
mathematics

Article

Deep Learning Models for Predicting Monthly TAIEX to
Support Making Decisions in Index Futures Trading

Duy-An Ha 1 , Chia-Hung Liao 2 , Kai-Shien Tan 3 and Shyan-Ming Yuan 2,*

����������
�������

Citation: Ha, D.-A.; Liao, C.-H.; Tan,

K.-S.; Yuan, S.-M. Deep Learning

Models for Predicting Monthly

TAIEX to Support Making Decisions

in Index Futures Trading. Mathematics

2021, 9, 3268. https://doi.org/

10.3390/math9243268

Academic Editors: Vladimir A.

Plotnikov and Massimiliano Ferrara

Received: 16 November 2021

Accepted: 13 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 EECS International Graduate Program, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
hdan.c@nycu.edu.tw

2 Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
aiallen.cs07g@nctu.edu.tw

3 Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University,
Hsinchu 300, Taiwan; tkaishien.cs08g@nctu.edu.tw

* Correspondence: smyuan@nycu.edu.tw

Abstract: Futures markets offer investors many attractive advantages, including high leverage,
high liquidity, fair, and fast returns. Highly leveraged positions and big contract sizes, on the other
hand, expose investors to the risk of massive losses from even minor market changes. Among the
numerous stock market forecasting tools, deep learning has recently emerged as a favorite tool in
the research community. This study presents an approach for applying deep learning models to
predict the monthly average of the Taiwan Capitalization Weighted Stock Index (TAIEX) to support
decision-making in trading Mini-TAIEX futures (MTX). We inspected many global financial and
economic factors to find the most valuable predictor variables for the TAIEX, and we examined three
different deep learning architectures for building prediction models. A simulation on trading MTX
was then performed with a simple trading strategy and two different stop-loss strategies to show the
effectiveness of the models. We found that the Temporal Convolutional Network (TCN) performed
better than other models, including the two baselines, i.e., linear regression and extreme gradient
boosting. Moreover, stop-loss strategies are necessary, and a simple one could be sufficient to reduce
a severe loss effectively.

Keywords: stock market prediction; deep learning; machine learning; Taiwan Capitalization Weighted
Stock Index; Mini-TAIEX futures; simulated trading

1. Introduction

Predicting the stock market is a challenging task. The difficulties arise mainly from its
non-stationary nature, noisy data, and high volatility [1]. Since stock prices are influenced
by numerous factors, such as the characteristics of industries, the economic condition
of the company, political events, news, the movement of other stock markets, and even
the psychology of investors [2,3], the changes in stock prices resemble a random walk
process [4]. Hence, it is hard to predict future stock prices based on their past movement
or trend.

Nevertheless, numerous empirical research studies [1–3,5,6] have shown that the stock
market can be predicted to some extent, and currently, machine learning is one of the
preferred techniques for stock price prediction. Some studies have shown that we can
achieve quite high accuracy in predicting stock prices using machine learning techniques.
For example, Weng et al. [7] adopted three conventional machine learning models and
reported an accuracy up to 85% in predicting AAPL stock movement one day ahead.
Among various machine learning techniques, deep learning has emerged as a promising
tool that can bring breakthroughs in this research area, as it has outperformed traditional
machine learning methods in many disciplines, such as Natural Language Processing
(NLP), computer vision, medicine, biology, playing games, and robotics [5].

Mathematics 2021, 9, 3268. https://doi.org/10.3390/math9243268 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1290-2418
https://orcid.org/0000-0003-3794-1042
https://orcid.org/0000-0002-3621-9528
https://doi.org/10.3390/math9243268
https://doi.org/10.3390/math9243268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243268
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243268?type=check_update&version=2

Mathematics 2021, 9, 3268 2 of 20

The Taiwan Capitalization Weighted Stock Index (TAIEX) is a stock market index
for measuring the performance of all stocks listed on the Taiwan Stock Exchange (TAIEX)
and is the most prominent benchmark of Taiwan’s securities market. TAIEX futures (TX)
and Mini-TAIEX futures (MTX) are stock market index futures that use the TAIEX as
the underlying asset. Considering annual trading volumes, TX and MTX are among
the top three equity index futures in Taiwan (for more information on the highlights of
annual trading volume, please see https://www.taifex.com.tw/enl/eng7/annualTrading,
accessed on 30 September 2021). The rules for trading TX and MTX are almost identical
except that the contract size of MTX is smaller than that of TX, i.e., NT$50 per index
point compared to NT$200 per index point. In regular trading sessions, investors can
trade many MTX contracts with different delivery months: the spot month, the next
two calendar months, and the next three quarterly months. Weekly futures can also
be listed in a given trading week (for more information on MTX trading rules, please
see https://www.taifex.com.tw/enl/eng2/mTX, accessed on 30 September 2021). Our
objective is to predict the Monthly Average of TAIEX (MAT) to support decision-making
in trading monthly MTX contracts. Thus, the target users of our approach are individual
investors who like to invest in the futures market for the relatively long term.

This study presents an approach to apply deep learning network architectures to
predict MAT with different forecast distances. In our approach, we adopted three deep
learning architectures for time series modeling, namely Long Short-Term Memory (LSTM),
the hybrid architecture of Convolutional Neural Network (CNN) and LSTM called CNN-
LSTM, and Temporal Convolutional Network (TCN). Since the TAIEX comes from an
export-oriented economy that is very sensitive to changes in international markets, we
assume that global financial and economic factors, such as world indices and commodity
prices, could contribute to the prediction of the TAIEX. Therefore, we have inspected many
global factors and selected the most valuable features by evaluating their correlation with
TAIEX. Furthermore, to denote the effectiveness and provide guidance on applying the
predicted models in practice, we conducted a simulation on trading MTX with a simple
trading strategy. In summary, our main contributions include:

• We have proposed an approach to apply time series modeling based on deep learning
for predicting MAT.

• We performed extensive experiments to evaluate three different deep learning archi-
tectures on the task of supporting decision-making in trading MTX contracts.

• We proposed and compared the effectiveness of two simple stop-loss strategies that
can help avoid losses in trading index futures using predictive models.

The rest of this article is structured as follows. Section 2 is a literature review. Section 3
introduces three deep learning architectures used in this study. Section 4 and Section 5
present the details of our proposed approach and the experimental results, respectively.
Lastly, Section 6 concludes this article and gives some directions for future work.

2. Literature Review

Table 1 provides a summary of recent studies that apply deep learning techniques to
stock market prediction. The reader can refer to [1–3,5,6] to have more comprehensive and
detailed reviews.

https://www.taifex.com.tw/enl/eng7/annualTrading
https://www.taifex.com.tw/enl/eng2/mTX

Mathematics 2021, 9, 3268 3 of 20

Table 1. A summary of academic articles on stock market prediction based on deep learning.

Article Target Data Input Variables Target Output Main Method Simulated
Trading Year

Wang et al. [8] SSE, TAIEX, KOSPI, and
NIKKEI

Stock prices Price; Daily RNN N 2016

Persio and Honchar [9] S&P 500 Stock prices Direction; Daily MLP, RNN,
CNN

N 2016

Chong et al. [10] KOSPI 38 stock returns Intraday stock returns Return; 5 min ahead DNN N 2017
Gunduz et al. [11] Borsa Istabul BIST 100

stocks
Technical indicators,
stock prices, temporal
variable

Direction; hourly CNN N 2017

Li and Tam [12] HIS, SSE, SZSE, TAIEX,
NIKKEI, KOSPI

Technical indicators,
stock prices

Price; Daily LSTM N 2017

Fischer and Krauss [13] S&P 500 Stock prices Direction; Daily LSTM N 2018
Baek and Kim [14] S&P 500, KOSPI Stock prices Price; Daily LSTM Y 2018
Chung and Shin [15] KOSPI Technical indicators,

stock prices
Price; Daily LSTM N 2018

Chen et al. [16] CSI 300 futures contract Transaction data Price; 1 min ahead DNN N 2018
Zhou et al. [17] Stocks in CSI 300 Technical indicators Price; 1 min ahead GAN based

on LSTM and
CNN

N 2018

Zhong and Enke [18] SPY Technical indicators, fi-
nancial and economic
factors

Direction; Daily DNN, ANN Y 2019

Hoseinzade and Harati-
zadeh [19]

