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Abstract: In this paper, we present some important approximation properties of Chebyshev poly-
nomials in the Legendre norm. We mainly discuss the Chebyshev interpolation operator at the
Chebyshev–Gauss–Lobatto points. The cases of single domain and multidomain for both one di-
mension and multi-dimensions are considered, respectively. The approximation results in Legendre
norm rather than in the Chebyshev weighted norm are given, which play a fundamental role in
numerical analysis of the Legendre–Chebyshev spectral method. These results are also useful in
Clenshaw–Curtis quadrature which is based on sampling the integrand at Chebyshev points.

Keywords: Chebyshev polynomials; Chebyshev interpolation operator; the Legendre norm; Legendre–
Chebyshev spectral method; Clenshaw–Curtis quadrature; multidomain; multi-dimensions

1. Introduction

Orthogonal polynomials are useful in many areas of numerical analysis and are
powerful for function approximation, numerical integration and numerical solution of
differential and integral equations [1,2]. The core idea of spectral methods is that any nice
enough function can be expanded in a series of orthogonal polynomials so that orthogonal
polynomials play a fundamental role in spectral methods [3–6]. Particularly, Chebyshev
polynomials and Legendre polynomials are frequently used in spectral methods and are
two important sequences in numerical analysis.

The related approximation results of typical Chebyshev and Legendre spectral approx-
imation are discussed in many literatures [3,4,7–10]. These results of Chebyshev spectral
approximation are usually in the weighted norm forms. The Legendre–Chebyshev spectral
method is a popular numerical method, which enjoys advantages of better stability of the
Legendre method and easy implementation of the Chebyshev method. Therefore, it is
necessary to develop the approximation properties of Chebyshev polynomials in the Leg-
endre norm. In [11,12], the approximation result of the Chebyshev interpolation operator
without the Chebyshev weighted norm was first given. Some other valuable results related
to Chebyshev polynomials can be referred to [2,13–19] and references therein.

In addition, Chebyshev polynomials have a special connection with Clenshaw–Curtis
quadrature, which uses Chebyshev points instead of optimal nodes. Clenshaw–Curtis
quadrature can be implemented in O(N log N) operations using the fast Fourier transform
(FFT) and is used in numerical integration and numerical analysis [20–25]. As we known,
Gauss quadrature is a beautiful and powerful idea. Zeros of orthogonal polynomials are
chosen as the nodes of Gauss-type quadratures and used to generate computational grids
for spectral methods. Yet, the Clenshaw–Curtis formula has essentially the same perfor-
mance for most integrands and can be implemented effortlessly by the FFT [26]. Thus,
the Clenshaw–Curtis and Gauss formulas are employed in the numerical solution of Ordi-
nary differential equations and Partial differential equations by spectral methods [5,26–28].
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And, Chebyshev polynomials also have an important connection with the mock–Chebyshev
subset interpolation exploited to cutdown the Runge phenomenon [29,30], which takes
advantages of the optimality of the interpolation processes on Chebyshev–Lobatto nodes.

The purpose of this paper is to present some essential approximation results related
to Chebyshev polynomials in the Legendre norm. The first fundamental result of or-
thogonal polynomials is the Weierstrass Theorem, which is an important element of the
classical polynomial approximation theory [31,32]. In numerical analysis of the Legendre–
Chebyshev spectral method, we need to consider the stability and approximation proper-
ties of the Chebyshev interpolation operator in the L2-norm rather than in the Chebyshev
weighted norm [13]. In the paper, we consider the Chebyshev interpolation operator at the
Chebyshev–Gauss–Lobatto (CGL) points. The cases of single domain and multidomain for
both one dimension and multi-dimensions are discussed. Some approximation results in
the Legendre norm rather than in the Chebyshev weighted norm are given. These results
serve as preparations for polynomial-based spectral methods.

The rest of the paper is organized as follows. In Section 2, Chebyshev polynomials are
described, and some related notations are introduced. In Section 3, some approximation
properties of Chebyshev interpolation operators in one dimension are given. The cases of
single domain and multidomain are discussed, respectively. In Section 4, some approxima-
tion properties in multi-dimensions are given. The conclusion is given in Section 5.

2. Preliminaries and Notations

In this section, we give a brief description of Chebyshev polynomials and define the
Chebyshev interpolation operators. Some notations are also given, which will be used in
the following sections.

