γ P̃O

i Nγ = −1
2

(
R∗i CTC + CTCRi

)
,

AT PO
ij + PO

ij A +
m

∑
γ=1

NT
γ PO

ij Nγ = −1
2

(
R∗i CTCRj + R∗j CTCRi

)
.

4. Iterative Algorithms for Computing Gramians and Sub-Gramians

In this section, we propose iterative algorithms for computing the Gramians and
sub-Gramians for bilinear control systems based on the element-wise computation of the
solution matrix on an eigenvector basis. Similar formulas for linear systems were proposed
in [24]. Based on the proposed iterative procedure, we introduce a new criterion for the
existence of solutions to generalized Lyapunov equations, which in some cases allows us
to expand the region of guaranteed existence of solutions in comparison with the estimate
of Theorem 2. The proposed criterion, however, uses more detailed information on the
coefficients of matrices Nγ and eigenvalues of matrix A.

4.1. Algorithm for the Element-Wise Computation of Gramian in the Eigenvector Basis

Assume that the matrix A in (21) has a simple spectrum σ(A) = {λ1, λ2, · · · , λn} and
the following eigenvalue decomposition

A = UΛV, UV = VU = I, (42)
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where Λ = diag{λ1, λ2, · · · , λn}. The columns of matrix U are composed of the normal-
ized right eigenvectors of matrix A, and the rows of matrix V are the normalized left
eigenvectors. Then, the Lyapunov Equation (30) in the eigenbasis takes the form

ΛP̃C + P̃CΛ∗ +
m

∑
γ=1

Ñγ P̃C ÑT
γ = −Q̃ , (43)

where P̃C = VPCV∗, Q̃ = VBBTV∗, Ñγ = VNγU, and (·)∗ denotes the Hermitian conjuga-
tion. The iterative procedure (31) for solving Equation (43) in the eigenbasis of matrix A
takes the form

ΛP̃(1) + P̃(1)Λ∗ = −Q̃ ,

ΛP̃(k) + P̃(k)Λ∗ = −
m

∑
γ=1

Ñγ P̃(k)Ñ∗γ, k = 2, 3, · · · , (44)

P̃C =
∞

∑
k=1

P̃(k) , PC = UP̃CU∗ ,

where P̃(k) = VP(k)V∗. Let (νγ
i )

T = eT
i Ñγ be the i-th raw matrix Ñγ, where ei is the i-th

column of the unit matrix. Then, (44) can be written in terms of the matrix components as(
P̃(1)

)
ij
=

−1
λi + λ∗j

(
Q̃
)

ij ,

∀k > 1 :
(

P̃(k)
)

ij
= −

m

∑
γ=1

−ν
γ
i P̃(k−1)

(
ν

γ
j

)T

λi + λ∗j
, PC = U

(
∞

∑
k=1

P̃(k)

)
U∗ , (45)

4.2. Novel Criterion for the Existence of Gramians

The iterative procedure (45) assumes an appropriate criterion for the existence of Gramian
PC, which is based on the convergence of its elements in an iterative process.

Theorem 4. The controllability Gramian PC in (29) exists if (i) the matrix A is stable, and (ii) the
inequality holds

√
∑
i,j

q2
ij < 1, qij =

m

∑
γ=1

|νγ
i | · |ν

γ
j |

|λi + λ∗j |
, i, j = 1, · · · , n , (46)

where the vectors ν
γ
i = U∗NT

γ V∗ei, the matrices V, U are defined in (42), and λi, λj are the
eigenvalues of the matrix A. Under the above conditions, the Gramian PC can be obtained using an
iterative algorithm (45).

Proof. For the proof, we use the Frobenius norm || · ||F. From expressions (45), it fol-
lows that ∣∣∣∣νγ

i P̃(k−1)
(

ν
γ
j

)T
∣∣∣∣ ≤ |νγ

i | · |ν
γ
j | · ||P̃

(k−1)||F ,∣∣∣∣(P̃(k)
)

ij

∣∣∣∣ ≤ qij||P̃(k−1)||F , ||P̃(k)||F ≤
√

∑
i,j

q2
ij · ||P̃

(k−1)||F

Thus, under (46), the series ∑∞
k=1 P̃(k) in (44) is bounded from above by a converging

geometric progression, and therefore converges. Adding the K equations in (44) and
taking the limit K → ∞, we obtain a solution to the generalized Lyapunov equation in the
eigenvector basis (43). If the series ∑∞

k=1 P̃(k) converges in the iterative procedure (44) on an
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eigenbasis, then the corresponding series ∑∞
k=1 P(k) converges in procedure (31). According

to [6] (Proposition 1), if the matrix A is stable, then the terms of the series defining the
Gramian PC in (29) are calculated using terms P(k) obtained in the iterative procedure (31),
that is, PC = ∑∞

k=1 P(k). Hence, the Gramian PC exists.