S&P 500, NASDAQ, DJI,
NYSE, and RUSSELL

Technical indicators,
stock prices, financial
and economic factors

Direction; Daily CNN N 2019

Sim et al. [20] S&P 500 Technical indicators Direction; 1 min ahead CNN N 2019
Wen et al. [21] S&P 500 and its individ-

ual stocks
Stock prices Price; Daily CNN N 2019

Lee et al. [22] US stocks Stock chart images of
daily closing price and
volume data

Return; Daily CNN N 2019

Long et al. [23] CSI 300 Stock prices Direction; 5–30 min
ahead

MFNN based
on CNN and
LSTM

Y 2019

Pang et al. [24] Shanghai A-share com-
posite index , and 3
stocks

Technical indicators,
stock prices

Price; Daily LSTM N 2020

Kelotra and Fiaz [25] 6 stocks Technical indicators Price; Daily ConvLSTM N 2020
Chung and Shin [26] KOSPI Technical indicators Direction; Daily CNN N 2020
Nabipour et al. [27] 4 stock market groups Technical indicators Price; 1–30 days ahead ANN, RNN,

LSTM
N 2020

Long et al. [28] CITIC Securities, GF Se-
curities, China Pingan

Transaction records
data and public market
information

Direction; 1 day ahead
for stock price move-
ment; 5- and 7-days
trend

DSPNN based
on CNN and
LSTM

N 2020

Nabipour et al. [29] 4 stock market groups Technical indicators Direction; Daily RNN, LSTM,
DT, RF, Ad-
aboost, XG-
Boost, SVC, NB,
KNN, LR, ANN

N 2020

Lei et al. [30] SSE Technical indicators,
stock prices, investor
attention factor synthe-
sized by Baidu search
index

Volatility; Daily TCN N 2021

DSPNN: Deep Stock-trend Prediction Neural Network, ANN: artificial neural network, MLP: Multi-layer Perceptron, GB: Gradient Boosting, DT:
Decision Tree, RF: Random Forest, SVC: Support Vector Classifier, NP: Naïve Bayes, KNN: K-Nearest Neighbors, LR: Logistic Regression, SVR: Support
Vector Regression, AR: Autoregression, Y: Yes, N: No. Column “Target output” shows the type of the output variable and how far in the future that the
model can predict, e.g, “Price; Daily” means that the output of the model is a stock price (real number) and this is a predicted value for one day ahead.

Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) are
deep learning architectures that have dominated the field of stock market forecasting.
RNN is a kind of neural network, but with hidden states that allow it to “remember”
previous events in time series data, hence improving its ability to predict the subsequent
events. LSTM is a well-known improved version of RNN with the ability to learn long-term
dependencies and is famous for tasks in NLP. Almost all the works using RNN or LSTM

Mathematics 2021, 9, 3268 4 of 20

model the problem as a regression problem [8,12,14,15,24,27], only a few studies try to
build classification models [9,13,29]. CNN is well known in the computer vision domain,
and its ability to extract efficient features has been proven in various disciplines. In contrast
with RNN and LSTM, CNN was not developed to work with time series data. Hence,
studies on the application of CNN in stock market prediction have only become popular
recently. However, Persio and Honchar [9] have empirically demonstrated that CNN can
outperform LSTM in predicting the direction of stock market movement. Moreover, we
also note that most studies using CNN have attempted to build classifiers for predicting
the direction of stock market movement [9,11,19,20,26] instead of regression models [21,22].
In order to exploit the capabilities of CNN in feature extraction and LSTM in handling time
series data, some studies have tried to apply the hybrid deep learning architecture with the
combination of CNN and LSTM to predict stock market prices [23,25] and directions [28].

Deep Neural Network (DNN), an early deep learning architecture, has also been
used in many studies. DNNs are typical feedforward neural networks with multiple
layers between the input and output layers. Zhong and Enke [18] employed DNN with
PCA, while Chong et al. [10] studied the performance of DNN with PCA as well as
Restricted Boltzmann Machine (RBM) and autoencoder for unsupervised feature extraction.
Chen et al. [16] also used DNN with RBM and autoencoder, but they were used for
initializing the weights and pre-training the network.

In addition to the above architectures, many other articles have proposed other types
of deep learning models for stock market prediction. Zhou et al. [17] proposed a Generative
Adversarial Network (GAN) employing LSTM for the generative model and CNN for the
discriminative model to predict high-frequency stock prices. Their extensive experiments
showed that the proposed model could efficiently enhance the accuracy of stock price pre-
diction and reduce errors. Lei et al. [30] applied a new deep learning architecture, namely
Temporal Convolutional Network (TCN), to predict the volatility of Shanghai Securities
Composite Index (SSE). They found that the TCN model with an investor attention factor
worked better than many other models, including the TCN model without investor atten-
tion, the LSTM model with investor attention, and three traditional econometric models.
Long et al. [23] proposed an innovative end-to-end architecture called Multi-Filters Neural
Network (MFNN). It is particularly suitable for price prediction and feature extraction from
financial time series data. MFNN was constructed based on the integration of convolutional
filters and recurrent filters for feature learning. Their experiments have shown that the
proposed model achieves better results in terms of accuracy, stability, and profitability than
traditional machine learning methods, statistical models, and single-structure networks
(CNN, RNN, and LSTM).

Besides the main method, Table 1 also provides other information, including the input
variables, the target output, and whether simulated trade exists in the studies. The two
most common input variables used for stock market forecasting are technical indicators
and stock prices. By applying mathematical calculations, technical indicators are derived
from stock prices, such as opening price, closing price, low price, high price, and volume.
In terms of target output, most studies have attempted to predict the direction or price of
stocks one day ahead, and it is rare to find a study that tried to predict further into the
future. Finally, we note that most studies of stock market prediction do not show how
their models are applied in practice. Of the 23 articles in Table 1, we found only three
articles [14,18,23] that suggested how to leverage their models to develop trading strategies
by providing a trading simulation in their experiments.

TAIEX is one of the most popular stock market indices used in the literature to evaluate
the proposed stock market forecasting methods [1]. However, not too many studies
currently use deep learning to forecast the TAIEX. Wang et al. [8] proposed ST-ERNN
model, which integrates an Elman recurrent neural network (ERNN) with a stochastic time
effective function to forecast the values of SSE, TAIEX, KOSPI, and NIKKEI. They reported
that ST-ERNN outperformed the backpropagation neural network (BPNN), the ERNN,
and the stochastic time-effective neural network (STNN). Li and Tam [12] presented a

Mathematics 2021, 9, 3268 5 of 20

hybrid model combining the real-time wavelet denoising and the LSTM to predict the
values of six East Asian stock indices, including the TAIEX. The experimental results
indicated that the hybrid model has remarkable performance improvement compared
with the original LSTM model. Hsieh et al. [31] introduced an integrated system using
wavelet transforms to eliminate noise from stock price time series and RNN to build a
model to predict the values of DJIA, FTSE, NIKKEI, and TAIEX. In this paper, the RNN
weights and biases were optimized by the artificial bee colony algorithm under a parameter
space design. The stepwise regression-correlation selection was adopted to select the input
variables that affect the target variable the most. The experiments showed that the proposed
model was superior to many conventional models, namely BPNN, ANN optimized by
the ABC, and fuzzy time series model. All three studies [8,12,31] attempted to predict the
values of stock market indices for the next day, and the input variables were stock prices or
stock prices combined with technical indicators.

For predicting the monthly TAIEX average, Sun et al. [32] and Ha et al. [33] adopted
linear regression while Tan et al. [34] tried both linear regression and extreme gradient
boosting. All three studies used correlation analysis and statistical hypothesis testing
for feature selection and worked with monthly averages for both the independent and
dependent variables. The forecast distance is one and one to five months ahead in [32]
and [33,34], respectively. They also used a similar strategy to our study but without a
stop-loss strategy.