We consider orthogonal polynomials—Chebyshev polynomials, which are proportional

to Jacobi polynomials
{

J−
1
2 ,− 1

2
n

}
and are orthogonal with respect to the weight function

ω(x) = (1− x2)−
1
2 , x ∈ [−1, 1].

The three-term recurrence relation for the Chebyshev polynomials is as follows [6]:
T0(x) = 1,
T1(x) = x,
Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

which satisfies ∫ 1

−1
Ti(x)Tj(x)(1− x2)−

1
2 dx =

ci
2

δij,

where c0 = 2, ci = 1(i ≥ 1). As we known, there have been many useful properties of
Chebyshev polynomials [4,6,28].

Denote (·, ·)Q and ‖ · ‖Q be the inner product and the norm of the space L2(Q) ,
respectively. We will drop the subscript Q whenever Q = I = (−1, 1). Let PN(I) be the
space of polynomials with the degree at most N on an interval I. And let Hσ(Q)(σ > 0) be
the classical Sobolev space with norm ‖ · ‖Hσ(Q).

Define the Chebyshev interpolation operator at the CGL points by IC
N : C( Ī) →

PN(I) satisfying
IC
N ϕ(xj) = ϕ(xj), 0 ≤ j ≤ N, (1)

where xj = cos π j
N .

3. Approximation Properties of Chebyshev Interpolation Operator in One Dimension

In this section, some approximation properties of the Chebyshev interpolation operator
in one dimension are derived. The cases of both single domain and multidomain are
considered respectively.
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3.1. Case of Single Domain in One Dimension

Similar to the approximation results presented in [11] for the Chebyshev interpolation
operator IC

N , we give the following lemma.

Lemma 1 ([11,15]). If u ∈ H1(I), then

N‖IC
Nu− u‖+ ‖∂x IC

Nu‖ ≤ C‖∂xu‖. (2)

In addition, if u ∈ Hσ(I) and σ > 1/2, then

‖IC
Nu− u‖Hl(I) ≤ CNl−σ‖u‖Hσ(I), 0 ≤ l ≤ 1. (3)

We note that the norm in the approximation results (2) and (3) is already without
the Chebyshev weighted function and is in Legendre norm. The lemma is important in
numerical analysis of Legendre–Chebyshev spectral method.

Next, the applications of the result of interpolation (3) to connect with the Clenshaw-
Curtis quadrature are presented as follows. Given

I(u) =
∫ 1

−1
u(x)dx, IN(u) =

N

∑
k=0

ωku(xk),

where the nodes xk depend on N. Since the weights ωk are defined uniquely by the property
that IN is equal to the integral of the degree ≤ N polynomial interpolation through the
data points. Then we have

IN(u) =
N

∑
k=0

ωku(xk) =
∫ 1

−1
IC
Nu(x)dx.

For the Clenshaw-Curtis numerical integration in [26], the unique best approximation
to u on [−1, 1] of degree ≤ N with respect to the L∞-norm.

The following lemma shows that we simply use the L2-norm estimation result (3) to
get the desired error estimate.

Lemma 2. If u ∈ Hσ(I) and σ > 1/2, then

|IN(u)− I(u)| ≤ CN−σ‖u‖Hσ(I). (4)

3.2. Case of Multidomain in One Dimension

For 1 ≤ k ≤ K, we denote −1 = a0 < a1 < · · · < aK = 1, and set

Ik = (ak−1, ak], I = ∪K
k=0 Ik, hk = ak − ak−1, vk ≡ v|Ik .

Let PNk (Ik) be the space of polynomials with the degree at most Nk on the interval Ik.
Denote N = (N1, · · · , NK).

Define the following space

PN (I) = {u : u|Ik ∈ PNk (Ik), 1 ≤ k ≤ K}.

Set the relationship between Ik and I as follows:

v(x) = v̂(x̂), x =
1
2
(hk x̂ + ak−1 + ak), x ∈ Ik, x̂ ∈ I.

Define the operator IC
N : C( Ī)→ PN such that

(̂IC
N u)

k
= IC

Nk
ûk(x̂), 1 ≤ k ≤ K, (5)
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where IC
Nk

: C( Ī)→ PNk (I) is the CGL interpolation operator defined as (1).

Lemma 3. If v ∈ Hσ(Ik) (σ ≥ 0), then

‖v̂‖Hσ(I) ≤ Chσ− 1
2

k ‖v‖Hσ(Ik)
, (6)

‖v‖Hσ(Ik)
≤ Ch

1
2−σ

k ‖v̂‖Hσ(I). (7)

Denote h̄ = max1≤k≤K
{ hk

Nk

}
. We arrive at the following approximation result.