The conditions for the existence of a solution in the Lyapunov Equation (30), estab-
lished in Theorem 2 [6], are based on the characteristics of the matrices as a whole, whereas
Theorem 4 uses the convergence criterion, which is based on more detailed information
about the coefficients of the matrices Nγ and the eigenvalues of the matrix A. Therefore,
we can expect that the criterion of Theorem 4 will allow, in general, to expand the domain
of guaranteed existence of a solution in comparison with the criterion of Theorem 2. Let us
compare them using an illustrative example.

Example 1. Consider the following generalized Lyapunov equation with parameter ε:(
−1 0
0 −2

)
· P + P ·

(
−1 0
0 −2

)
+ ε2

(
1 1
0 1

)
· P ·

(
1 0
1 1

)
=

(
−3 −3
−3 −3

)
(47)

In the notation of Theorem 2, we have

α = β = 1, NNT = ε2
(

2 1
1 1

)
, (NNT)2 = ε4

(
5 3
3 2

)
,

||NNT ||F =
√

trace((NNT)2) = ε2
√

7 .

The condition for the existence of a solution to Equation (47) established by Theorem 2 takes
the form

||NNT || < 2α/β2, ε2 < 2/
√

7 ≈ 0.756 .

In the notation of Theorem 4, we have

λ1 = −1, λ2 = −2, |ν1| =
√

2, |ν2| = 1, (q)ij = ε2
(

1
√

2/3√
2/3 1/4

)
.

The condition for the existence of a solution to Equation (47) established by Theorem 4 takes
the form √

∑
i,j

q2
ij = ε2

√
217/144 < 1, ε2 < 12/

√
217 ≈ 0.815 .

In this example, the criterion of Theorem 4 allows us to expand the domain of guaranteed
existence of solutions (47) in comparison with the criterion of Theorem 2. However, the application
of this criterion requires more detailed information about the system.

We calculate the solution to Equation (47) using the iterative algorithm (45) for ε = 0.5.
In this case, we obtain

P̃(1) =

(
1.5 1
1 0.75

)
, P̃(2) =

(
0.5312 0.1458
0.1458 0.04687

)
,

P̃(3) =

(
0.1089 0.01614

0.01614 0.002930

)
, P̃(4) =

(
0.01599 0.001589

0.001589 0.0001831

)
,

P̃ ≈
4

∑
k=1

P̃(k) =

(
2.15609 1.1635
1.1635 0.79998

)
. (48)

The criterion of Theorem 2 guarantees convergence with the common ratio of geomet-
ric progression q = ε2

√
7/2 ≈ 0.3307, and the relative accuracy of the solution (48) after

four iterations is not worse than q4/(1− q) ≈ 0.0179, that is, 1.79%.
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The criterion of Theorem 4 guarantees convergence with the common ratio of geomet-
ric progression q = ε2

√
217/144 ≈ 0.3069 and the relative accuracy of solution (48) after

four iterations is not worse than q4/(1− q) ≈ 0.0128, that is, 1.28%.
In this case, the exact solution to (47) and the actual error after four iterations are

as follows:

P =

(
832/385 64/55

64/55 4/5

)
, P− P̃ =

(
−0.0049 −0.00014
−0.00014 0.00002

)
, ||P− P̃||F = 0.0049

that is, for ||P||F = 2.83, the relative accuracy of the solution (48) is 0.17%.

4.3. Iterative Algorithm for Computing Sub-Gramians

Modal Lyapunov Equations (35) and (36) for the controllability sub-Gramians differ
from Equation (30) for the Gramian PC only on the right-hand side. Therefore, to apply the
iterative procedure (45) to compute the sub-Gramians P̃C

i and PC
ij , the matrix Q̃ = VBBTV∗

in the first Equation (45) must be replaced with matrices

Q̃i =
1
2

V(RiBBT + BBT R∗i )V
∗ and Qij =

1
2

V(RiBBT R∗j + RjBBT R∗i )V
∗,

respectively. The elements of these matrices in the eigenvector basis are calculated as

(Q̃i)pr =
1
2
(δip + δir)(Q̃)pr and, (Q̃ij)pr =

1
2
(δipδjr + δjpδir)(Q̃)pr ,

where δls is the Kronecker delta. Substituting these expressions into the iterative proce-
dure (45) instead of (Q̃)pr , we obtain the following iterative procedure for computation of
sub-Gramians P̃C

i in (35) (
P̃(1)

i

)
pr

= −1
2
· 1

λp + λ∗r
(δip + δir)