3. Background
3.1. LSTM

LSTM networks are a special kind of RNN networks that can learn long-term de-
pendencies and overcome the problem of vanishing or exploding gradients in standard
RNN networks. Hochreiter and Schmidhuber proposed LSTM in 1997 [35], and it has
subsequently been improved by many researchers. LSTM works remarkably well on a
variety of problems and is widely used today.

A typical LSTM network usually consists of one or more LSTM layers, followed by a
Fully-Connected layer (FC). The network’s input is a sequence of input features, while the
output can be a sequence of data or a value, depending on the specific application. Figure 1
illustrates an unrolled representation of an LSTM network with one LSTM layer. In broad
terms, LSTM networks look similar to RNN networks, except for the LSTM memory block.

FC

Outputs ...

...Fully connected layer

LSTM layer

FCFCFC

...

... LSTMLSTMLSTMLSTM

Inputs

Figure 1. An unrolled LSTM network with one LSTM layer. xt is the input features at time step t.

Figure 2 demonstrates the inner structure of the LSTM memory block. Instead of
having only one hidden state as in RNN, the LSTM has another hidden state called the
cell state. The cell state stores long short-term memory, while the hidden state focuses
on the next input to predict the output. In this figure, ht, ct, and xt represent the hidden
state, the cell state, and the input features at time step t, respectively. The rectangles, called

Mathematics 2021, 9, 3268 6 of 20

gates, represent four linear layers. The activation functions of the gates labeled F, I, and O
are sigmoid, while the activation function of the gate labeled T is tanh. The circles denote
element-wise operations, including addition (+), multiplication (×), and tanh function
(fth). At each time step t, the inputs of the four gates are a concatenation of xt and the
previous hidden state ht−1. These gates allow the LSTM block to regulate the flow of
information as follows:

• The forget gate F defines which things should be forgotten in cell state ct−1.
• The input gate I cooperates with gate T to update the cell state with new input xt and

the previous hidden state ht−1.
• The output gate O specifies what information from the new cell state ct is used to

generate the new hidden state ht. The new hidden state is also used as the output of
the LSTM block.

×

F

O

×

T

+

×

		𝑓!"

𝑐!"#

ℎ!"#

𝑥!

ℎ!

𝑐!

I

Figure 2. Inner structure of LSTM memory block following Olah [36] and Chevalier [37].

3.2. CNN-LSTM

CNN-LSTM is a hybrid architecture that can take advantage of both CNN and LSTM.
Specifically, CNN layers are used for feature extraction from the input data, while LSTMs
support sequence prediction. The combination of CNN and LSTM is suitable for appli-
cations with visual time series data, such as generating textual descriptions from videos.
However, with a slight adaptation, it can also work with other types of time series data.
In practice, CNN and LSTM can be integrated in various ways to form CNN-LSTM net-
works [38–41]. In this study, we use a CNN-LSTM architecture as in Figure 3. This
architecture is similar to those used by Donahue et al. [40] and Livieris et al. [41]. It in-
cludes a CNN network that receives the input sequence, and the output is then fed into a
subsequent LSTM network. In the CNN network, 1D convolution is used because the time
series data in our problem has a 1D structure.

CNN network
(1D Convolution)

Input
sequence LSTM network Output

Figure 3. CNN-LSTM architecture using in our study.

3.3. TCN

Bai et al. [42] presented a temporal convolutional network architecture in 2018; it is a
modified version of CNN for sequence modeling problems. This study showed that TCNs
could outperform conventional recurrent networks, i.e., LSTM, GRU, and standard RNN,
on various tasks and datasets. TCNs can overcome the inherent drawbacks of recurrent
networks, such as the vanishing gradient problem or the lacking memory retention. In ad-
dition, TCNs can improve the computational efficiency of the model compared to recurrent
networks by allowing parallel computation of outputs.

TCN was developed based on two principles that differ from previous convolutional
architectures for sequential data: (1) the convolutions used in the networks should be causal
to ensure that the leakage of information from the future to the past cannot happen, and (2)

Mathematics 2021, 9, 3268 7 of 20

as a standard RNN network, TCN can take inputs of arbitrary sequence length and map
them to an output sequence of the same length. TCN employs causal convolutions to satisfy
the first requirement. In causal convolutions, the output at time steps t depends only on
the inputs up to time step t in the preceding layer. For the second design goal, the authors
adopted the 1D fully-convolutional network architecture [43] with zero padding to the left
of the input sequence.

Besides the two design goals, another desirable property of the TCN model is that the
output at time step t depends on all elements from time step 0 to t in the original input; this
is referred to as “full history coverage.” This requirement can lead to an extremely deep
network or a large kernel size for a large sequence length. Therefore, dilated convolution
was proposed to avoid making the network too complex. Unlike conventional convolution,
in dilated convolution, the distance d between the elements of the input sequence used to
compute one entry of the output sequence can be greater than 1, and d is called the dilation
factor of dilated convolution. This mechanism allows the fixed-size kernel to process a
wider area by skipping part of the input to obtain more information. Figure 4 depicts a
dilated casual convolution with kernel size k = 3 and d = 2i at i-th network layer. In this
example, the network with three dilated convolutional layers can have a receptive field
(the receptive field is the set of elements of the original input on which a given output
element depends) up to 15.

zero padding

𝑥! 𝑥" 𝑥#

𝑦#!

𝑥"$

𝑦#" 𝑦#"$𝑦##

Input layer

Hidden layer

Hidden layer

Output layer

𝑑 = 1, k=3

𝑑 = 2, 𝑘 = 3

𝑑 = 4, 𝑘 = 3

𝑦#% 𝑦#$ 𝑦#& 𝑦#' 𝑦#(𝑦#) 𝑦#* 𝑦#"! 𝑦#"" 𝑦#"# 𝑦#"%

𝑥% 𝑥$ 𝑥& 𝑥' 𝑥(𝑥) 𝑥* 𝑥"! 𝑥"" 𝑥"# 𝑥"%

…

…

Figure 4. An illustration of dilated causal convolution following Bai et al. [42]. The circles depict the
input/output of the dilated causal convolutional layers.

To make the deep and large TCNs stable, a residual block [44] is used to replace
a single dilated causal convolutional layer. Figure 5 shows the structure of a residual
block with kernel size k and dilation factor d. A residual block consists of two dilated
causal convolutional layers with a nonlinear activation unit, i.e., the rectified linear units
(ReLU), for each layer. Weight normalization [45] and dropout [46] are also added to
each convolutional layer for normalization and regularization. The output of the second
convolutional layer is added to the input of the residual block through a connection
called residual connection before it is passed to the ReLU activation unit and becomes the
output of the residual block. With the residual connection, the stacked nonlinear layers
fit a transformation function F(x) = H(x)− x instead of the entire transformation H(x).
The optimization of F(x) is assumed to be simpler than that of the original function H(x).
In reality, the residual connection has proven useful in very deep networks to avoid the
problem of degradation [44]. Lastly, since the output of the convolutional layers and
the input of the residual block could have different channel widths, the optional 1× 1
convolution is used to ensure that they have the same shape to perform the element-
wise addition.

Mathematics 2021, 9, 3268 8 of 20

+

Dilated causal convolution layer
Dilated causal convolution (𝑘, 𝑑)

Weight normalization

ReLU

Dropout
Optional 1×1
convolution

ReLU Residual block (𝑘, 𝑑)

Input for next block

Output from previous block

Dilated causal convolution layer

Figure 5. Structure of a residual block (k, d) following Bai et al. [42].

4. Method
4.1. The Framework for Predicting Monthly Average of TAIEX

As mentioned in the introduction section, we aim to predict the Monthly Average
of TAIEX (MAT) to support decision-making when trading MTX contracts in the futures
market. Because the delivery months of MTX contracts traded on the Taiwan Futures
Exchange can vary from 1 to 12 months, we need models that can predict the MATs of
different months in the future. We have limited our framework to support the forecast
distance s of up to five months in the future (s ∈ [1 . . . 5]) for two reasons: The further in
the future, the harder it is to predict the value of a variable in general, and the low trading
volume (the daily trading volume of the contracts can be found at the following link:
https://www.taifex.com.tw/enl/eng3/futDailyMarketView, accessed on 30 September
2021) of contracts that have long delivery months.

