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Abstract: COVID-19 is a disease occurring as a result of infection by a novel coronavirus called
SARS-CoV-2. Since the WHO announced COVID-19 as a global pandemic, mathematical works
have taken place to simulate infection scenarios at different scales even though the majority of these
models only consider the temporal dynamics of SARS-COV-2. In this paper, we present a new
spatio-temporal within-host mathematical model of COVID-19, accounting for the coupled dynamics
of healthy cells, infected cells, SARS-CoV-2 molecules, chemokine concentration, effector T cells,
regulatory T cells, B-lymphocytes cells and antibodies. We develop a computational framework
involving discretisation schemes for diffusion and chemotaxis terms using central differences and
midpoint approximations within two dimensional space combined with a predict–evaluate–correct
mode for time marching. Then, we numerically investigate the model performance using a list of
values simulating the baseline scenario for viral infection at a cellular scale. Moreover, we explore
the model sensitivity via applying certain conditions to observe the model validity in a comparison
with clinical outcomes collected from recent studies. In this computational investigation, we have a
numerical range of 104 to 108 for the viral load peak, which is equivalent to what has been obtained
from throat swab samples for many patients.

Keywords: COVID-19; SARS-CoV-2; nCoV-19; immune response; spatio-temporal mathematical
modeling; within-host mathematical modeling

1. Introduction

In December 2019, the coronavirus disease 2019 (COVID-19) was first identified in
Wuhan and rapidly invaded the whole of China and the world [1]. This disease was
officially named COVID-19 by the World Health Organization (WHO) on 11 January 2020;
then it was announced as a global health emergency on 11 March 2020 [2,3]. Since then,
many studies have been done to investigate this global pandemic. As a part of these efforts,
we here aim to develop a mathematical model to describe and simulate the interactions
between SARS-CoV-2 molecules and the immune system within a two dimensional cellular
space. In the following, we present a brief overview of SARS-CoV-2 in terms of its spreading
properties, viral replication and mechanism of infection.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that
has a genetic similarity to SARS-CoV, which is responsible for SARS disease, while the new
virus (SARS-CoV-2) causes coronavirus disease 19 (COVID-19) [4]. Both SARS-CoV and
SARS-CoV-2 have a common link in terms of mechanism of infection where both of them
use the spike proteins (S-protein) to bind Angiotensin-converting enzyme 2 (ACE2), which
in turn helps them to reach and attack the cells [4]. Despite this similarity, it has been found
that SARS-CoV-2 binds to ACE2 slower than the old virus (SARS-CoV) where this slow
binding causes a longer incubation period. Hence, this time delay of onset symptoms of
COVID-19 leads to a faster spread of the pandemic around the world [3].

Although there is a lack of enough experimental studies about immune responses
for people who have symptomatic/asymptomatic COVID-19 infections, there are some
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studies which investigate the interactions between the virus and many components of
the immune system including the innate and the adaptive immune responses [5–7]. Once
coronavirus-2 gains access inside the host cell using its spike protein (S) and the target
cell receptor (ACE2) (in the same manner as SARS-CoV), it begins uncovering its genetic
materials and producing some essential proteins such as envelope (E), nucleocapsid (N)
and also spike (S) for motivating the interactions with target cells as well as assembling
and releasing a new virus generation [8,9]. The ability of viral replication drives to having
a local inflammatory response which motivates the immune system to recognize the virus
and start the primary line of defense, that is, the activation of neutrophils, natural killer
cells, naive T and B cells and the secretion of chemokine [10,11]. As long as the infection
persists for a certain period of time, T cells pass through many stages including their
proliferation, activation, migration, and differentiation, ultimately they come in the form
of the effector T cells involving both helper (CD4+) and cytotoxic T cells (CD8+), and
the regulatory T cells (Treg) [10]. Besides the cellular immunity, B cells play a key role
in humoral immunity, especially after their transformation into plasma B cells (via the
assistance of the armed/follicular helper T cells [10,12,13]). These types of cells have
the ability to produce antibodies specific to SARS-CoV-2, such as IgA, IgG, and IgM, in
order to neutralize the virus at the infection site [4,8,14]. Antibodies specific to SARS-
CoV-2 are mostly a very essential tool for neutralizing the virus via decreasing its binding
ability to ACE2, but we should take into account its potential threat of enhancing the
immunopathogenesis [15]. However, there is biological evidence that shows that the
antibody levels are going to be decreased over time through infection with SARS-CoV-2,
while particular components of the immune system, such as the memory T/B cells, will
maintain at a high level for almost 6 to 8 months [6].

One major obstacle that creates difficulties for dealing with SARS-CoV-2 infection is
the quick activation and migration of T cells to the site of viral replication, which in turn
leads to releasing a huge amount of inflammatory cytokines such as IL-1, IL-6, and IFN-γ.
This storm of cytokines causes the cytokine release syndrome resulting in serious damage
to vital organs such as lungs as well as causing viral sepsis [11,16]. On other hand, there
is no clue so far suggesting that the evolution of B cells over time will participate in this
pathogenesis. However, we cannot generalize this scenario because it has been found that
some of infected patients with SARS-CoV-2 who were treated in the ICU or who died have
low levels of T cells as well as B cells [7].

Over the past decades, mathematical modeling of immune responses to viral infec-
tions has developed in terms of either realizing the biological concepts or improving the
mathematical techniques to obtain better outputs [17–20]. Since the outbreak of COVID-19,
many mathematical research projects have been performed, but the majority of these math-
ematical models focus on the temporal dynamics only (ODE models) which either use the
so-called SIR-models (compartmental models) to predict the population progress between
compartments such as [21–25], or describe the within host dynamics to investigate immune
responses to SARS-CoV-2 particles within the cellular scale as proposed in [22,26,27]. How-
ever, these within host models were being built on previous studies for similar infectious
diseases such as influenza [18,28] and hepatitis B [29]. To our knowledge, we could not
find any spatio-temporal model for describing the spatial distribution of the immune
responses to SARS-CoV-2 within a two dimensional cellular space. Nevertheless, there are
a few preprint mathematical studies using PDEs to describe the spread of the population
compartments with respect to time and their physical locations at different regions which
means these mathematical approaches are still a type of the compartmental class models.
Therefore, in Section 2, we present a first attempt for deriving a new mathematical model,
which is based on a coupled system of partial differential equations to obtain a reasonable
description for the interaction between coronavirus-2 and its response to the components
of immune system.