Theorem 1. If u ∈ Hσ(I)(σ ≥ 1), then

‖IC
N u− u‖Hl(I) ≤ Ch̄σ−l‖u‖Hσ(I), 0 ≤ l ≤ 1. (8)

Proof. Applying Lemma 1 and Lemma 3, we get

‖IC
N u− u‖2

Hl(I)= ∑
1≤k≤K

‖(IC
N u)k − uk‖2

Hl(Ik)

≤C ∑
1≤k≤K

h1−2l
k ‖IC

Nk
ûk − ûk‖2

Hl(I)

≤C ∑
1≤k≤K

h1−2l
k N2(l−σ)

k ‖ûk‖2
Hσ(I)

≤C ∑
1≤k≤K

h1−2l
k N2(l−σ)

k h2σ−1
k ‖uk‖2

Hσ(Ik)

≤Ch̄2(σ−l)‖u‖2
Hσ(I).

Thus, the theorem is proved.

4. Approximation Properties of Chebyshev Interpolation Operator
in Multi-Dimensions

Set Ii = (−1, 1)(i = 1, · · · , d), Ωd = I1 × I2 × · · · × Id. If d = 2, we use Ω = Ix × Iy

instead of Ω2 = I1 × I2.
Define the following space

PN(Ωd) = PN(I1)⊗ PN(I2)⊗ · · · ⊗ PN(Id).

Denote x = (x1, · · · , xd) ∈ Ωd. With each function v in C(Ω̄d), we associate the
d-function vj defined by

vj(xj)(x1, · · · , xj−1, xj+1, · · · , xd) = v(x1, · · · , xd), 1 ≤ j ≤ d.

Define the operator IC
N by

IC
N = IC

N,1 ◦ · · · ◦ IC
N,d, (9)

where IC
N,i is the CGL interpolation operator IC

N,i : C( Īi)→ PN(Ii) defined as (1).

4.1. Case of Single Domain in Multi-Dimensions

According to the one dimensional approximation results, we give some approximation
results of the Chebyshev interpolation operators for the case of single domain in multi-
dimensions (d ≥ 2).
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Theorem 2. If u ∈ Hσ(Ωd) and σ > d
2 , then

‖IC
Nu− u‖Ωd ≤ CN−σ‖u‖Hσ(Ωd)

. (10)

Proof. Applying (3) in Lemma 1 and noting L2(Ωd) = L2(I j; L2(Ωd−1)), we have∥∥u− IC
Nu
∥∥

Ωd
=
∥∥u− IC

N,1 ◦ · · · ◦ IC
N,du

∥∥
Ωd

≤
∥∥u− IC

N,1u
∥∥

L2(I1;L2(Ωd−1))
+
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
L2(I1;L2(Ωd−1))

+
∥∥(I − IC

N,1)(u− IC
N,2 ◦ · · · ◦ IC

N,du)
∥∥

L2(I1;L2(Ωd−1))

≤CN−σ
∥∥u
∥∥

Hσ(I1;L2(Ωd−1))
+
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
L2(I1;L2(Ωd−1))

+ CN−
σ
d
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
H

σ
d (I1;L2(Ωd−1))

.

Repeating the above discussion d times for
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
L2(I1;L2(Ωd−1))

and∥∥u− IC
N,2 ◦ · · · ◦ IC

N,du
∥∥

H
σ
d (I1;L2(Ωd−1))

, and by the following imbedding relationship

Hs(Ωd) ⊂ Hk(I j; Hs−k(Ωd−1)), s ≥ k,

the desired result is obtained.

Theorem 3. If u ∈ Hσ(Ωd) and σ > d+1
2 , then

‖IC
Nu− u‖H1(Ωd)

≤ CN1−σ‖u‖Hσ(Ωd)
. (11)

Proof. For 1 ≤ j ≤ d, we have

‖u− IC
Nu‖2

H1(Ωd)
≤

d

∑
j=1
‖u− IC

N‖
2
H1(I j ;L2(Ωd−1))

.

