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Abstract: The initial boundary value problem for the 3D convection-diffusion equation corresponding
to the mathematical model of suspended matter transport in coastal marine systems and extended
shallow water bodies is considered. Convective and diffusive transport operators in horizontal
and vertical directions for this type of problem have significantly different physical and spectral
properties. In connection with the above, a two-dimensional–one-dimensional splitting scheme has
been built—a three-dimensional analog of the Peaceman–Rachford alternating direction scheme,
which is suitable for the operational suspension spread prediction in coastal systems. The paper
has proved the theorem of stability solution with respect to the initial data and functions of the
right side, in the case of time-independent operators in special energy norms determined by one
of the splitting scheme operators. The accuracy has been investigated, which, as in the case of
the Peaceman–Rachford scheme, with the special definition of boundary conditions on a fractional
time step, is the value of the second order in dependency of time and spatial steps. The use of
this approach makes it possible to obtain parallel algorithms for solving grid convection-diffusion
equations which are economical in the sense of total time of problem solution on multiprocessor
systems, which includes time for arithmetic operations realization and the one required to carry of
information exchange between processors.

Keywords: suspended matter transport model; convection-diffusion equations; alternating direction
schemes; locally two-dimensional splitting schemes; difference scheme stability

1. Introduction

In this article the splitting scheme for the 3D convection-diffusion equation has been
considered as an analog of the Peaceman–Rachford alternating direction scheme [1–3]. This
scheme assumes splitting the original problem into a set of two-dimensional convection-
diffusion problems along horizontal directions and one-dimensional problems along ver-
tical coordinates. Despite great attention to the possibilities of using such schemes, at
present, we do not have rigorous mathematical results on their stability and accuracy for
convection-diffusion problems. Until now, conclusions about the stability, accuracy and
performance of these schemes have been drawn not on the theoretical study basis, but on
the basis of the analysis of the computational experiments on the approximate solution of
some model problems. In this work, an attempt has been made to fill this gap.

The choice made by the authors in favor of these splitting schemes is based on the
following physical motivation for convection-diffusion problems in coastal marine systems
and shallow water bodies [4–6].

Turbulent diffusion coefficients in horizontal directions Ox1, Ox2 : k1

(→
x
)

, k2

(→
x
)

very weakly depend on spatial coordinates and they can be considered constant, assuming
that:

k1

(→
x
)
= k2

(→
x
)
= k0, k0 = const. (1)
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The influence of the terms of convective transfer along the horizontal coordinates, as
a rule, significantly exceeds the contribution of the terms describing turbulent exchange in
the same directions to the formation of the distributions of suspended matter or solutes [7–9].
In the vertical coordinate direction, turbulent exchange in presence of wind conditions in
coastal systems largely determines the concentration of suspended matter. The turbulent
exchange coefficient in the vertical direction k3

(→
x
)

significantly depends on
→
x (x1, x2, x3),

especially from x3, where x3 is the vertical coordinate. The typical values of the velocities of
water medium movement in the vertical direction differ significantly. It has been changed
from 10−4 m/s to 10−2 m/s. When the problem is discretized, additional asymmetry arises
due to the fact that along the horizontal directions the typical number of grid nodes is
103 − 104, when in the vertical direction this number is several tens, no more than 102.
The foregoing motivates the two-component splitting of the three-dimensional convection-
diffusion operator, which at each time step assumes the splitting of the three-dimensional
problem into two-dimensional in horizontal directions and one-dimensional in the vertical
direction, which at each time step may be symbolically represented as:

C(1) + C(2) + D(1) + D(2) → C(3) + D(3).

In previous expression C(α) and D(α) denote operators of convective and diffusion
transportations respectively in directions of Oxα axes, α = 1, 2, 3. In this article, the theorem
has been proved for the stability of different solutions with respect to the initial data and
functions of the right side in the case of time-independent operators in a special energy
norm determined by one of the operators of the splitting scheme. The accuracy has been
investigated, which, as in the case of the Peaceman–Rachford scheme [10,11], with the
special setting of boundary conditions on a fractional time step, is the value of the second
order of accuracy for the time and spatial steps.

2. Problem Statement

Let us consider the formulation of the initial-boundary value problem for the spatial
three-dimensional convection-diffusion equation in a parallelepiped G [12,13]:

∂w
∂t

+ Aw = f
(→

x , t
)

, 0 < t ≤ T,
→
x ∈ G; (2)

w
(→

x , 0
)
= u0

(→
x
)

,
→
x = (x1, x2, x3) ∈ G, G =

{→
x |0 ≤ xα ≤ lα, α = 1, 2, 3

}
, ∂G = G\G; (3)

w
(→

x , t
)
= µ

(→
x , t
)

, 0 ≤ t ≤ T,
→
x = ∂G. (4)

Applied to the coastal hydrodynamics problems function w
(→

x , t
)

can be the concen-
tration of pollutants.