The rest of this paper is summarized as follows. Section 3 includes model calibration
and developing a computational framework to compute the coupled reaction diffusion
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system within two spatial dimensions. Section 4 involves a comparison of our numerical
results with a few cases collected from recent clinical studies. Lastly, in Section 5 we present
a discussion on a few key points including hints at future works.

2. Modeling Framework

Building on some biological observations and mathematical models (temporal ap-
proaches) [7,8,10–13,16,22,28,30–36], we develop a new spatio-temporal mathematical
model to explore the interactions between the most essential components of the immune
system and SARS-CoV-2 particles within a cellular perspective. This dynamical interaction
occurs on a spatial domain ℵ ∈ R2 over a time interval [0, T] and it involves the healthy
host cells h(t, x), viral-infected cells i(t, x), SARS-CoV-2 molecules v(t, x), chemokines
c(t, x), the effector T cells f (t, x), the regulatory T cells r(t, x), B-lymphocytes cells β(t, x)
and antibodies α(t, x). In a similar manner to the modeling derivation method under a
continuum approach and the conservation law as detailed in [37], we assume that L is a
fixed (random) volume surrounded entirely by a smooth surface Z . Then, the appearance
or disappearance of any component within L is expressed by the flux of that component
through the boundary Z and the proliferation and/or degradation of that component. In
other words, we suppose that C represents the concentration of a component at a fixed
time t and a position x = (x, y), J denotes the net flow of a component and P stands for
the proliferation and/or the degradation of a component. Hence, we have the following
conservation equation:

d
dt

∫
L
C(x, t) dx =

∫
Z
−J (x, t) dZ +

∫
L
P dL,

where Z = ∂L. Now, using the divergence theorem, we can differentiate to get the
following conservation equation for each component of a system, namely,

∂C
∂t

= −∇ · J + P .

The above method has been used to model many biological applications such as [34,38–40].
Thus, we can denote the resulting 8D-reaction-diffusion-chemotaxis operator K by the follow-
ing expression:

K(h, i, v, c, f , r, β, α)T = 0, (1)

where the differential operator (K) of order 2 will be explained in detail in the follow-
ing context.

Host h(t, x) & Infected cells i(t, x) Following biological observations and spatio-
temporal mathematical approach that have been taken from various experimental studies
for similar infectious diseases such as [31,32], we suppose that both type of cells are exer-
cising a random motility on the spatial domain ℵ at rates Dh > 0 and Di > 0, respectively.
The density of the host cells is assumed to be produced logistically at a rate µh , while the
decay of its density comes from many reasons at a rate δ11 . At the same time, the infected
cells are produced when SARS-CoV-2 virus binds the host cells by the S protein at a rate
µi through the targeted receptor, namely, ACE2 [11]. Moreover, the density of infected
cells is decreased over time due to two main factors, namely, effector T cells f (t, x) at
a rate δ21 [10,33] and natural deaths at a rate δ22 . These assumptions can be formalised
mathematically through the following expressions:

∂h
∂t = Dh∇

2
h + µh h(1− h

h0
)− δ11 h,

∂i
∂t = Di∇

2
i + µi hv− δ21 i f − δ22 i.

(2)

SARS-CoV-2 v(t, x) As mentioned in [8], SARS-CoV-2 has the ability to motile inside
the respiratory system, therefore, we assume that coronavirus-2 diffuses randomly through
ℵ at a random motility rate Dv . Furthermore, the interactions between immune cells and
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viruses increase the secretion level of chemokines, which in turn impacts virus move-
ment [8]. Adopting this assumption, we suppose that SARS-CoV-2 migration is directed
towards a higher concentration of a chemical gradient at a rate χv . Moreover, coronaviruses
are capable of viral replication actively within throat for at least 5 days (depending on the
duration of the onset of symptoms) as detailed in the clinical studies [41,42], where this
viral replication occurs due to the existence of the gene (ORF1) [36]. Hence, we take into
account its replication within infected cells at a rate µv . However, besides the natural decay
of SARS-CoV-2 density at a rate δ32 , the antibodies (produced by B cells) play a key role in
restricting or preventing virus entry inside the host cells [10], hence SARS-CoV-2 particles
are assumed to be decreased due to antibodies increasing level at a rate δ31 . These words
can be mathematically expressed via the following equation:{

∂v
∂t = Dv∇

2
v− χv∇ · (v∇c) + µv i− δ31 αv− δ32 v. (3)

Chemokine Concentration c(t, x) Chemokines are small proteins secreted by many
cells where they have the ability to direct the surrounding cells chemotaxically towards
the source of the chemokines [43]. Besides the homeostatic function of chemokines [43],
chemokines have been found in many COVID-19 patients [8,10] for attracting immune
cells towards the inflammatory sites [8]. Thus, it is assumed to be produced proportionally
to the viral-infected cells and T cells at a rate µc , with taking into consideration its natural
decay at a rate δ41 . Moreover, we suppose that chemokines can move randomly through the
tissue at a random motility coefficient rate Dc . Therefore, we have the following equation:{

∂c
∂t = Dc∇

2
c + µc i f − δ41 c. (4)

The effector f (t, x) and the regulatory T cells r(t, x) In general, T cells are one of
the most important components of immune system un which they play a key role in the
initiation of the adaptive immune responses during the immunity cycle [10]. Regardless
of the complexity of T cells functions and multi-stage processes including naive, helper,
cytotoxic and memory T cells, it ultimately turns into the effector T cells ( f (t, x)) [10].
Additionally, we also account for the dynamics of the regulatory T cells (r(t, x)) due to its
significant role in immune homeostasis and in controlling the proliferation of effector T
cells [30]. Biological evidence shows that the efficiency of T cells depends on its motility
pattern, spatial distribution and motility major obstacles [33]. Therefore, we take into
account the random movement on the spatial domain for both T cells (effector and regula-
tory) with motility rates D f and Dr , respectively [7,34]. In addition to that, the directional
migration of T cells is assumed to be in the form of chemotaxis towards gradients of the
secreted chemokines (with the chemotaxic rates χ f , χr ) [7,8,33,34]). Building on relevant
studies [28,35], this specific study [22] proposes a model describing the proliferation form
of T cells in the context of COVID-19. Thus, we assume that the proliferation of the effector
T cells arises naturally at a rate µ f and its growth depends on the virus distribution with
taking into consideration the maximum carrying capacity k f . Furthermore, the proliferation
rate of the regulatory T cells keeps track of the production of the effector T cells at a rate
µr with a carrying capacity rate kr . However, both types of T cells are supposed to be
decreased naturally at rates δ52 and δ61 , respectively. Besides this, the regulatory T cells
regulate the immune system and also suppress the proliferation of effector T cells before
damage occurs [30]. Consequently, this interaction between the two types of T cells leads
to a decay in the overall density of the effector T cells at a rate δ51 . Hence, the evolution of
the effector and the regulatory T cells are represented by the following equations:

∂ f
∂t = D f∇

2
f − χ f∇ · ( f∇c) + µ f

v
v+k f

− δ51 r f − δ52 f ,

∂r
∂t = Dr∇

2
r− χr∇ · (r∇c) + µr

f
f+kr
− δ61 r.