By (3) in Lemma 1 and Theorem 2, we get∥∥u− IC
Nu
∥∥

H1(I j ;L2(Ωd−1))

≤
∥∥u− IC

N,ju
∥∥

H1(I j ;L2(Ωd−1))

+
∥∥IC

N,j(u− IC
N,1 ◦ · · · ◦ IC

N,j−1 ◦ IC
N,j+1 ◦ · · · ◦ IC

N,du)
∥∥

H1(I j ;L2(Ωd−1))

≤ CN1−σ
∥∥u
∥∥

Hσ(I j ;L2(Ωd−1))

+ C
∥∥u− IC

N,1 ◦ · · · ◦ IC
N,j−1 ◦ IC

N,j+1 ◦ · · · ◦ IC
N,du

∥∥
H1(I j ;L2(Ωd−1))

≤ CN1−σ
∥∥u
∥∥

Hσ(I j ;L2(Ωd−1))
+ CN1−σ

∥∥u
∥∥

H1(I j ;Hσ−1(Ωd−1))

≤ CN1−σ
∥∥u
∥∥

Hσ(Ωd)
.

Thus, the theorem is proved.

4.2. Case of Multidomain in Multi-Dimensions

In this subsection, we give some approximation properties of the CGL interpolation
operator for the case of multidomain in multi-dimensions (d ≥ 2).

For simplicity, we make the same subdivision in each direction of space. Similar to the
case of multidomain in one dimension, for 1 ≤ k ≤ K, denote−1 = a0 < a1 < · · · < aK = 1,
and set

Ii
k = (ak−1, ak], Ii = ∪K

k=0 Ii
k, i = 1, · · · , d.

Let PNk (Ii
k) be the space of polynomials with the degree at most Nk on the interval Ii

k.
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We introduce the space PN(Ωd) = PN (I1) ⊗ · · · ⊗ PN (Id). Define the Chebyshev-
Gauss–Lobatto interpolation operator IC

N by

IC
N = IC

N ,1 ◦ IC
N ,2 ◦ · · · ◦ IC

N ,d, (12)

where IC
N ,i : C( Īi)→ PN (Ii) is the CGL interpolation operator defined as (5).

By the assumption of the same subdivision in each direction of space, we set h̄ =

max1≤k≤K
{ hk

Nk

}
and give the following approximation results.

Theorem 4. Assume that d = 2. If u ∈ Hσ(Ω) and σ > 1, then

‖IC
N u− u‖Ω ≤ Ch̄σ‖u‖Hσ(Ω). (13)

Proof. By Theorem 1 and Lemma 1, we get∥∥u− IC
N u
∥∥=∥∥u− IC

N ,1 ◦ IC
N ,2u

∥∥
≤
∥∥u− IC

N ,1u
∥∥

L2(Ix ;L2(Iy))
+
∥∥u− IC

N ,2u
∥∥

L2(Ix ;L2(Iy))

+
∥∥(I − IC

N ,1)(u− IC
N ,2u)

∥∥
L2(Ix ;L2(Iy))

≤Ch̄σ
∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+
∥∥u− IC

N ,2u
∥∥

L2(Ix ;L2(Iy))

+ Ch̄
∥∥u− IC

N ,2u
∥∥

H1(Ix ;L2(Iy))

≤Ch̄σ
∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+ Ch̄σ

∥∥u
∥∥

L2(Ix ;Hσ(Iy))
+ Ch̄σ

∥∥u
∥∥

H1(Ix ;Hσ−1(Iy))

≤Ch̄σ‖u‖Hσ(Ω).

Thus, the proof is completed.

Theorem 5. Assume that d = 2. If u ∈ Hσ(Ω) and σ > d+1
2 = 3

2 , then∥∥u− IC
N u
∥∥

H1(Ω)
≤ Ch̄σ−1‖u‖Hσ(Ω). (14)

Proof. By Theorem 1 and Lemma 1, we have∥∥u− IC
N u
∥∥

H1(Ix ;L2(Iy))
≤
∥∥u− IC

N ,1u
∥∥

H1(Ix ;L2(Iy))
+
∥∥IC
N ,1(u− IC

N ,2u)
∥∥

H1(Ix ;L2(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+
∥∥(I − IC

N ,1)(u− IC
N ,2u)

∥∥
H1(Ix ;L2(Iy))

+
∥∥u− IC

N ,2u
∥∥

H1(Ix ;L2(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+ C

∥∥u− IC
N ,2u

∥∥
H1(Ix ;L2(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+ Ch̄σ−1∥∥u

∥∥
H1(Ix ;Hσ−1(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ω)
.

Therefore, the desired result is obtained.