Assume that there is a classical equation w
(→

x , t
)

of the initial-boundary value problem
(2)–(4), satisfying the accepted smoothness conditions [14], as well as the input data: the
coefficients kα = kα

(→
x
)

,
→
x ∈ G, α = 1, 2, 3; right side function f

(→
x , t
)

, boundary and

initial conditions µ
(→

x , t
)

and u0

(→
x
)

subject to their agreement µ
(→

x , 0
)
= u0

(→
x
)

,
→
x ∈

∂G and also the velocity vector of the medium
→
V
(→

x , t
)
= (v1, v2, v3), where vα = vα

(→
x , t
)

,
α = 1, 2, 3.

To construct and study the two-dimensional-one-dimensional Peasman-Reckford
scheme, it is necessary to strengthen the requirements for the smoothness of the solution
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function mentioned in [15]. Namely, assume that G × [0 ≤ t ≤ T] there are bounded
derivatives of 4–5 orders of the solution function, that is, the following inequalities hold:∣∣∣∣∂4w

∂x4
α

∣∣∣∣ ≤ Mα, α = 1, 2, 3;
∣∣∣∣∂4w

∂t4

∣∣∣∣ ≤ M4,

∣∣∣∣∣ ∂5w
∂x2

1∂x2
3∂t

∣∣∣∣∣ ≤ M5,

∣∣∣∣∣ ∂5w
∂x2

2∂x2
3∂t

∣∣∣∣∣ ≤ M6,

where Mα, α = 1, 2, . . . , 6 are positive constants independent of xα, α = 1, 2, 3 and t.
Operator A is the sum of three one-dimensional convection-diffusion operators:

A =
3

∑
α=1

A(α), A(α) ≡ C(α)
0 + D(α), α = 1, 2, 3, (5)

where C(α)
0 is the operator of convective transfer along the coordinate directions in sym-

metric form:

C(α)
0 w ≡ 1

2

(
vα

(→
x , t
) ∂w

∂xα
+

∂

∂xα

(
vα

(→
x , t
)

w
))

, α = 1, 2, 3;

C0w ≡
3

∑
α=1

C(α)
0 w, α = 1, 2, 3; (6)

D(α)w = −
3

∑
α=1

∂

∂xα

(
kα

(→
x
) ∂w

∂xα

)
. (7)

Note also that each of the one-dimensional convection-diffusion operators presented
in Formula (5) is positive defined, because:(

C(α)
0 v, v

)
= 0,

(
D(α)v, v

)
> δα(v, v),

where δα ≡ const > 0.
Difference analogs of these differential operators will inherit this property.

3. Alternating Direction Schemes Construction

In order to simplify the investigation, assume that the operators A(α), α = 1, 2, 3 do
not depend on the time variable.

With respect to the right-hand side of Equation (2), assume:

f
(→

x , t
)
= f1

(→
x , t
)
+ f2

(→
x , t
)

, (8)

The splitting form (8) of the function f
(→

x , t
)

, responsible for the source function is
dictated by the physical features of two-dimensional and one-dimensional problems. With
respect to individual terms, f1

(→
x , t
)

, f2

(→
x , t
)

the smoothness conditions are preserved as

for the function f
(→

x , t
)

[15].
Let’s build a temporary grid:

ω′τ = {tn = (n + α/2)τ, α ∈ {0, 1}; n = 0, 1, . . . , Nt; Ntτ ≡ τ},

at each step of which consider the chain of interconnected initial-boundary value problems:

∂w(1)

∂t
+
(

C(1)
0 + C(2)

0

)
w(1) +

(
D(1) + D(2)

)
w(1) = f1

(→
x , t
)

; (9)

w(1)
(→

x , 0
)
= u0

(→
x
)

,
→
x ∈ G, tn < t ≤ tn+1/2; (10)
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w(1)
(→

x , tn

)
= w(2)

(→
x , tn

)
, n = 1, 2, . . . , Nt − 1; (11)

∂w(2)

∂t
+ C(3)

0 w(2) + D(3)w(2) = f2

(→
x , t
)

,
→
x ∈ G, tn+1/2 < t ≤ tn+1; (12)

w(2)
(→

x , tn+1/2

)
= w(1)

(→
x , tn+1/2

)
(13)

With boundary conditions, which will be specified below.
Let’s build a uniform spatial mesh ωh = ω1 ×ω2 ×ω3, where:

ωα = {xαiα = iαhα, iα = 0, 1, . . . , Nα; Nαhα = lα}, α = 1, 2, 3.