(
Q̃
)

pr ,

∀k > 1 :
(

P̃(k)
i

)
pr

=
m

∑
γ=1

−ν
γ
p P̃(k−1)

i
(
ν

γ
r
)T

λp + λ∗r
, (49)

P̃C
i = U

(
∞

∑
k=1

P̃(k)
i

)
U∗,

and an iterative procedure for computation of pairwise sub-Gramians PC
ij in (36)

(
P̃(1)

ij

)
pr

= −1
2
· 1

λp + λ∗r
(δipδjr + δjpδir)

(
Q̃
)

pr ,

∀k > 1 :
(

P̃(k)
ij

)
pr

=
m

∑
γ=1

−ν
γ
p P̃(k−1)

ij
(
ν

γ
r
)T

λp + λ∗r
, (50)

PC
ij = U

(
∞

∑
k=1

P̃(k)
i

)
U∗ .

Sufficient conditions for the applicability of iterative procedures (49) and (50) are the
same as those for the iterative procedure (44) established in Theorem 2 or in Theorem 4.

Example 2. To illustrate the definition of sub-Gramians and algorithms for their computation, we
calculate the controllability sub-Gramians for Equation (47) with ε = 1/2. As was established
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in Example 1, the Gramian P exists, and according to Property 1, all sub-Gramians also exist.
According to Property 2, the Gramian is split into sub-Gramians in the form

P = P1 + P2 =

(
144/77 6/11
6/11 0

)
+

(
112/385 34/55
34/55 4/5

)
=

(
832/385 64/55
64/55 4/5

)
P = P11 + P12 + P21 + P22 =

(
12/7 0

0 0

)
+(

12/77 6/11
6/11 0

)
+

(
12/77 6/11
6/11 0

)
+

(
52/385 4/55
4/55 4/5

)
.

Moreover, the sub-Gramians themselves, according to Property 4, can be calculated from the
corresponding modal Lyapunov Equations (35) and (36), respectively.

Example 3. For completeness, we present an example of using sub-Gramians to analyze a bilinear
model of an electric power system from [20]. As a test bilinear model, the 17th-order model from [5]
was used for two interconnected power systems, each area having one steam and one hydro unit.
In a test experiment, the contribution of generalized eigenmodes (28) and their pair interactions to
the small-signal perturbation energy of the system was estimated based on the coefficient α, which
characterized the magnitude of all bilinear terms. To illustrate the process of selecting eigenmodes
that are sensitive to bilinear effects, as well as the selection of areas of linear and bilinear behavior of
the system, consider Figure 1. One can see the Frobenius norm of sub-Gramians P̃i for generalized
eigenmodes as a function of the weighting coefficient α. The behavior of the spectral components
indicates the range of applicability of the linear model in general and reveals particular eigenmodes
that are sensitive to bilinear effects. The arrowhead in Figure 1 indicates the threshold between
the linear and bilinear behavior of the system at α ≈ 4.17. This threshold can be defined from the
condition that the difference between the norms of “linear” and full sub-Gramians corresponding
to some eigenmode reaches a certain percentage. In this case, we can see in Figure 1 that the most
sensitive to bilinear effects are the S15 and S14 modes. At α ≈ 4.17 the norm of their sub-Gramians
has increased by 17% and 15%, respectively. The modes S1 and S4/S5 are also sensitive to bilinear
effects. The norms of their sub-Gramians have increased by 6.6% and 4.6%, respectively. Other
modes are less sensitive, and can be considered in the linear approximation, as long as the norms
of their sub-Gramians remain less than the chosen threshold value. The threshold, after which the
non-linear behavior of the eigenmode must be considered, can be determined individually for each
mode. This information can be used for small-signal or transient stability analyses. A detailed
description of the model, test experiment, and its results can be found in [5,20].

Figure 1. The Frobenius norm of sub-Gramians P̃i for generalized eigenmodes as a function of the
weighting coefficient α in the test experiment in [20].
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5. Discussion

In this study, we show that (i) the solution of a bilinear system can be split uniquely into
generalized modes corresponding to the eigenvalues of the dynamics matrix, and (ii) the
controllability and observability Gramians can be split into “sub-Gramians” that charac-
terize the magnitude of these generalized modes and their pairwise interactions. This
characterization, however, was proven only for small enough input control. A similar
condition arises when establishing the relationship between the Gramians and the energy
of states in the system in [16] and, apparently, it is typical for bilinear systems.