(5)
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B-lymphocytes cells β(t, x) & Antibodies α(t, x) During the early stages of infection
with the SARS-CoV-2 virus, T cells (armed/follicular helper T cells) and their released cy-
tokines during activation play an important role in the activation process of B cells [12,13,16]
including the early responses of B cells against the N protein [8]. Therefore, we suppose
that the production level of T cells increases the activation level of B cells at a rate µ

β̃
.

Moreover, the proliferation of B cells is caused via virus growth tracking at a rate µ
β

with a
maximum carrying capacity k

β
. Meanwhile, its density decay is naturally occurring at a

rate δ71 . Furthermore, we account for the produced antibodies by B cells at a rate µα [7,10].
However, the density of antibodies is assumed to be degraded due to inhibition induced
via binding with SARS-CoV-2 as well as by natural reasons at a rate δ81 [7,10]. Both B
cells and antibodies are assumed to exercise a random motility on the spatial domain at
diffusion coefficients D

β
and Dα , respectively. We also take into account the chemotaxis

directional movement of B cells towards inflammatory concentration [8,10] at a rate χ
β
.

The above assumptions are formalised mathematically by the following equations:
∂β
∂t = D

β
∇2

β− χ
β
∇ · (β∇c) + µ

β
v

v+k
β
+ µ

β̃
f − δ71 β,

∂α
∂t = Dα∇

2
α + µα β− δ81 α.

(6)

Considering the above modeling hypotheses, the full model is written as follows:

∂h
∂t = Dh∇

2
h + µh h(1− h

h0
)− δ11 h,

∂i
∂t = Di∇

2
i + µi hv− δ21 i f − δ22 i,

∂v
∂t = Dv∇

2
v− χv∇ · (v∇c) + µv i− δ31 αv− δ32 v,

∂c
∂t = Dc∇

2
c + µc i f − δ41 c,

∂ f
∂t = D f∇

2
f − χ f∇ · ( f∇c) + µ f

v
v+k f

− δ51 r f − δ52 f ,

∂r
∂t = Dr∇

2
r− χr∇ · (r∇c) + µr

f
f+kr
− δ61 r,

∂β
∂t = D

β
∇2

β− χ
β
∇ · (β∇c) + µ

β
v

v+k
β
+ µ

β̃
f − δ71 β,

∂α
∂t = Dα∇

2
α + µα β− δ81 α.

(7)

Each of the above coupled dynamics are followed by initial and boundary conditions
which will be given in detail in Section 3.2.

3. Model Calibration and Computational Approach

In this section, we aim to prepare our dynamical system to be solved numerically and
to provide a realistic simulation in the hope that it will coincide with a range of clinical
findings. To this done, we first rewrite model (7) in a dimensionless form, then we select
the initial seeds for system components involving shapes and quantities. Then, we calibrate
the model and develop a numerical scheme to represent a scenario for immune responses
to SARS-CoV-2 infection based on experimental data.

3.1. Non-Dimensionalization

To explore the performance of our proposed spatio-temporal model (7), we begin
with non-dimensionalising the system in order to remove the physical dimensions of
the variables to solve the system numerically. To that end, we rescale the space variable
x := (x, y) to be related to the length of the considered region, namely, L = 0.1 cm in par-
allel with rescaling time with a reasonable scaling parameter τ = L2

D where D = 10−6 cm2

s
is the spatial chemical diffusion rate as referenced in [44]. Based on that, we have
τ = 104 s which is equivalent to about 2.78 h. Now, we rewrite the dependent variables
as follows: h̄(t̄, x̄, ȳ) = h(t,x,y)

h0
, ī(t̄, x̄, ȳ) = i(t,x,y)

i0
, v̄(t̄, x̄, ȳ) = v(t,x,y)

v0
, c̄(t̄, x̄, ȳ) = c(t,x,y)

c0
,
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f̄ (t̄, x̄, ȳ) = f (t,x,y)
f0

, r̄(t̄, x̄, ȳ) = r(t,x,y)
r0

, β̄(t̄, x̄, ȳ) = β(t,x,y)
β0

and ᾱ(t̄, x̄, ȳ) = α(t,x,y)
α0

where

t̄ = t
τ , x̄ = x

L , ȳ = y
L , while h0 , i0 , v0 , c0 , f0 , r0 , β0 and α0 are proper fixed parameters. Further-

more, for the remaining variables, we select the following key parameters: D̄h =
Dh τ

L2 =
Dh
D ,

µ̄h = µh τ, δ̄11 = δ11 τ, D̄i =
Di τ

L2 =
Di
D , µ̄i =

µi τh0v0
i0

, δ̄21 = δ21 τ f0 , δ̄22 = δ22 τ, D̄v = Dv τ
L2 = Dv

D ,

χ̄v =
χv c0 τ

L2 , µ̄v =
µv τi0

v0
, δ̄31 = δ31 τα0 , δ̄32 = δ32 τ, D̄c = Dc τ

L2 = Dc
D , µ̄c =

µc τi0 f0
c0

, δ̄41 = δ41 τ,

D̄ f =
D f τ

L2 =
D f
D , χ̄ f =

χ f c0 τ

L2 , µ̄ f =
µ f τ

f0
, k̄ f =

k f
v0

, δ̄51 = δ51 τr0 , δ̄52 = δ52 τ, D̄r =
Dr τ
L2 = Dr

D ,

χ̄r =
χr c0 τ

L2 , µ̄r =
µr τ
r0

, k̄r =
kr
f0

, δ̄61 = δ61 τ, D̄
β
=

D
β

τ

L2 =
D

β

D , χ̄
β
=

χ
β

c0 τ

L2 , µ̄
β
=

µ
β

τ

β0
, k̄

β
=

k
β

v0
,

µ̄
β̃
=

µ
β̃

τ f0

β0
, δ̄71 = δ71 τ, D̄α = Dα τ

L2 = Dα
D , µ̄α =

µα τβ0
α0

, δ̄81 = δ81 τ. Subsequently, we substi-
tute the above rescaled variables into the coupled reaction diffusion system (7) to obtain
the following dimensionless version with removing the over-lines for easier readability:

∂h
∂t = Dh∇

2
h + µh h(1− h)− δ11 h,

∂i
∂t = Di∇

2
i + µi hv− δ21 i f − δ22 i,

∂v
∂t = Dv∇

2
v− χv∇ · (v∇c) + µv i− δ31 αv− δ32 v,

∂c
∂t = Dc∇

2
c + µc i f − δ41 c,

∂ f
∂t = D f∇

2
f − χ f∇ · ( f∇c) + µ f

v
v+k f

− δ51 r f − δ52 f ,

∂r
∂t = Dr∇

2
r− χr∇ · (r∇c) + µr

f
f+kr
− δ61 r,

∂β
∂t = D

β
∇2

β− χ
β
∇ · (β∇c) + µ

β
v

v+k
β
+ µ

β̃
f − δ71 β,

∂α
∂t = Dα∇

2
α + µα β− δ81 α.

(8)

Thus, the above form of system is used during the computation procedures with
taking into consideration the key parameters for conversion purposes.

3.2. Initial and Boundary Conditions

The initial spatial distribution of the host cells is supposed to be localised natu-
rally everywhere (heterogeneous) in the computational domain ℵ = [0, 2] × [0, 2] (see
Figure 1a), namely:

h(0, x) =
3
4
+

sin(5π‖x‖
2
) + sin(5π‖(1, 0)− x‖

2
)

8
, x ∈ ℵ.

Regarding the initial spatial distribution of SARS-CoV-2 particles, we assume initially
the presence of the virus takes place within ℵ at multiple sites near by high concentrations
of the initial spatial distribution of target cells as shown in Figure 1b, that is:

v(0, x) = ∑
i,j∈{0,±0.2,±0.4}

kc

(
exp(−kw

‖x− (1 + i, 1 + j)‖2
2√

∆x∆y
)

)
ϕ(x), x ∈ ℵ,

where ϕ(x) is a smooth function used to approximate values to zero outside the ball
B((1 + i, 1 + j), 0.25), while kc and kw are positive parameters used to control the amount
of viral concentration and viral spatial distribution width in the maximal reference region.
Moreover, since we suppose at t = 0 no pre-existing infected cells, chemokines, the
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effector T cells, the regulatory T cells, B cells and antibodies, hence we have the following
initial conditions: 

i(0, x) = 0, x ∈ ℵ,
c(0, x) = 0, x ∈ ℵ,
f (0, x) = 0, x ∈ ℵ,
r(0, x) = 0, x ∈ ℵ,
β(0, x) = 0, x ∈ ℵ,
α(0, x) = 0, x ∈ ℵ.

(9)

(a) (b)

Figure 1. (a) Initial condition for healthy (host) cells density and (b) Initial condition for SARS-CoV-
2 density.

Finally, our system is assumed to be solved within a fixed computational domain
ℵ = [0, 2]× [0, 2] with no molecular transport across the domain boundary ∂ℵ, thus we
impose Neumann zero flux boundary conditions for all components, namely:

〈∇k, ν〉 = 0 ∀k ∈ {h, i, v, c, f , r, β, α} on (0, ∞) × ∂ℵ,

where ν indicates the outward unit normal for vector field to the computational domain
boundary ∂ℵ.

3.3. Computational Implementation

For computational purposes, we set the maximum spatial domain to be considered
within a square region, namely, ℵ := [0, 2] × [0, 2] which equals to a physical domain
of length [0, 0.1]× [0, 0.1] cm. We discretise ℵ ⊂ R2 by an equal (uniform) spatial mesh
in both directions of length ∆x = ∆y := 1× 10−2 which is equivalent to 1× 10−3 cm
in a physical dimensional domain. For time, we discretise the time interval [t0, t0 + ∆t]
by a uniformly time step of size δ̂t := ∆t

N with time nodes N + 1 > 1. Thus, at any
spatially discretized point (p∆x, q∆y), ∀p, q := 0, ... and at any discretized time node
tn = t0 + nδ̂t, ∀n = 0, 1, ...,N , we denote the concentrations for all components of the
system (8) by Mk (tn , (xp , yq)) ∀k ∈ {h, i, v, c, f , r, β, α}. Further, we express the spatial

operators for each component of the system (8) by Sk (tn , (xp , yq)) := ∇2Mk (tn , (xp , yq))

and Ŝk̂(tn , (xp , yq)) := ∇Mk̂(tn , (xp , yq)) ∀k̂ ∈ {v, f , r, β}. Hence, at any discretized spa-
tial temporal node (tn , (xp , yq)), we approximate the diffusion terms in (8) by a central
difference scheme using a fictitious grid points of the form (Mk )

n
p± 1

2 ,q
, (Mk )

n
p,q± 1

2
, namely:

(Sk )
n
p,q ≈

((Mk )x )
n
p+ 1

2 ,q
− ((Mk )x )

n
p− 1

2 ,q

∆x
+

((Mk )y)
n
p,q+ 1

2
− ((Mk )y)

n
p,q− 1

2

∆y
.
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Additionally, we approximate the chemotaxis terms in (8) by the following expression:

(Ŝk̂Sc)
n
p,q≈

(M
k̂
)n

p+ 1
2 ,q

((Mc)x )
n
p+ 1

2 ,q
−(M

k̂
)n

p− 1
2 ,q

((Mc)x )
n
p− 1

2 ,q

∆x

+
(M

k̂
)n

p,q+ 1
2
((Mc)y)

n
p,q+ 1

2 ,
− (M

k̂
)n

p,q− 1
2
((Mc)y)

n
p,q− 1

2

∆y
,

where

((Mk )x )
n
p+ 1

2 ,q :=
(Mk )

n
p+1,q − (Mk )

n
p,q

∆x
,

((Mk )x )
n
p− 1

2 ,q :=
(Mk )

n
p,q − (Mk )

n
p−1,q

∆x
,

((Mk )y)
n
p,q+ 1

2
:=

(Mk )
n
p,q+1 − (Mk )

n
p,q

∆x
,

((Mk )y)
n
p,q− 1

2
:=

(Mk )
n
p,q − (Mk )

n
p,q−1

∆x
,

and

(M
k̂
)n

p± 1
2 ,q :=

(M
k̂
)n

p,q+(M
k̂
)n

p±1,q
2 ,

(M
k̂
)n

p,q± 1
2

:=
(M

k̂
)n

p,q+(M
k̂
)n

p,q±1
2 .