For each of the grids ωα, α = 1, 2, 3 select the set of boundary nodes γα = ωα\ωα,
where ωα contains the inner nodes of the grid in the direction Oxα,

ωα = {xαiα = iαhα, iα = 1, 2, . . . , Nα − 1}, α = 1, 2, 3.

On the grid ω′τ ×ωh the chain of problems was approximated using the balance rela-
tions method, bearing in mind the analog of the Peaceman–Rachford alternating direction
schemes, which has the accuracy O

(
|h|2 + τ2

)
, |h|2 = h2

1 + h2
2 + h2

3 [15,16].

Obtain a difference scheme, assuming that A(α)
h are different analogs of the corre-

sponding differential operators and yn+α/2, α = 1, 2 are difference analogs of the functions
w(α) problems (9)−(13):

yn+1/2 − yn

0.5τ
+
(

A(1)
h + A(2)

h

)
yn+1/2 + A(3)

h yn = 2 f (1)n ; (14)

y0 = u0

(→
x
)

,
→
x ∈ ωh, yn+1/2 = µ

(→
x , tn+1/2

)
, (x1, x2) ∈ γ1 × γ2, x3 ∈ ω3; (15)

yn+1 − yn+1/2

0.5τ
+
(

A(1)
h + A(2)

h

)
yn+1/2 + A(3)

h yn+1 = 2 f (2)n , n = 0, 1, . . . , Nt − 1; (16)

yn+1 = µ
(→

x , tn+1

)
,
→
x ∈ (ω1 ∪ω2)× γ3, (17)

where the function µ
(→

x , tn+1/2

)
is defined similarly to how it is done for the Peaceman–

Rachford scheme in the case of a two-dimensional problem.
It can be shown that:

µ
(→

x , t
)
=

1
2
(µn+1 + µn) +

τ2

4
A(3)

h
µn+1 − µn

τ
, (18)

where:
µn = µ

(→
x , tn

)
, x ∈ ω3 × (γ1 ∪ γ2), t = tn;

µn+1 = µ
(→

x , tn

)
, x ∈ ω3 × (γ1 ∪ γ2), t = tn+1.

It should be noted that problem (14)−(17) can be written in the operator form:(
E +

τ

2

(
A(1)

h + A(2)
h

))
yn+1/2 =

(
E− τ

2
A(3)

h

)
yn + τ f (1)n ; (19)

(
E +

τ

2
A(3)

h

)
yn+1 =

(
E− τ

2

(
A(1)

h + A(2)
h

))
yn+1/2 + τ f (2)n , n = 0, 1, . . . , Nt − 1,

→
x ∈ ωh, (20)

where the use of the initial condition and boundary conditions are not separately detailed
for brevity; E is the unit (identity) operator.

The numerical implementation of difference equations (19) can be performed by an
adaptive alternating triangular iterative method for grid equations with a non-self-adjoint
operator [17].
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For the numerical implementation of the adaptive alternating-triangular iterative
method, an essential constraint is imposed on the grid Peclet number Pe(α)h , which is

formulated for the operators A(1)
h and A(2)

h :

Pe(α)h ≡ max
→
x ∈ ωh,
t ∈ ω′τ

∣∣∣∣∣v
n
(α)(x, t)hα

k0

∣∣∣∣∣ ≤ 1, α = 1, 2.

This limitation is met with a margin for discrete models of coastal marine systems and
extended shallow water bodies, which can be seen from the estimates:

|vα(x, t)|v (0.1÷ 1) m/s, k0 v 103 m2/s÷ 104 m2/s, hα v
(

102 ÷ 103) m.

Difference Equation (20) are numerically implemented by the Thomas algorithm for
three-point difference equations [18].

4. Investigating Scheme Stability

Let us formulate a theorem about the stability of scheme (14)–(18) with respect to the
initial condition and the right-hand side function.