In this study, the main structure of the framework for building models to predict
MAT includes three stages: (1) identifying potential factors that have a relationship with
the development of TAIEX, (2) data preprocessing, and (3) training models. For the first
and second stages, we used an approach similar to that used in our previous study [33].
The details of these stages are described later in this section.

4.1.1. Identifying Potential Factors

Because of economic globalization, stock markets around the world are always in
contact with and affect one another to some extent [19]. This connection is even stronger
for export-oriented economies such as Taiwan’s economy. Hence, we mainly considered
global financial and economic factors as potential features for predicting the TAIEX. Thus,
we examined a total of 46 potential factors, most of them fall into three categories: World
indices, commodity prices (including fuel prices and precious metal prices), and New
Taiwan Dollar (TWD) exchange rates. Readers can refer to Table A1 in Appendix A for
more details about these factors. In this study, we considered much more potential factors
compared to previous studies [32–34] (References [32–34] inspected 16 and 22 factors,
respectively), and the closing prices of these independent variables were collected daily. It
is worth noting that the target variable TAIEX was also collected daily, but the opening
price was used instead of the closing price (we assume that the opening and closing prices
can be used interchangeably).

4.1.2. Data Preprocessing

In this stage, we performed several steps to prepare the data for training the forecasting
models. These steps include handling missing values, identifying the most valuable
features for predicting the TAIEX, and feature transformation.

1. Handling missing values: When collecting daily financial and economic factors
representing global stock markets, some missing values occurred in the dataset due

https://www.taifex.com.tw/enl/eng3/futDailyMarketView
https://www.taifex.com.tw/enl/eng3/futDailyMarketView

Mathematics 2021, 9, 3268 9 of 20

to the different holidays in each country or region. Since there are only a few missing
values in the dataset, we adopted a simple solution to this problem: to fill the missing
value with the value of the preceding trading day.

2. Identifying the most valuable features: To select the most relevant independent
variables from all candidates, we evaluated the pairwise correlation between each
variable and the target variable TAIEX, and then picked out only those with a high
correlation value. Correlation reflects the degree to which two variables are linearly
associated, and the value is usually in the range of [−1, 1]. The positive or negative
sign indicates whether two variables are positively or negatively related, and −1
or 1 means that two variables have a perfect negative or positive correlation. We
used Spearman’s rank correlation coefficient to measure the correlation. Compared to
another well-known correlation coefficient, Pearson’s coefficient, which only works
with a linear relationship between two variables, Spearman’s coefficient can also work
with monotonic relationships. In addition, the Spearman correlation is less sensitive
to outliers than the Pearson correlation. The optimized subset of features may differ
for each forecast distance s; therefore, we calculated the pairwise correlation for each
case of s. In this way, the time interval between any pair of values of the independent
variable and the target variable in the calculation of correlation was defined by s ∗ 22,
where 22 is the average number of regular trading days in a month for a stock market.
In addition to the correlation coefficient, we also performed a hypothesis test of the
“significance of the correlation coefficient” to ensure that the linear relationship in
the sample data was strong enough to reflect the actual relationship in the whole
population. Any feature having the significance of the correlation coefficient (p-value)
less than the significance level 0.05 would not be selected.

3. Feature transformation: We applied two well-known feature transformation tech-
niques to enhance the framework’s performance. The first technique is standard-
ization, a feature scaling method that allows normalizing the range of values of
independent variables. Through standardization, the values of each variable have a
zero mean and unit variance. The second technique is Principal Component Analysis
(PCA), a popular method for dimensionality reduction. Many studies have shown
that using PCA can improve the performance of stock prediction models in terms
of accuracy and stability [10,18,47,48]. PCA helps preserve only the majority of the
variance (information); hence the complexity of the models and the training time
can be significantly reduced. Moreover, by reducing the complexity, the overfitting
problem can also be prevented to a certain extent. Our framework tried to select the
number of components n so that the amount of variance they can explain is at least
95% of the total variance.

4.1.3. Training Models

The framework trains models based on three deep learning architectures, LSTM, CNN-
LSTM, and TCN, and each model works for a particular forecast distance s. Both LSTM
and TCN networks require input as sequences of feature values for training. By using 1D
convolution, the CNN-LSTM networks can also work with the input sequences. Specifically,
the training set for all models is a set of pairs (Xt, Yt), where Xt = (xt−sl , . . . , xt−1, xt) and
Yt = (yb+1, . . . , yb+21, yb+22) with b = t + (s − 1) × 22 are the input sequence and the
corresponding target output for the networks at time step t ∈ N, respectively. Yt contains
22 values corresponding to the values of the TAIEX on 22 trading days of a month. xt and
yt are the feature vector with size n and the value of the TAIEX at time step t, respectively.
Finally, sl is the length of the input sequences, called the sequence length.

Since TAIEX has large values, which can cause the learning process to be unstable,
we scaled them down by simply dividing by a constant that is 10,000 in our experiment.
Moreover, given an input sequence Xt, the output Ŷt of the models in our framework
is the prediction of TAIEX for 22 days in the target month, which does not match our

Mathematics 2021, 9, 3268 10 of 20

target, namely MAT. Therefore, we took the average of the 22 values in Ŷt to represent the
predicted value of MAT.

To build models used to support decision making in trading MTX in a year Y, we
adopted a two-stage training approach:

1. Hyperparameter tuning: We split the available data into a training set Dtrain and a
validation set Dval . The data from year (Y− 2) backward are used for Dtrain, while
the data from year (Y− 1) are used for Dval to tune two hyperparameters: the batch
size bs used in the Stochastic Gradient Descent and the sequence length sl.

2. Training final model: The framework retrains the models using all available data
(Dtrain ∪ Dval) and the optimal hyperparameters found in the previous phase. These
models are the final models that will be used to predict MATs in year Y.

4.2. Simulated Trading

To evaluate the performance of the models in practice, we conducted simulations
on MTX trading, where the selection of MTX contracts for investment was based on the
predictions of the models. Concerning trading strategy, we adopted a similar approach as
in [33], which is suitable for individual investors who do not want to spend too much time
tracking the volatility of the stock market. The trading fee was ignored in the simulations
for simplicity but without loss of generality. The trading period for one simulation was one
year, and the principal amount was NT $200,000. On the first trading day of each month,
only one MTX contract that was expected to rise was considered for purchase, i.e., we only
hold long positions during trading time. If more than one contract was predicted to rise,
the highest was selected. After we purchased a contract, we held it until it met one of the
following conditions: (1) the expected value was reached, (2) the contract’s delivery date
was reached, or (3) the contract’s value dropped to the stop-loss threshold Vst.

Since the futures market is highly volatile and somewhat unpredictable, we need a
mechanism to mitigate the loss when the market trend suddenly changes in an unexpected
direction. Therefore, we have proposed two simple stop-loss strategies that can be used
with the above trading strategy. These strategies differ only in the way the stop-loss
threshold is defined:

1. Manual Determination (MD strategy): Individual investors can define the threshold
based on their bearable loss, i.e., if the investor can afford a loss τ, he can hold
their long position in an MTX contract until its value falls to the stop-loss threshold
Vst = Vo − τ, where Vo is the value of the contract at the time the investor owns the
contract.

2. Inferring from the predicted Standard Deviation (STD strategy): Since the contract’s
value can fluctuate for a while before reaching our predicted value, we do not want to
abandon a contract too early due to a temporary drop in a “normal” range. We have
proposed to take the predicted standard deviation σ̂ of the daily predicted contract’s
values to determine the normal range for the target month. In this way, we allow the
value to fall up to (V̂ − σ̂), where V̂ is the predicted MAT value and σ̂ is calculated
from the models’ 22 output values for the target month. In conjunction with the
affordable loss concept mentioned earlier, we suggested to compute the stop-loss
threshold as Vst = min(V̂ − σ̂, Vo − τ).