In contrast to the spectral expansions of the instantaneous dynamics of a bilinear
system in [11–13], the spectral expansions of the L2-norms of states and signals considered
in this paper can be useful for analyzing the non-linear effects associated with the accumu-
lation of the influence of disturbances over time. Therefore, the practical significance of the
obtained results is that they allow the characterization of the contribution of generalized
modes or their pairwise combinations to the asymptotic dynamics of the integrated pertur-
bation energy in bilinear systems. In particular, the norm of the obtained sub-Gramians
increases when the frequencies of the corresponding oscillating modes approximate each
other. Thus, the proposed decompositions may provide a new fundamental approach for
quantifying resonant modal interactions in bilinear systems.

When the bilinear effects decrease, the proposed expansions allow a smooth transition
to the linear case (see Property 3). This property can be useful in determining the range of
applicability of a linear model and identifying generalized eigenmodes that are sensitive to
bilinear effects and require “non-linear refinement” of their dynamics. It can be expected
that in some large systems, there will be only a few such modes. Therefore, a non-linear
examination of their dynamics will not take much time when real-time state estimation is
required. The first test experiment with a bilinear model of an electric power system in [20]
showed that the proposed spectral decompositions allow one to determine the range of
applicability of linear model in general and to reveal particular generalized eigenmodes
that sensitive to bilinear effects.

Although this study focuses on continuous bilinear systems, the results obtained can
be extended to different classes of systems. First, they can be extended to discrete dynamical
systems. In the linear case, this was partially performed in [18]. Meanwhile, the generalized
Lyapunov equations that we consider for deterministic bilinear systems can be naturally
associated with stochastic linear control systems (see [8]). Therefore, the results of spectral
decomposition of Gramians can immediately be carried over to this class of systems.
In this case, the results must be interpreted in terms of probabilities. Finally, the equations
considered in this study can describe a special class of linear parameter-varying systems
that can be reformulated as bilinear dynamical systems [9]. In this case, the interpretation
of the spectral decompositions must include the effect of parameter variation.

It should be noted that the main object of research in this study is matrix Lyapunov
equations, that is, matrix equations. An alternative approach is to apply the apparatus of
linear matrix inequalities and semi-definite programming [25]. Therefore, another possible
area of research is the combination of these approaches. In terms of applications, the authors
plan to apply the developed methods to study the stability of electric power systems using
linear and non-linear graph models. Another emerging area is the analysis of the stability
of neural networks, including the use of Lyapunov functions [26,27]. The dissipativity
principle in the synchronization of neural networks is very similar to the synchronization
of generators in power systems. Therefore, the application of the developed methods
to the problem of synchronization of neural networks is another possible direction for
future research.

Author Contributions: A.I. and I.Y. contributed equally on the development of the theory and their
respective analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 19-19-00673.

Institutional Review Board Statement: Not applicable.



Mathematics 2021, 9, 3288 19 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Häger, U.; Rehtanz, C.; Voropai, N.I. Monitoring, Control and Protection of Interconnected Power Systems; Springer: New York, NY,

USA, 2014; 391p.
2. D’Alessandro, P.; Isidori, A.; Ruberti, A. Realization and structure theory of bilinear dynamic systems. SIAM J. Control. 1974,

12, 517–535.
3. Pupkov, K.A.; Kapalin, V.I.; Yushchenko, A.S. Functional Series in the Theory of Nonlinear Systems; Nauka: Moscow, Russia, 1976;

448p. (In Russian)
4. Flagg, G.M.; Gugercin, S. Multipoint Volterra Series Interpolation and H2 Optimal Model Reduction of Bilinear Systems. SIAM J.

Matrix Anal. Appl. 2015, 36, 549–579.
5. Al-Baiyat, S.; Farag, A.S.; Bettayeb, M. Transient approximation of a bilinear two-area interconnected power system. Electr. Power

Syst. Res. 1993, 26, 11–19.
6. Zhang, L.; Lam, J. On the H2 model reduction of bilinear systems. Automatica 2002, 38, 205–216.
7. Antoulas, A.C. Approximation of Large-Scale Dynamical Systems: Advances in Design and Control; SIAM: Philadephia, PA, USA, 2005;

479p.
8. Benner, P.; Breiten, T. Interpolation-based H2-model reduction of bilinear control systems. SIAM J. Matrix Anal. Appl. 2012,

33, 859–881.
9. Benner, P.; Cao, X.; Schilders, W. A bilinear H2 model order reduction approach to bilinear parameter-varying systems. Adv.