5. Numerical Experiments

In this section, we give some numerical experiments to confirm the theoretical results.
The cases of continuous and discontinuous functions are considered, respectively.

The discrete L2-error used in the following experiments is defined as

Err(u) =
( n−1

∑
i=0

n−1

∑
j=0

∣∣u(xi, yj)− IC
N u(xi, yj)

∣∣2∆x∆y
) 1

2
, (15)

where xi = i∆x, yj = j∆y, ∆x = ∆y = 1
n , and n = 100.
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Example 1. We consider the following continuous function in Ω̄ = [0, 1]2:

u(x, y) =
ky

w
cos(kxπx) sin

(
kyπy

)
, w = (k2

x + k2
y)

1
2 , (16)

which is approximated by the multidomain Chebyshev-Gauss–Lobatto interpolation IC
N u.

We make the same subdivision in x and y directions as follows:

Ω̄ =
{
[0, 0.5] ∪ [0.5, 1]

}
×
{
[0, 0.5] ∪ [0.5, 1]

}
.

Figure 1 displays the shape of u(x, y) with low frequency kx = ky = 1 and high
frequency kx = ky = 5, respectively. Table 1 gives the discrete L2-errors of the Chebyshev-
Gauss–Lobatto interpolation for function u. The results show the spectral accuracy of the
multidomain interpolation.

(a) kx = ky = 1 (b) kx = ky = 5

Figure 1. The shapes of u(x, y) with low frequency kx = ky = 1 and high frequency kx = ky = 5.

Table 1. L2-errors of Chebyshev-Gauss–Lobatto interpolation for u(x, y).

kx = ky = 1 kx = ky = 5

Nx = Ny Err(u) Order Nx = Ny Err(u) Order

(7,7) 2.15× 10−8 - (14,14) 1.76× 10−8 -
(10,10) 1.28× 10−12 h̄27.28 (18,18) 2.93× 10−12 h̄34.62

(13,13) 1.61× 10−16 h̄34.23 (22,22) 6.31× 10−16 h̄42.07

Example 2. We consider the following discontinuous functions in Ω̄ = [0, 1]2:

u1(x, y) =
ky

εw
cos(kxπx) sin

(
kyπy

)
, (17)

u2(x, y) = −
ky

εw
sin(kxπx) cos

(
kyπy

)
, (18)

where w =

(
k2

x + k2
y

ε

) 1
2

. The functions are approximated by the multidomain Chebyshev-Gauss–

Lobatto interpolation IC
N u.
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Suppose that the parameters ε and kx are piecewise constants:

ε =

{
1, 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 1,
4, 0.5 ≤ x ≤ 1, 0 ≤ y ≤ 1,

kx =

{
4, 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 1,
16, 0.5 ≤ x ≤ 1, 0 ≤ y ≤ 1,

and ky = 8. The functions are discontinuous at x = 0.5. The domain is decomposed as follows:

Ω̄ =
{
[0, 0.5] ∪ [0.5, 1]

}
×
{
[0, 1]

}
.

Figure 2 displays the shape of u1(x, y) and u2(x, y). It is clear that u1(x, y) is discontinuous
and u2(x, y) is weak discontinuous at x = 0.5. Table 2 gives the discrete L2-errors of the Chebyshev-
Gauss–Lobatto interpolation for functions u1, u2. The results show the spectral accuracy of the
multidomain interpolation for the discontinuous functions.

(a) u1 (b) u2

Figure 2. The shapes of u1(x, y) and u2(x, y).

Table 2. L2-errors of Chebyshev-Gauss–Lobatto interpolation for u1(x, y) and u2(x, y).

Nx Ny Err(u1) Order Err(u2) Order

(12,26) 26 8.30× 10−8 - 4.87× 10−8 -
(16,32) 32 8.32× 10−12 h̄32.00 4.99× 10−12 h̄31.93

(20,38) 38 7.52× 10−16 h̄54.18 7.74× 10−16 h̄51.04

6. Conclusions

In the paper, we have given some important approximation results of Chebyshev
interpolation operators in Legendre norm. The Chebyshev interpolation operators at
the Chebyshev–Gauss–Lobatto points is discussed mainly. Moreover, we considered the
cases of single domain and multidomain for both one dimension and multi-dimensions,
respectively. The approximation results in the Legendre norm are derived. These results
play an important role in numerical integration and numerical analysis of the Legendre–
Chebyshev spectral method and the Clenshaw–Curtis quadrature.
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