5. Empirical Results

This section presents our experimental results on the performance of different deep
learning models built with the framework. The experiments were implemented in Python
using the PyTorch framework.

5.1. Data Specification

The datasets used for the experiments include the daily opening price of TAIEX and
the daily closing price of 46 factors as mentioned in Section 4.1.1. The data were collected

Mathematics 2021, 9, 3268 11 of 20

from January 2008 to December 2020 and were mainly obtained from Yahoo Finance.
(https://finance.yahoo.com/, accessed on 30 September 2021).

At the step of identifying valuable features, we considered features with pairwise cor-
relation in [−1,−0.5) ∪ (0.5, 1] and p-value < 0.05 as the most useful features. As showing
in Table 2, the number of selected features was 24 and 25 for s ∈ {3, 5} and s ∈ {1, 2, 4},
respectively. Most of the selected features were the world indices; only a few features
were from commodity prices and TWD exchange rates. Moreover, the selected features
were almost the same for all forecast distances s, as we can see in Figure 6. In Figure 6a,
the potential features were sorted by their correlation coefficient with s = 1, and the
most correlated features are those whose correlation coefficient is outside the gray area.
Figure 6b represents the p-value of the most highly correlated features, and the black
dotted line denotes the threshold p-value = 0.05. There are just a few features that fail the
significance test.

0 10 20 30 40
i-th feature

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

's
co

rre
la

tio
n

co
ef

fic
ie

nt

s=1
s=2
s=3
s=4
s=5

(a)

0 5 10 15 20 25
i-th feature

10 104

10 90

10 76

10 62

10 48

10 34

10 20

10 6

p-
va

lu
e

s=1
s=2
s=3
s=4
s=5

(b)

Figure 6. The pairwise correlation coefficient and the p-value of the potential features. (a) Correlation
coefficient; (b) p-value.

Table 2. Types of feature sets and the number of selected features for each forecast distance s after
applying correlation analysis and hypothesis test.

Type of Feature Set # of Features
of Selected Features for Each Forecast Distance

{1, 2, 4} {3, 5}

World Indices 25 20 19
US Treasury bonds rates 4 0 0
Commodity 8 1 1
TWD exchange rates 7 2 2
Companies 2 2 2

Total 46 25 24

Lastly, by applying PCA for dimensionality reduction, the number of selected features
of the training dataset is reduced to 4 and 5 for s ∈ {1, 5} and s ∈ {2, 3, 4}, respectively.

5.2. Models Setting

Since all deep learning models have some hyperparameters, we had to select values
for these hyperparameters before training the models. Roughly speaking, there are two
types of hyperparameters: hyperparameters related to a specific network structure and
general training hyperparameters. In our experiments, most of the hyperparameters were
fixed, except for the batch size bs and the sequence length sl, for which the system tries to
find the optimal values from a set of values through the training process.

1. Hyperparameters related to specific network structure

(a) LSTM:

• Number of LSTM layers: 2

https://finance.yahoo.com/

Mathematics 2021, 9, 3268 12 of 20

• Number of neurons in hidden layer: 200
• Dropout probability: 0.3 (using dropout between LSTM layers and before

passing the output of the final LSTM layer to the FC layer to reduce
overfitting. A good value for dropout probability is between 0.3 and
0.9 [46]. We selected 0.3, since the number of neurons in the hidden layer
is not much.)

(b) CNN-LSTM:

• For CNN network:

– Number of 1D convolution layers: 1
– Out channels of 1D convolution layer: 2n
– Kernel size 5 and stride 5

• For LSTM network: same as the above LSTM network.

(c) TCN:

• Number of residual blocks (TCN networks require a minimum number
of residual blocks, which depends on the sequence length, for full history
coverage):

⌈
sl−1

4 + 1
⌉

• Kernel size 3 and stride 1
• Dilation factor: 2i for i-th residual block
• Out channels of the dilated causal convolutions: 22
• Dropout probability: 0.3

2. General training hyperparameters

• Input sequence length sl: {132, 264, 396, 528, 660, 792} (these values correspond
to the number of trading days in 6, 12, 18, 24, 30, and 36 months, respectively).

• Batch size bs: {16, 32, 64, 128}
• Optimizer: Adam

– Learning rate: 5× 10−4

– β1 = 0.9, β2 = 0.999
– eps = 10−8

– Weight decay: 10−4

• Loss function: Mean squared error
• Max Epochs: 100
• Early training-stopped condition: No further improvement on the loss of valida-

tion data over 10 consecutive epochs.

Most of the general training hyperparameters were the default and common values.
For example, the values for β1, β2, and eps are the default values set by the PyTorch frame-
work for the Adam optimizer. Our principle in choosing the hyperparameters for the
network structures was to form a typical network model for each type that is neither too
complicated nor too simple.

5.3. Evaluation

In this study, two conventional machine learning models, Linear Regression (LR) and
eXtreme Gradient Boosting (XGBoost), were selected as baselines for comparison with the
performance of the three deep learning models. We took the same approach as Ha et al. [33]
and Tan et al. [34] to build models using LR and XGBoost, but used our dataset. We
assessed the performance of the models using two metrics: Root Mean Squared Percentage
Error (RMSPE) for various forecast distances and the profit in terms of the Rate of Return
(RoR) and index points gained in simulated trading in the three years 2018, 2019, and 2020.

Mathematics 2021, 9, 3268 13 of 20

Given a set of target MATs and their predicted values {vk, v̂k}K
k=1, the RMSPE is computed

as in Equation (1).

RMSPE =

√√√√100
K

K

∑
k=1

∣∣∣∣vk − v̂k
vk

∣∣∣∣2 (1)

5.3.1. RMSPE

Figure 7 compares the RMSPE of the five models. Overall, the RMSPE of all models is
lower in the first two years, 2018 and 2019, than in 2020. This can be explained in part by
the fact that 2020 was an unpredictable year because of the COVID -19 pandemic; therefore,
MAT has very high volatility in 2020, which can be observed in Figure 8. Indeed, as shown
in Figure 9, the standard deviation of MAT in 2020 is more than twice as high as in the
previous two years. Furthermore, as expected, the difficulty of the prediction increased as
the forecast distance enlarged, and this trend is even more clear in 2020.

1 2 3 4 5
Forecast distance (month)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SP

E

LR
XGBoost
LSTM
CNN-LSTM
TCN

(a)

1 2 3 4 5
Forecast distance (month)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SP

E

LR
XGBoost
LSTM
CNN-LSTM
TCN

(b)

1 2 3 4 5
Forecast distance (month)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SP

E

LR
XGBoost
LSTM
CNN-LSTM
TCN

(c)

Figure 7. RMSPE of models with different forecast distances in three years. (a) 2018. (b) 2019. (c) 2020.

Figure 8. Monthly average values of TAIEX in 3 years.

Mathematics 2021, 9, 3268 14 of 20

Figure 9. The profit gained from the simulated trading without using any stop-loss strategy.

In 2018 and 2019, LSTM appeared to perform better than the other models. In six out of
ten cases, LSTM was the best performing model. In 2020, however, TCN outperformed the
other models at all forecast distances, while LSTM was the worst model. Besides Figure 7,
Table 3 can help to compare the performance of models easier. This table shows the
count of cases (there are a total of 15 cases, i.e., five forecast distances multiplied by three
years) where a model was among the top one or two models ranked by the RMSPE metric.
From this perspective, the deep learning models were clearly superior to the baselines,
especially TCN and LSTM.

Table 3. The number of times a model is in the top one or two models ranked by the RMSPE metric.

LR XGBoost CNN-LSTM LSTM TCN

In top one model 0 0 2 6 7
In top two models 1 6 6 8 9

5.3.2. Profit

Figure 9 displays index points gained by simulated trading without using a stop-loss
strategy (Vst = −∞) and the corresponding RoR for each model in three years. The RoR
is shown above the head of the bars in percentage and is calculated as follows: RoR =
G ∗ Uv/I, where G, Uv, and I are the gained index points, the price per index point,
and the initial capital, respectively. In our experiments, we had Uv = 50 and I = 200, 000.
To illustrate the risk of investing in MAT, the standard deviation (STD) (STD is a common
measure of risk used in the financial industry) of MAT is also shown. Finally, the blue
line in the figure denotes the index points gained in the ideal case where we could predict
MAT exactly.