Comput. Math. 2019, 45, 2241–2271.
10. Gibbard, M.J.; Pourbeik, P.; Vowles, D.J. Small-Signal Stability, Control and Dynamic Performance of Power Systems; University of

Adelaide Press: Adelaide, Australia, 2015.
11. Jang, G.; Vittal, V.; Kliemann, W. Effect of nonlinear modal interaction on control performance: Use of normal forms technique in

control design, Part 1: General theory and procedure. IEEE Trans. Power Syst. 1998, 13, 401–407.
12. Pariz, N.; Shanechi, H.M.; Vaahedi, E. Explaining and validating stressed power systems behavior using modal series. IEEE Trans.

Power Syst. 2003, 18, 778–785.
13. Arroyo, J.; Betancourt, R.; Messina, A.R.; Barocio, E.D. Development of bilinear power system representations for small-signal

stability analysis. Electr. Power Syst. Res. 2007, 77, 1239–1248.
14. Ugwuanyi, N.S.; Kestelyn, X.; Thomas, O.; Marinescu, B.; Messina, A.R. New Fast Track to Nonlinear Modal Analysis of Power

System Using Normal Form. IEEE Trans. Power Syst. 2020, 35, 3247–3257.
15. Hamzi, B.; Abed, E.H. Local modal participation analysis of nonlinear systems using Poincaré linearization. Nonlinear Dyn. 2020,

99, 803–811.
16. Benner, P.; Damm, T. Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems.

SIAM J. Control. Optim. 2011, 49, 686–711.
17. Yadykin, I.B.; Iskakov, A.B.; Akhmetzyanov, A.V. Stability analysis of large-scale dynamical systems by sub-Gramian approach.

Int. J. Robust. Nonlin. Control 2014, 24, 1361–1379.
18. Yadykin, I.B.; Iskakov, A.B. Spectral Decompositions for the Solutions of Sylvester, Lyapunov, and Krein Equations. Dokl. Math.

2017, 95, 103–107.
19. Yadykin, I.B.; Iskakov, A.B. Spectral decompositions for the solutions of Lyapunov equations for bilinear dynamical systems.

Dokl. Math. 2019, 100, 501–504.
20. Iskakov, A.B.; Yadykin, I.B. Analysis of a bilinear model of an electric power system using spectral decompositions of Lyapunov

functions. IFAC-PapersOnLine 2020, 53, 13514–13519.
21. Garofalo, F.; Iannelli, L.; Vasca, F. Participation Factors and their Connections to Residues and Relative Gain Array. IFAC Proc. Vol.

2002, 35, 125–130.
22. Bruni, C.; Dipillo, G.; Koch, G. On the mathematical models of bilinear systems. Ric. Di Autom. 1971, 2, 11–26.
23. Siu, T.; Schetzen, M. Convergence of Volterra series representation and BIBO stability of bilinear systems. Int. J. Syst. Sci. 1991,

22, 2679–2684.
24. Yadykin, I.; Galyaev A. On the methods for calculation of Gramians and their use in analysis of linear dynamic systems. Autom.

Remote Control 2013, 74, 207–224.
25. Khlebnikov, M.V. Quadratic Stabilization of Bilinear Control Systems. Autom. Remote Control 2016, 77, 980–991.
26. Vadivel, R.; Hammachukiattikul, P.; Gunasekaran, N.; Saravanakumar, R.; Dutta, H. Strict dissipativity synchronization for

delayed static neural networks: An event-triggered scheme. Chaos Solitons Fractals 2021, 150, 111212.
27. Gunasekaran, N.; Thoiyab, N.M.; Zhu, Q.; Cao, J.; Muruganantham, P. New Global Asymptotic Robust Stability of Dynamical

Delayed Neural Networks via Intervalized Interconnection Matrices. IEEE Trans. Cybern. 2021, doi:10.1109/TCYB.2021.3079423.


	Introduction
	Spectral Expansions of Gramians of Linear Systems
	Eigenmode Decompositions of the Dynamics of a Linear System
	Modal Observability and Controllability of a Linear System
	Spectral Decompositions of Gramians of a Linear System

	Spectral Decompositions of Gramians of a Bilinear Control System
	Partitioning the Solution into Generalized Modes of the Matrix A
	Spectral Decompositions of Gramians

	Iterative Algorithms for Computing Gramians and Sub-Gramians
	Algorithm for the Element-Wise Computation of Gramian in the Eigenvector Basis
	Novel Criterion for the Existence of Gramians
	Iterative Algorithm for Computing Sub-Gramians

	Discussion
	References