For time discretisation, we use the predictor corrector method to approximate the
solutions i.e., on the interval [tn, tn+1], we predict the density for each component (Mk ) by
the explicit Euler method, namely:

(M̃k )
n+1
p,q = (Mk )

n
p,q + δt(F (hn

p,q, in
p,q, vn

p,q, cn
p,q, f n

p,q, rn
p,q, βn

p,q, αn
p,q)),

where the function F (·) denotes all terms of the right hand side of the system (8) including
the diffusion (Sk) and chemotaxis (Ŝk̂) operators. Then, we correct the predicted solutions
via the following Trapezoidal approximation rule as well as using predict-evaluate-correct
mode to obtain a better approximation of the solution, namely,

(M̂k )
n+1
p,q = (Mk )

n
p,q +

1
2 δt(F (hn

p,q, in
p,q, vn

p,q, cn
p,q, f n

p,q, rn
p,q, βn

p,q, αn
p,q)+

F (h̃n
p,q, ĩn

p,q, ṽn
p,q, c̃n

p,q, f̃ n
p,q, r̃n

p,q, β̃n
p,q, α̃n

p,q)).

(Mk )
n+1
p,q = (Mk )

n
p,q +

1
2 δt(F (hn

p,q, in
p,q, vn

p,q, cn
p,q, f n

p,q, rn
p,q, βn

p,q, αn
p,q)+

F (ĥn
p,q, în

p,q, v̂n
p,q, ĉn

p,q, f̂ n
p,q, r̂n

p,q, β̂n
p,q, α̂n

p,q)).

Thus, following the same procedures, we obtain solutions on the computational
domain ℵ for each component of (8), that is, for all (Mk )

n
p,q ∀k ∈ {h, i, v, c, f , r, β, α}.

3.4. Data Estimation

In general, parameter estimation in computational immunology is still a major prob-
lem due to either the lack of experimental data at a cellular level or the differences between
results from study to study. The estimations of parameters are impacted by many factors
such as cells shape, size and type, methods and laboratory equipments as well as the in-
terpretation of the laboratory data [45,46]. However, simulations may provide an efficient
manner for immunological exploration and prediction. Therefore, the model validation
could be investigated without knowing the data where this common methodology is used
during the exploratory steps [47]. Although the shortage of experimental studies about
COVID-19, we select a list of values for model parameters to simulate the baseline case
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for which they are considered as a starting point for the numerical investigation. The
baseline values (as shown in Table 1) have been built on clinical and mathematical results,
namely [19,22,26,27,34,44]. We estimate diffusion rates building on the size and the shape of
cells and particles as detailed in [44] with taking into consideration the unit of diffusion as
the area per unit time where we mainly use centimeters as units for measuring length and
seconds for time. Further, we pick out the other motility rates and chemotaxis coefficients
for immune system components based on biological ranges specified in [34].

Table 1. Baseline parameters values used in numerical simulations for the spatio-temporal model of
COVID-19. (∗) indicates the modified values.

Parameter Non-Dimensional Value Dimensional Value References

Dh 9× 10−4 9× 10−10 cm2 s−1 [44]
Di 1× 10−4 1× 10−10 cm2 s−1 Est. (Di =

Dh
9 )

Dv 5× 10−4 5× 10−10 cm2 s−1 [44]
Dc 1.06× 10−3 1.06× 10−9 cm2 s−1 [34]
D f 1.83× 10−3 1.83× 10−9 cm2 s−1 [34]
Dr 1× 10−3 1× 10−9 cm2 s−1 [34]
Dβ 1.83× 10−3 1.83× 10−9 cm2 s−1 Est. (Dβ = D f )

Dα 1.83× 10−3 1.83× 10−9 cm2 s−1 Est. (Dα = D f )

χv 1.67× 10−4 1.66× 10−9 cm2 s−1 Est. (χv = χ f )

χ f 1.67× 10−4 1.66× 10−9 cm2 s−1 [34]
χr 1.67× 10−4 1.66× 10−9 cm2 s−1 [34]
χβ 1.67× 10−4 1.66× 10−9 cm2 s−1 Est. (χβ = χ f )

µh 0.462 ∗ 0.462× 10−1 cells mL−1 s−1 [26,27]

µi 0.826 1.736× 10−20 mL (RNA
copies)−1 s−1 [22,27]

µv 0.255 6× 10−3 ∗ s−1 [27]
µc 0.174 0.115× 10−4 s−1 [26,27]
µ f 0.694 0.347× 10−1 ∗ mL cells−1 s−1 [19,27]
µr 0.077 0.11× 10−2 mL cells−1 s−1 Est. (µr =

µ f
30 )

µβ 0.0116 0.11× 10−3 ∗ mL cells−1 s−1 [19,27]
µ

β̃
0.579 0.11× 10−4 mL cells−1 s−1 Est. (µ

β̃
=

µ
β

10 )

µα 0.694 0.81× 10−7 s−1 [19,27]
δ11 0.0162 1.62× 10−6 s−1 [19,27]
δ21 0.0579 1.15× 10−8 mL cells−1 s−1 [27]
δ22 0.0011 1.15× 10−7 s−1 [19,27]
δ31 0.116 1.15× 10−4 ml molecules−1 s−1 [19,27]
δ32 0.04 4.05× 10−6 ∗ s−1 [27]
δ41 0.0016 1.66× 10−7 s−1 [34]
δ51 0.52 3.47× 10−7 mL cells−1 s−1 [34]
δ52 0.0034 3.47× 10−7 s−1 [34]
δ61 0.0034 3.47× 10−7 s−1 [34]
δ71 0.023 2.31× 10−6 s−1 [19,26]
δ81 0.0081 8.1× 10−7 s−1 [19,27]
k f 8.14× 10−1 ≈2.9× 106 [22]
kr 5.81× 103 ≈2.9× 106 [22]
kβ 8.14× 10−1 ≈2.9× 106 [22]