In 2018, LSTM had the best performance with 51% RoR, almost reaching the ideal
point. However, in the other two years, TCN was the best model, especially in 2020,
with 325% RoR, TCN was far above the other models and was not far from the ideal point.
LSTM also had a good performance in 2019 with 65% RoR, which was above both baselines.
However, its RoR was the lowest in 2020, although it was much higher relative to itself
in the previous two years. CNN-LSTM was probably the worst model among the deep
learning models. It had a good performance in 2020 with 138% RoR, above both baselines,
but its RoR was the lowest in the first two years and even deeply negative in 2018. These
results are consistent with the analysis of the RMSE in Section 5.3.1.

Figure 10 presents the profit achieved in simulated trading for the models using
different stop-loss strategies: None (Vst = −∞), MD50 (the MD strategy with τ = 50),

Mathematics 2021, 9, 3268 15 of 20

and STD50 (the STD strategy with τ = 50). Since the output of the LR and XGBoost models
are values of MAT, the STD strategy is not applicable to these two models.

Overall, both MD50 and STD50 can help prevent losses effectively. Figure 10a shows
that after applying stop-loss strategies, LR, CNN-LSTM, and TCN had very good RoR
instead of significant loss as in 2018.

Nevertheless, stop-loss strategies can also reduce the potential profit by abandoning a
contract that eventually rises to the predicted value after a temporary deep fall. Indeed,
we can observe this trend in Figure 10, and it was true for all models in the simulated
years. In practice, this problem can be mitigated by using more sophisticated trading
strategies, such as investing in another promising contract to immediately replace the one
taken out, rather than waiting until next month. Regarding the effectiveness of stop-loss
strategies, Figure 10 demonstrates that all models achieved almost the same RoR for both
MD50 and STD50, with the exception of TCN in 2018, where the trading with STD50 had
an RoR higher 2.5% than that with MD50. This result can be explained by the fact that
VSTD50

st was almost always equal to VMD50
st for most of the time in the simulations due to

(V0 − 50) ≤ (V̂ − σ̂). STD50 hardly helped investors have more profit than MD50 in this
experiment. However, in the ideal case where MAT and its associated standard deviation
could be predicted precisely, profit with STD50 can increase up to 7.3% and 25.9% in 2018
and 2019, respectively, compared to MD50. So we can expect that STD50 can perform better
if the accuracy of the models is improved. For more details on the profit in the ideal case
and the values of (V0 − 50) and (V̂ − σ̂) in the simulations, see Tables A2 and A3 in the
Appendix A.

Figure 10. Compare the profit getting by using different stop-loss strategies in three years. (a) 2018. (b) 2019. (c) 2020.

6. Conclusions

The empirical results show that the proposed approach can be used in practice to
support trading TX or MTX effectively, even with a simple trading strategy. External factors,
i.e., global financial and economic factors outside Taiwan stock market, are useful predictor
variables for TAIEX. Among the five models in this study, LSTM and TCN are the better
choices. Especially, LSTM is probably more suitable for the low volatility period, while
TCN can work effectively in a high volatility period. Nevertheless, stop-loss strategies
are always necessary, especially for individual investors who can usually only afford a
certain amount of loss and cannot continue to hold their positions in futures contracts if
the price changes too much in an unfavorable direction. The STD strategy has the potential
to improve profitability compared to the MD strategy. However, we also note that the
STD strategy carries a higher risk for investors than the MD strategy because the stop-loss
threshold of STD50 is always less than or equal to that of MD50, i.e., VSTD50

st ≤ VMD50
st ,

which leads to the risk that we can lose much more money if VSTD50
st is not a final limit

for a deep drop before it recovers and rises to the expected value. In reality, additional
strategies are needed to reduce this risk, e.g., if VSTD50

st is too low, VMD50
st is used instead.

Mathematics 2021, 9, 3268 16 of 20

This study contains some limitations that can be improved in future work. First,
the trading strategy is simple. We focused on trading long positions and bought only
one contract on the first trading day of each month. Consequently, there could be a lot
of time during the trading period when we did not hold a contract because there was no
suitable contract. The waste of time can be even more severe with stop-loss strategies when
the contracts sometimes have to be sold too early. Hence, a more sophisticated strategy
can help improve the rate of return significantly. Second, deep learning models give us
a convenient way to derive the standard deviation of MAT in the future without having
to build separate models, and they can be used to develop more sophisticated stop-loss
strategies. However, getting high accuracy in predicting standard deviation in this way
is not straightforward. We suppose that further efforts to improve this accuracy could
significantly improve trading performance in practice. Thus, it is worth paying attention to
this aspect in future work. Third, feature engineering is also one of the aspects that can
be further improved. We only tried to identify a group of practical external factors that
are easy to collect, so other important external factors might be overlooked. In addition,
just a few factors from the Taiwan market, i.e., TSM stocks and TWD exchange rates,
were considered in the experiment. Indeed, more domestic elements and other types of
data, such as technical indicators, keyword trends in search engines, or public market
information, may help improve the prediction accuracy. Additionally, other unsupervised
data representation methods such as the restricted Boltzmann machine or autoencoders
can potentially enhance the performance of the predictive models. Fourth, LR and XGboost
are very popular and generally have good performance; therefore, they can suffice to be
used as simple baselines. However, these two algorithms cannot represent all conventional
machine learning models. A comparison with other advanced methods, e.g., support
vector regression, hidden Markov model, or fuzzy-based techniques, could be conducted
in a future study to provide a more comprehensive view of the performance of the three
deep learning models on this problem. Fifth, although common settings might be sufficient
to essentially show the power of each deep network architecture, more intensive tuning of
hyperparameters can help to evaluate the performance of each type of deep network more
accurately. Finally, deep learning for time series and sequences is evolving very rapidly.
Many techniques have been proposed and achieved the best results in recent benchmark
studies, e.g., Inceptiontime [49], and ROCKET [50]. These techniques can be explored in
future work to improve the current results further.

Author Contributions: Conceptualization, C.-H.L. and S.-M.Y.; methodology, C.-H.L., K.-S.T. and D.-
A.H.; software, K.-S.T.; validation, K.-S.T. and D.-A.H.; formal analysis, D.-A.H. and K.-S.T.; investigation,
K.-S.T., C.-H.L. and D.-A.H.; resources, S.-M.Y.; data curation, K.-S.T.; writing—original draft preparation,
D.-A.H.; writing—review and editing, C.-H.L. and S.-M.Y.; visualization, D.-A.H.; supervision, S.-M.Y.;
project administration, S.-M.Y. and C.-H.L.; funding acquisition, S.-M.Y.; All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
author.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 3268 17 of 20

Appendix A

Table A1. List of potential independent variables.

Variable Symbol Description Types

1 AORD ^AORD ALL ORDINARIES World Indices
2 AXJO ^AXJO S&P/ASX 200 World Indices
3 N225 ^N225 Nikkei 225 World Indices
4 KOSPI ^KS11 KOSPI Composite Index World Indices
5 SSE 000001.SS SSE Composite Index World Indices
6 SSEA 000002.SS SSE A Share Index World Indices
7 SZSE 399001.SZ Shenzhen Component World Indices
8 HSI ^HSI HANG SENG INDEX World Indices
9 KLSE ^KLSE FTSE Bursa Malaysia KLCI World Indices
10 STI ^STI STI Index World Indices
11 PSEI PSEI.PS PSEi INDEX World Indices
12 JKSE ^JKSE Jakarta Composite Index World Indices
13 BSESN ^BSESN S&P BSE SENSEX World Indices
14 FTSE ^FTSE FTSE 100 World Indices
15 GDAXI ^GDAXI DAX PERFORMANCE-INDEX World Indices
16 FCHI ^FCHI CAC40 World Indices
17 SSMI ^SSMI SMI PR World Indices
18 DJI ^DJI Dow Jones Industrial Average World Indices
19 GSPC ^GSPC S&P 500 World Indices
20 IXIC ^IXIC NASDAQ Composite World Indices
21 SOX ^SOX PHLX Semiconductor World Indices
22 GSPTSE ^GSPTSE S&P/TSX Composite index World Indices
23 MXX ^MXX IPC MEXICO World Indices
24 BVSP ^BVSP IBOVESPA World Indices
25 VIX ^VIX CBOE Volatility Index World Indices
26 IRX ^IRX 13 Week Treasury Bill US Treasury bonds rates
27 TYX ^TYX Treasury Yield 30 Years US Treasury bonds rates
28 FVX ^FVX Treasury Yield 5 Years US Treasury bonds rates
29 TNX ^TNX Treasury Yield 10 Years US Treasury bonds rates
30 TSM TSM Taiwan Semiconductor Manufac-

turing Company Limited
Taiwan Company

31 MSCI MSCI MSCI Inc. U.S. Company
32 CrudeOil CL=F Crude Oil May 21 Commodity
33 HeatingOil HO=F Heating Oil May 21 Commodity
34 NaturalGas NG=F Natural Gas May 21 Commodity
35 Gold GC=F Gold Jun 21 Commodity
36 Platinum PL=F Platinum Jul 21 Commodity
37 Silver SI=F Silver May 21 Commodity
38 Copper HG=F Copper May 21 Commodity
39 Palladium PA=F Palladium Jun 21 Commodity
40 TWDUSD TWDUSD=X TWD/USD exchange rates TWD exchange rates
41 TWDCNY TWDCNY=X TWD/CNY exchange rates TWD exchange rates
42 TWDJPY TWDJPY=X TWD/JPY exchange rates TWD exchange rates
43 TWDHKD TWDHKD=X TWD/HKD exchange rates TWD exchange rates
44 TWDKRW TWDKRW=X TWD/KRW exchange rates TWD exchange rates
45 TWDEUR TWDEUR=X TWD/EUR exchange rates TWD exchange rates
46 TWDCAD TWDCAD=X TWD/CAD exchange rates TWD exchange rates

Table A2. Index points gained in the ideal case where MAT and σ̂ could be predicted exactly.

Year None MD50 STD50

2018 2525 2352 2525
2019 8196 5157 6496
2020 16,746 12,084 12,084

Mathematics 2021, 9, 3268 18 of 20

Table A3. This table shows the values of the two terms (V1 = (V̂ − σ̂) and V2 = (V0 − 50)) that used
to calculate the stop-loss threshold VSTD50

st based on the STD strategy for the three deep learning
models. Each row corresponds with an MTX contract that was selected for buying in the simulation.
The table also shows the values of d1 = (V0 −VSTD50

st) and d2 = (V0 −Vlowest), where Vlowest is the
lowest value of the contract during trading time. For d2, only the values with Vlowest < 0 are showed,
because we are only interested in cases where there was a drop in value of the buying contract.
From the columns d1 and d2, we can know which case the stop-loss threshold become functional.

Year # LSTM CNN-LSTM TCN
V1 V2 d1 d2 V1 V2 d1 d2 V1 V2 d1 d2

2018

1 10,840 10,556 50 - 11,417 10,535 50 - 10,612 10,535 50 -
2 10,914 10,557 50 - 10,813 10,557 50 - 12,001 11,012 50 873
3 10,792 10,849 107 17 11,758 10,809 50 380 10,028 10,551 573 -
4 11,100 10,118 50 - 10,833 10,577 50 126 10,811 10,809 50 380
5 10,795 10,545 50 - 10,883 10,373 50 - 12,818 10,118 50 -
6 10,668 10,495 50 - 11,878 10,450 50 - 9850 10,545 745 -
7 11,212 10,885 50 329 11,872 10,920 50 1229 10,605 10,450 50 -
8 10,301 9692 50 126 11,959 10,935 50 1584 12,291 10,885 50 1534
9 10,170 9951 50 375 11,967 10,889 50 1538 10,930 10,889 50 1538

10 10,762 9692 50 126 9412 9699 337 133
11 10,171 9951 50 375

2019

1 9932 9657 50 388 9866 9657 50 388 9676 9657 50 388
2 10,573 9895 50 - 10,003 9895 50 - 10,389 9895 50 -
3 10,617 10,336 50 182 10,906 10,336 50 182 10,029 10,145 166 -
4 10,576 10,613 87 36 11,043 10,627 50 50 10,447 10,519 122 -
5 10,530 9978 50 - 11,069 10,895 50 603 10,606 10,551 50 421
6 10,627 10,475 50 - 10,559 10,145 50 - 10,318 10,482 214 -
7 10,806 10,500 50 - 10,852 10,655 50 - 10,530 10,778 298 -
8 10,253 10,482 279 - 11,085 10,583 50 453
9 10,737 10,516 50 9

10 10,939 10,800 50 41

2020

1 11,343 11,236 50 148 11,465 11,236 50 148 12,882 11,164 50 2690
2 10,924 10,950 76 - 11,987 10,908 50 2434 11,944 10,960 50 2486
3 8672 9401 779 - 10,413 9401 50 - 13,002 9401 50 -
4 9641 10,058 467 - 10,327 10,276 50 - 13,725 10,276 50 -
5 10,209 10,564 405 - 12,168 10,564 50 - 13,954 10,635 50 -
6 13,985 11,206 50 -
7 14,786 12,358 50 263
8 15,114 12,444 50 344
9 15,451 12,421 50 -

10 13,967 12,357 50 -

References
1. Gandhmal, D.P.; Kumar, K. Systematic analysis and review of stock market prediction techniques. Comput. Sci. Rev. 2019,

34, 1–13. [CrossRef]
2. Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Literature review: Machine learning techniques applied to financial market prediction.

Expert Syst. Appl. 2019, 124, 226–251. [CrossRef]
3. Kumar, G.; Jain, S.; Singh, U.P. Stock Market Forecasting Using Computational Intelligence: A Survey. Arch. Comput. Methods

Eng. 2021, 28, 1069–1101. [CrossRef]
4. Fama, E.F. Random Walks in Stock Market Prices. Financ. Anal. J. 1995, 51, 75–80. [CrossRef]
5. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review:

2005–2019. Appl. Soft Comput. 2020, 90, 106181. [CrossRef]
6. Bustos, O.; Pomares-Quimbaya, A. Stock market movement forecast: A Systematic review. Expert Syst. Appl. 2020, 156, 113464.

[CrossRef]
7. Weng, B.; Ahmed, M.A.; Megahed, F.M. Stock market one-day ahead movement prediction using disparate data sources. Expert

Syst. Appl. 2017, 79, 153–163. [CrossRef]
8. Wang, J.; Wang, J.; Fang, W.; Niu, H. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks. Comput.

Intell. Neurosci. 2016, 2016, 1–14. [CrossRef]
9. Persio, L.D.; Honchar, O. Artificial Neural Networks architectures for stock price prediction: Comparisons and applications. Int.