∆x, ∆y 1× 10−2 1× 10−3 cm [44]
∆t 1× 10−3 10 s −

For production and decay rates, we select the baseline values depending on few recent
mathematical studies [22,26,27] used temporal (within host) modelling approaches for
COVID-19. However, most of these data have been collected from previous studies for
similar infectious diseases such as dengue infection, HIV infection and AIDS. Therefore,
we still face a lack of experimental data for infection with SARS-CoV-2, especially at the
cellular scale.
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4. A Comparison of Computational and Clinical Results

In this section, we aim to investigate numerically the dynamics of host cells h(t, x),
infected cells i(t, x), SARS-CoV-2 particles v(t, x), chemokines c(t, x), the effector T cells
f (t, x), the regulatory T cells r(t, x), B-lymphocytes cells β(t, x) and antibodies α(t, x).
These dynamics are computed at each discretized spatio-temporal node (tn , (xp , yq)) within
a computational domain of size ℵ = [0, 2] × [0, 2] which equals to a physical domain
[0, 0.1] × [0, 0.1] cm. For time steps, we run the numerical simulation for 120 stages
(120,000∆t), which equals approximately 333.34 h. However, SARS-CoV-2 particles may
remain in the body for more than 60 days or sometimes reaching 150 days as discussed
in [5,19,48], which corresponds to 259,200∆t−650,000∆t (in non-dimensionalised time
step). Moreover, we choose the following initial values for the variables those defined in
Section 3.1 based on some biological and mathematical observations [19,20,27],
h0 = 4× 105, i0 = 3× 10−4, v0 = 357× 104, c0 = 0.1, f0 = 500, r0 = 150, β0 = 100, α0 = 0.1.
In the following context, we discuss the validation of the suggested model (8) with regards
to experimental observations in terms of the viral load of SARS-CoV-2 during time. As
mentioned in Section 1, there are a bunch of studies that discuss a within host modeling
of SARS-CoV-2 interactions with immune system components, but these studies consider
only the temporal dynamics of this interaction. Hence, there is a lack of both computa-
tional and experimental data for the spatial distribution of SARS-CoV-2 within the cellular
scale. However, we still wish that our suggested spatio-temporal model (8) will stimulate
experimental works to validate our numerical findings.

Now, in order to check the validation of our modeling assumptions, we first select
a list of values for the model parameters as presented in Table 1 which mainly based
on the following published studies [19,22,26,27,34,44]. Using this baseline values, we
show the spatial distribution for all dynamics as illustrated in Figure 2 where we present
(for three different time periods, namely, ≈2.5 days, 7 days, 14 days): healthy cells (a),
infected cells (b), SARS-CoV-2 particles (c), chemokines (d), the effector T cells (e), the
regulatory T cells (f), B-lymphocytes cells (g) and antibodies (h). It is obvious to see that
the spatial distribution of immune components follows the same distribution patterns of
virus. Moreover, for the parameter regimes that we have selected as a starting point for
the computational investigation, we find that the total viral load of SARS-CoV-2 increases
since day one of infection. This increase of virus occurs due to the slow growth of T and
B cells over time (see Figure 3a,b). However, comparing our computational result with
patients data for the whole clinical course that have been considered in [49], we conclude
the following, in the clinical data, the average virus load in swab test was about 3.44× 105

copies per mL on the day 5 which equals to 9.64× 10−2 in non-dimensional values, while
numerically, the viral load on the day 5 is almost equal to 9.58× 10−2, that is, 3.42× 105

(see Figure 4a–i). Nevertheless, the baseline scenario of the numerical simulation represents
a failure of immune responses to infection with SARS-CoV-2 because it is clearly to see that
the density of infected cells increases from day one of infection until 14 days. This immunity
failure probably occurred due to the late response of T cells (especially for asymptomatic
cases) as presented in Figure 5 where we compare the effector T cells evolution at early time
stages for two cases of immune responses to SARS-CoV-2, namely, baseline scenario and a
better case of immunity responses (it will be explained in detail in the next context). Further,
the slow response of T cells is negatively reflected on B cells growth and the activation
process of antibodies.
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20 stages ≈ 2.5 days 60 stages ≈ 7 days 120 stages ≈ 14 days

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2. Spatial distribution for all dynamics in system (8) at three time stages (20, 60 and 120) using
the baseline parameter values from Table 1, presenting: (a) healthy cells density, (b) infected cells
density, (c) SARS-CoV-2 particles density, (d) chemokines density, (e) the effector T cells density,
(f) the regulatory T cells density, (g) B-lymphocytes cells density and (h) antibodies density.
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(a) (b)

Figure 3. Comparison of viral load of SARS-CoV-2 and total mass of immune cells over time stages
from 1 to 120 (which is equivalent to approximately 2.78 h to 14 days) for system (8) using the baseline
values presented in Table 1. (a) viral load of SARS-CoV-2, (b) total mass of immune cells; (i) T cells
and (ii) B cells.

(a) (b)

Figure 4. Comparison of viral load of SARS-CoV-2 over time stages from 1 to 120 (which is equivalent
to approximately 2.78 h to 14 days) for system (12) using the baseline values presented in Table 1 for
multiple scenarios of the percentage variable (ζ). (a) when ψ+ is represented by (10) and ψ− := 1,
(b) when ψ− is represented by (10) and ψ+ := 1. (i) Baseline case. (ii) ζ := 100%. (iii) ζ := 150%.
(iv) ζ := 200%.

10 stages ≈ 1 day 20 stages ≈ 2.5 days 30 stages ≈ 3.5 days

(a)

(b)

Figure 5. Comparison of spatial distribution of the effector T cells evolution at early stages (10, 20,
30) (which is equivalent to approximately 1, 2.5, 3.5 days). (a) Baseline case (a failure of immune
responses to SARS-CoV-2). (b) example of a better immune responses to SARS-CoV-2, namely, when
ψ+ is represented by (10) and ψ− := 1 (ζ := 100%).
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In the following, we investigate the impact of variation of parameters on the level
of SARS-CoV-2 viral load over a certain period of time. To that end, we first denote the
virus domain ℵ∗(t0) to be a sub-domain located entirely within our computational domain,
that is, ℵ∗(t0) ⊂ ℵ(t0). Then, we define a new function ψ(·, ·) which enables increasing or
decreasing the level of all system components exclusively at each grid point containing

a non-zero solution of virus i.e., at every (v)n
p,q

∣∣∣∣
v 6=0

, ∀p, q ∈ ℵ∗(t0). Accordingly, ψ(·, ·) is

expressed as follows:

ψ±(p, q) :=

 ζ if (xp , yq) ∈ ℵ∗(t0),

1 if (xp , yq) /∈ ℵ∗(t0),
(10)

where ℵ∗(t0) is the topological closure of ℵ∗(t0) and the percentage variable ζ is given by
the following choices:

ζ := {100%, 150%, 200%}. (11)

Thus, the system (8) can be rewritten in the following form:

∂h
∂t = Dh∇

2
h + µh h(1− h)− δ11 h,

∂i
∂t = Di∇

2
i + ψ−µi hv− δ21 i f − δ22 i,

∂v
∂t = Dv∇

2
v− χv∇ · (v∇c) + ψ−µv i− δ31 αv− δ32 v,

∂c
∂t = Dc∇

2
c + µc i f − δ41 c,

∂ f
∂t = D f∇

2
f − χ f∇ · ( f∇c) + ψ+µ f

v
v+k f

− δ51 r f − δ52 f ,

∂r
∂t = Dr∇

2
r− χr∇ · (r∇c) + ψ−µr

f
f+kr
− δ61 r,

∂β
∂t = D

β
∇2

β− χ
β
∇ · (β∇c) + ψ+µ

β
v

v+k
β
+ ψ+µ

β̃
f − δ71 β,

∂α
∂t = Dα∇

2
α + ψ+µα β− δ81 α.

(12)

Just to note that the system (12) is only computed by using one of the functions
(ψ+ , ψ−), for example, if we plug the function (ψ+) into system (12), the other function
(ψ−) will be implemented as a matrix of ones during computations. Based on that, we can
divide the parameters into two main groups, namely, (A) parameters that, if increased,
would decrease the overall viral load over time (motivation occurs at a rate ψ+ ) and (B)
parameters that, if increased, would increase the level of viral load (that occurs at a rate ψ− ).

Now, we start the sensitivity analysis using the percentage variable ζ to explore the
impact of parameters defined in group (A) upon the overall result. In general, increasing
this group of parameters leads to a proportional decay on the overall viral load of SARS-
CoV-2 over time. In other words, increasing the percentage variable (ζ) brings a clear
influence towards controlling the infection with SARS-CoV-2. This result is obvious in
Figure 4a, where we show the total viral load of SARS-CoV-2 over 120 stages which
corresponds to approximately 14 days. The black curve represents the basic scenario using
the baseline values presented in Table 1, while the blue, green and red curves illustrate
the same case, but with employing the percentage variable ζ := 100%, ζ := 150% and
ζ := 200% respectively. The experimental study [41] shows the amount of viral load of
SARS-CoV-2 for more than 80 patients over 12 to 15 days. The peak of viral load occurs
between 5 to 6 or 7 days post symptom onset. However, the median time of symptom onset
was varying from 2 to 7 days according to [22]. Here, we mainly focus on two patients
from Beijing where their daily clinical samples were collected from throat swabs, urine,
stool and sputum as presented in [41]. The first patient has a peak of viral load in throat
swap in almost 7 days, while the second patient has that peak by the day 5. Hence, in order
to compare our computational findings with the above samples results, we find that in the
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case when ζ := 200%, simulations show that the peak of viral load takes place at stage 43
which corresponds to the day 5 where this result coincides with clinical samples collected
from the throat swabs for the second patient (see Figure 4a(iv)). Moreover, the viral load
copies (per mL) at the peak point is ranging from 104 to 108 as collected from clinical
data [41,49], while in our numerical results, when ζ := 200%, the viral load (on the day 5) is
equal to 9.69× 10−2 copies per ml (≈3.46× 105—dimensional value). However, in the case
when ζ := 100%, 150%, the peak of viral load appears at stage 80 and 54 (which corresponds
to the day 9.25 and the day 6.25) with concentrations of 9.99× 10−2 and 9.79× 10−2 copies
per ml (which equals to 3.565× 105 and 3.495× 105), respectively. Consequently, for both
cases of ζ := 150%, 200%, the viral load tends to peak within the same time range compared
to data collected from clinical trials. Further, in Figure 6a, we show the spatial distribution
of virus particles at the final stage (14 days) for the three cases of ζ, namely, ζ := (i) 100%,
(ii) 150% and (iii) 200%. Thus, this result confirms that increasing the parameter values
specified in group (A) leads to a better scenario with regards to infection with SARS-CoV-2.

(i) (ii) (iii)

(a)

(b)

Figure 6. Comparison of spatial distribution of SARS-CoV-2 evolution at the final stage (120) (which
is equivalent to approximately 14 days) for system (12) using the baseline values presented in Table 1
for multiple scenarios of the percentage variable (ζ). (a) when ψ+ is represented by (10) and ψ− := 1,
(b) when ψ− is represented by (10) and ψ+ := 1. (i) ζ := 100%. (ii) ζ := 150%. (iii) ζ := 200%.

On other hand, to observe the impact of the parameters defined in group (B) on the
overall virus spatial expansion and the total viral load during interactions between virus
and immune components, we first let ψ−(p, q) be denoted by the formula defined in (10),
while substituting the function ψ+(p, q) by one into model (12) ∀p, q ∈ ℵ∗(t0). Then, using
parameters values presented in Table 1 and changing ζ by percentages determined in (11),
we show a comparison of viral load of SARS-CoV-2 for the above scenario starting from
2.78 h (stage 1) to 14 days (stage 120). Numerically, we obtain a higher viral load and more
expansion of spatial distribution on the computational domain whenever ζ is increased (see
Figures 4b and 6b). This undesirable growth of virus can be explained by the fact that both
rates of infection and viral replication have been considered within group (B), therefore
increasing these rates by ψ− will mostly cause more viral load over time. Following similar
scenarios from clinical findings for died patients as presented in [41], the viral load on the
day 8 was at least equal to 106 for nasal swab and 1.34× 1011 for sputum sample. Hence,
in a comparison to our simulations, the viral load on the day 8 (at stage 69) is greater than
106 (copies per mL) in dimensional values for all cases of ζ, namely, when ζ := 100%:
viral load is 0.376 (non-dim) which equals to ≈1.34× 106 (dim); when ζ := 150%: viral
load is 0.687 (non-dim) ≈2.45× 106 (dim); when ζ := 200%: viral load is 1.08 (non-dim)
≈3.85× 106 (dim) . Thus, rising the parameters defined in group (B) drives to a serious
situation of infection with SARS-CoV-2.
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Another factor that affects SARS-CoV-2 infection is the variation of random motility
rates for cells, virus and chemokines on the spatial domain. To check this, we decide to
duplicate, triplicate and quadruplicate the diffusion rates for all system components using
best outcomes in regards to viral load control, namely, substituting the function ψ+ as
defined in (10) into system (12) with ζ := {150%, 200%}, while ψ− := 1 (these cases are
illustrated in Figure 4a(iii,iv)). Accordingly, in Figure 7 we show the evolution of viral load
of SARS-CoV-2 over 14 days using three values of random motility rates for all system
components i.e., 2Dk , 3Dk , 4Dk∀k ∈ {h, i, v, c, f , r, β, α} where Figure 7a represents the viral
load evolution in the case when ζ := {150%}, while Figure 7b shows the same case but
when ζ := {200%}. In general, numerical results show that there is a viral load growth
whenever diffusion coefficients are increased. This result could be explained as follows,
fast spatial diffusion of system components (especially infected cells and virus particles)
within the tissue (our computational domain ℵ) could expand the area of the dynamical
interaction as well as transfer the virus to respiratory system which that may drive to have
a late and a huge immune responses causing the cytokine release syndrome and leading to
serious damage of vital organs and death in the worst cases [8,11,16].