J. Circuits Syst. Signal Process. 2016, 10, 403–413.
10. Chong, E.; Han, C.; Park, F.C. Deep learning networks for stock market analysis and prediction: Methodology, data representations,

and case studies. Expert Syst. Appl. 2017, 83, 187–205. [CrossRef]
11. Gunduz, H.; Yaslan, Y.; Cataltepe, Z. Intraday prediction of Borsa Istanbul using convolutional neural networks and feature

correlations. Knowl.-Based Syst. 2017, 137, 138–148. [CrossRef]
12. Li, Z.; Tam, V. Combining the real-time wavelet denoising and long-short-term-memory neural network for predicting stock

indexes. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA,
27 November–1 December 2017; pp. 1–8.

http://doi.org/10.1016/j.cosrev.2019.08.001
http://dx.doi.org/10.1016/j.eswa.2019.01.012
http://dx.doi.org/10.1007/s11831-020-09413-5
http://dx.doi.org/10.2469/faj.v51.n1.1861
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1016/j.eswa.2020.113464
http://dx.doi.org/10.1016/j.eswa.2017.02.041
http://dx.doi.org/10.1155/2016/4742515
http://dx.doi.org/10.1016/j.eswa.2017.04.030
http://dx.doi.org/10.1016/j.knosys.2017.09.023

Mathematics 2021, 9, 3268 19 of 20

13. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.
2018, 270, 654–669. [CrossRef]

14. Baek, Y.; Kim, H.Y. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention
LSTM module and a prediction LSTM module. Expert Syst. Appl. 2018, 113, 457–480. [CrossRef]

15. Chung, H.; Shin, K.s. Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction. Sustainability
2018, 10, 3765. [CrossRef]

16. Chen, L.; Qiao, Z.; Wang, M.; Wang, C.; Du, R.; Stanley, H.E. Which Artificial Intelligence Algorithm Better Predicts the Chinese
Stock Market? IEEE Access 2018, 6, 48625–48633. [CrossRef]

17. Zhou, X.; Pan, Z.; Hu, G.; Tang, S.; Zhao, C. Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets.
Math. Probl. Eng. 2018, 2018, 4907423. [CrossRef]

18. Zhong, X.; Enke, D. Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financ.
Innov. 2019, 5, 1–20. [CrossRef]

19. Hoseinzade, E.; Haratizadeh, S. CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Syst. Appl.
2019, 129, 273–285. [CrossRef]

20. Sim, H.S.; Kim, H.I.; Ahn, J.J. Is Deep Learning for Image Recognition Applicable to Stock Market Prediction? Complexity 2019,
2019, 4324878. [CrossRef]

21. Wen, M.; Li, P.; Zhang, L.; Chen, Y. Stock Market Trend Prediction Using High-Order Information of Time Series. IEEE Access
2019, 7, 28299–28308. [CrossRef]

22. Lee, J.; Kim, R.; Koh, Y.; Kang, J. Global Stock Market Prediction Based on Stock Chart Images Using Deep Q-Network. IEEE
Access 2019, 7, 167260–167277. [CrossRef]

23. Long, W.; Lu, Z.; Cui, L. Deep learning-based feature engineering for stock price movement prediction. Knowl.-Based Syst. 2019,
164, 163–173. [CrossRef]

24. Pang, X.; Zhou, Y.; Wang, P.; Lin, W.; Chang, V. An innovative neural network approach for stock market prediction. J.
Supercomput. 2020, 76, 2098–2118. [CrossRef]

25. Kelotra, A.; Pandey, P. Stock Market Prediction Using Optimized Deep-ConvLSTM Model. Big Data 2020, 8, 5–24. [CrossRef]
[PubMed]

26. Chung, H.; Shin, K.s. Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction.
Neural Comput. Appl. 2020, 32, 7897–7914. [CrossRef]

27. Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E.; Shahab, S. Deep learning for stock market prediction. Entropy
2020, 22, 840. [CrossRef]

28. Long, J.; Chen, Z.; He, W.; Wu, T.; Ren, J. An integrated framework of deep learning and knowledge graph for prediction of stock
price trend: An application in Chinese stock exchange market. Appl. Soft Comput. 2020, 91, 106205. [CrossRef]

29. Nabipour, M.; Nayyeri, P.; Jabani, H.; Shahab, S.; Mosavi, A. Predicting Stock Market Trends Using Machine Learning and Deep
Learning Algorithms Via Continuous and Binary Data; a Comparative Analysis. IEEE Access 2020, 8, 150199–150212. [CrossRef]

30. Lei, B.; Zhang, B.; Song, Y. Volatility Forecasting for High-Frequency Financial Data Based on Web Search Index and Deep
Learning Model. Mathematics 2021, 9, 320. [CrossRef]

31. Hsieh, T.J.; Hsiao, H.F.; Yeh, W.C. Forecasting stock markets using wavelet transforms and recurrent neural networks: An
integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 2011, 11, 2510–2525. [CrossRef]

32. Sun, W.T.; Chiao, H.T.; Chang, Y.S.; Yuan, S.M. Forecasting Monthly Average of Taiwan Stock Exchange Index. In New Trends in
Computer Technologies and Applications; Springer: Singapore, 2019; pp. 302–309.

33. Ha, D.A.; Lu, J.D.; Yuan, S.M. Forecasting Taiwan Stocks Weighted Index Monthly Average Based on Linear Regression—Applied
to Taiwan Stock Index Futures. In Education and Awareness of Sustainability; World Scientific: Singapore, 2020; pp. 431–435.

34. Tan, K.S.; Lio, C.H.; Yuan, S.M. Futures Trading Strategy based on Monthly Average Prediction of TAIEX by using Linear
Regression and XGBoost. In Proceedings of the 7th IEEE International Conference on Applied System Innovation 2021, Alishan,
Taiwan, 24–25 September 2021.

35. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
36. Olah, C. Understanding LSTM Networks. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(accessed on 30 September 2021).
37. Chevalier, G. LSTM Cell. Available online: https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg (accessed on 30

September 2021).
38. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach

for Precipitation Nowcasting. arXiv 2015, arXiv:cs.CV/1506.04214.
39. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks.

In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
Australia, 19–24 April 2015; pp. 4580–4584.

40. Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-term Recurrent
Convolutional Networks for Visual Recognition and Description. arXiv 2016, arXiv:cs.CV/1411.4389.

41. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN-LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020,
32, 17351–17360. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.1016/j.eswa.2018.07.019
http://dx.doi.org/10.3390/su10103765
http://dx.doi.org/10.1109/ACCESS.2018.2859809
http://dx.doi.org/10.1155/2018/4907423
http://dx.doi.org/10.1186/s40854-019-0138-0
http://dx.doi.org/10.1016/j.eswa.2019.03.029
http://dx.doi.org/10.1155/2019/4324878
http://dx.doi.org/10.1109/ACCESS.2019.2901842
http://dx.doi.org/10.1109/ACCESS.2019.2953542
http://dx.doi.org/10.1016/j.knosys.2018.10.034
http://dx.doi.org/10.1007/s11227-017-2228-y
http://dx.doi.org/10.1089/big.2018.0143
http://www.ncbi.nlm.nih.gov/pubmed/32073904
http://dx.doi.org/10.1007/s00521-019-04236-3
http://dx.doi.org/10.3390/e22080840
http://dx.doi.org/10.1016/j.asoc.2020.106205
http://dx.doi.org/10.1109/ACCESS.2020.3015966
http://dx.doi.org/10.3390/math9040320
http://dx.doi.org/10.1016/j.asoc.2010.09.007
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
http://dx.doi.org/10.1007/s00521-020-04867-x

Mathematics 2021, 9, 3268 20 of 20

42. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.
arXiv 2018, arXiv:cs.LG/1803.01271.

43. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

44. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

45. Salimans, T.; Kingma, D.P. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks.
In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 901–909.

46. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

47. Zhong, X.; Enke, D. Forecasting daily stock market return using dimensionality reduction. Expert Syst. Appl. 2017, 67, 126–139.
[CrossRef]

48. Weng, B.; Lu, L.; Wang, X.; Megahed, F.M.; Martinez, W. Predicting short-term stock prices using ensemble methods and online
data sources. Expert Syst. Appl. 2018, 112, 258–273. [CrossRef]

49. Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F.
InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]

50. Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally fast and accurate time series classification using random
convolutional kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2016.09.027
http://dx.doi.org/10.1016/j.eswa.2018.06.016
http://dx.doi.org/10.1007/s10618-020-00710-y
http://dx.doi.org/10.1007/s10618-020-00701-z

	Introduction
	Literature Review
	Background
	LSTM
	CNN-LSTM
	TCN

	Method
	The Framework for Predicting Monthly Average of TAIEX
	Identifying Potential Factors
	Data Preprocessing
	Training Models

	Simulated Trading

	Empirical Results
	Data Specification
	Models Setting
	Evaluation
	RMSPE
	Profit

	Conclusions
	
	References