(a) (b)

Figure 7. Comparison of viral load of SARS-CoV-2 over time stages from 1 to 120 (which is equivalent
to approximately 2.78 h to 14 days) for three different rates of diffusion for all system components (12)
using the baseline values presented in Table 1 in the case when ψ+ is represented by (10) and ψ− := 1
with the following percentage variable: (a) ζ := 150%, (b) ζ := 200%. (i) Dk ; (ii) 2Dk ; (iii) 3Dk ; (iv) 4Dk

∀k ∈ {h, i, v, c, f , r, β, α}.

5. Discussion

In contrast to the temporal mathematical models (either between-host or within-host
models) as presented in [21–26], we here suggested a new spatio-temporal (within-host)
mathematical model to describe the interactions at the cellular scale between healthy cells,
viral infected cells, SARS-CoV-2 particles and the main parts of immune system, namely,
effector and regulatory T cells, B-lymphocytes cells and antibodies in the presence of
chemokines concentration. Modeling assumptions and settings were carefully selected
building on recent biomedical and mathematical studies as detailed in Section 2. The
numerical simulations provided reasonable outcomes for the within-host infection scenario
which harmonized with data collected from clinical samples. However, we have faced
many challenges regarding data availability as well as investigating the model outputs in a
comparison with observations collected from clinical studies.

To investigate the model validation, we have improved a part of the computational
framework introduced in [50] and then extended in [39]. Besides the implementation
process of the finite difference method including approximations of the diffusion and
chemotaxis terms, we have inserted additional strategies involving predict-evaluate-correct
mode (see Section 3.3) with taking into account a multi-site of infection on the computa-
tional domain and assuming a heterogeneous initial condition for host cells (see Section 3.2)
as well as applying certain conditions such as increasing the density of system components
exclusively on the virus domain ℵ∗(t0). We investigated numerically multiple scenarios
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compared to the baseline parameter regimes presented in Table 1 where the majority
of these values are selected from [19,22,26,27,34,44]. However, simulation results using
these values showed a failure case of immune responses to SARS-CoV-2 as presented in
Figure 4a(i). Hence, we decided to define the functions ψ±(·, ·) (which exercise their role
exclusively at ℵ∗(t0) ⊂ ℵ(t0)) in order to study the sensitivity of solutions using three
choices of the percentage variable (ζ). Based on that, we conclude the following, increasing
the production rates of some immune components, namely, (µ f , µ

β
, µ

β̃
, µα ) by a size of

ψ+(·, ·) leads to a clear decay in the total viral load during time, conversely, rising the
parameters (µi , µv , µr ) by a quantity of ψ−(·, ·) encouraged the viral replication and reduced
T cells production which in turn caused a growth of the total viral load. Additionally, in
the case when ψ+(·, ·) is considered into model (12), we have found that staying at the
peak of viral load differs as the percentage variable changes, for example, when ζ := 100%,
the viral load reaches the peak after passing 9.25 days and remains on peak for another
36 h and 6.6 min, then decreases on the day 10.5 (for the other cases of (ζ), see Table 2).
Furthermore, increasing the motility rates for system components would play a central
role on the growth of the viral load over time. In general, for all cases of (ζ), our numerical
results almost fit clinical outcomes for some patients data collected from [41,49] in terms of
the amount of viral load on peaks (in dimensional values—copies per ml) as well as the
time of the peak of viral load.

Table 2. Duration and amount of viral load on the peak for each case of ζ in the case when ψ+ (·, ·) is
considered into model (12) and ψ− := 1.

Case Duration of Viral Load Peak Viral Load (Non-Dim) Viral Load (Dim)

ζ := 100% 36.11 h (stage 80–92) 9.99× 10−2 3.565× 105

ζ := 150% 25 h (stage 54–62) 9.79× 10−2 3.495× 105

ζ := 200% 25 h (stage 40–48) 9.69× 10−2 3.46× 105

In this work, we have mainly presented a mathematical framework for modeling the
immune responses to SARS-CoV-2 using a system of partial differential equations. We
have developed a computational approach in order to simulate some scenarios of viral
infection at a cellular level. Numerically, we have obtained a better control of SARS-CoV-
2 infection in the case when the production level of T cells increases, and B cells and
antibodies are exclusively in the spatial domain of the virus. From an immunological
perspective, the ability to generate a strong immune response varies between people due
to multiple factors. Therefore, we hope that the assumptions formulated in this work
will stimulate suitable experimental studies that would investigate the production level
of immune components at the infection site. However, in the future, we aim to provide
further insight into the other factors such as the resulting pathological damages caused by
either virus interactions with surrounding components or the cytokine storm caused by
immune system. Moreover, questions regarding the qualitative behavior of the model, the
local existence and uniqueness remain an open problem which could be investigated in a
later work. Further, topics of COVID-19 are one of the most important research priorities
nowadays; therefore, mathematical works should keep track of these efforts which require
further improvement and future work. Thus, the proposed modeling framework and the
computational technique can be extended to follow new findings from the forthcoming
experimental studies.
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