Theorem 1. Let in the difference scheme (14)–(18) the difference operators A(α)
h , α = 1, 2, 3 do

not depend on the time step number and are positive, i.e., A(α)
h > 0, A(α)

h : Hh → Hh , where
Hh—Hilbert space of grid functions. Then, for the different solution of problem (14)–(18) on
an arbitrary(n + 1)—in the n-th time step, the following inequality takes place—an estimate of
stability independent of initial data and right-hand side functions:∥∥∥(E +

τ

2
A(3)

h

)
yn+1

∥∥∥ ≤ ∥∥∥(E +
τ

2
A(3)

h

)
u0

∥∥∥+ n

∑
k=0

τ
(∥∥∥ f (1)k

∥∥∥+ ∥∥∥ f (2)k

∥∥∥). (21)

Proof of Theorem 1. Let us first prove the auxiliary inequality

‖(E− (1− σ)τG)v‖ ≤ ‖(E + στG)v‖ (22)

at σ ≥ 0.5, (Gv, v) ≥ 0, G : Hh → Hh, v ∈ Hh.
Consider first the scalar product on the left-hand side of Inequality (22):

S1 ≡ ((E− (1− σ)τG)v, (E− (1− σ)τG)v)
= (Ev, Ev)− 2(1− σ)τ(Gv, Ev) + (1− σ)2τ2(Gv, Gv)

= (v, v)− 2τ(Gv, v) + 2στ(Gv, v) + (1− σ)2τ2(Gv, Gv).
(23)

Similarly, the scalar product on the right-hand side of relation (22) is transformed to
the form:

S2 ≡ ((E + στG)v, (E + στG)v) = (v, v) + 2στ(Gv, v) + σ2τ2(Gv, Gv). (24)

Comparing S1, S2 and considering that:

2στ(Gv, v) ≥ 2στ(Gv, v)− 2τ(Gv, v),

(1− σ)2τ2(Gv, Gv) ≤ σ2τ2(Gv, v)
(
T.K. (2σ− 1)τ2(Gv, Gv) ≤ 0

)
,

Arrive at the inequality:
S1 ≤ S2,

which means the validity of Inequality (22).
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Let’s go on to the main proof.
From Equality (19) we have the estimate:∥∥∥(E +

τ

2

(
A(1)

h + A(2)
h

))
yn+1/2

∥∥∥ ≤ ∥∥∥(E− τ

2
A(3)

h

)
yn

∥∥∥+ τ
∥∥∥ f (1)n

∥∥∥. (25)

On the other hand, from Equality (20) the inequality is obtained:∥∥∥(E +
τ

2
A(3)

h

)
yn+1

∥∥∥ ≤ ∥∥∥(E− τ

2

(
A(1)

h + A(2)
h

))
yn+1/2

∥∥∥+ τ
∥∥∥ f (2)n

∥∥∥. (26)

Inequalities (25) and (26) imply the estimate:∥∥∥(E +
τ

2
A(3)

h

)
yn+1

∥∥∥ ≤ ∥∥∥(E− τ

2
A(3)

h

)
yn

∥∥∥+ τ
(∥∥∥ f (1)n

∥∥∥+ ∥∥∥ f (2)n

∥∥∥). (27)

Use Inequality (22) for σ = 1
2 , G ≡ A(3)

h , v ≡ yn and get:∥∥∥(E− τ

2
A(3)

h

)
yn+1

∥∥∥ ≤ ∥∥∥(E +
τ

2
A(3)

h

)
yn

∥∥∥. (28)

Substituting estimate (28) into the right-hand side of Inequality (27), we arrive at an
Inequality in the form of:∥∥∥(E +

τ

2
A(3)

h

)
yn+1

∥∥∥ ≤ ∥∥∥(E +
τ

2
A(3)

h

)
yn

∥∥∥+ τ
(∥∥∥ f (1)n

∥∥∥+ ∥∥∥ f (2)n

∥∥∥). (29)

Since this Inequality (29) is valid for an arbitrary n, n = 0, 1, . . . , Nt − 1, then we have
a chain of inequalities:∥∥∥(E +

τ

2
A(3)

h

)
yk

∥∥∥ ≤ ∥∥∥(E +
τ

2
A(3)

h

)
yk−1

∥∥∥+ τ
(∥∥∥ f (1)k−1

∥∥∥+ ∥∥∥ f (2)k−1

∥∥∥), k = 1, 2, . . . , n. (30)

Inequalities (29) and (30) imply the inequality:∥∥∥(E +
τ

2
A(3)

h

)
yn+1

∥∥∥ ≤ ∥∥∥(E +
τ

2
A(3)

h

)
y0

∥∥∥+ n

∑
k=0

τ
(∥∥∥ f (1)k

∥∥∥+ ∥∥∥ f (2)k

∥∥∥). (31)

The condition y0 = u0, x ∈ ωh leads to Inequality (21), as required. �

Remark 1. Formal splitting of three-dimensional operator A =
3
∑

α=1
A(α)the original differential

problem for three one-dimensional convection-diffusion operators and the construction on this basis
of a scheme of alternating directions, which can be symbolically represented as

A(1)
h → A(2)

h → A(3)
h , (32)

leads, as a rule, to a computationally unstable scheme.

Remark 2. The transition to additive schemes of total approximation, which can be symbolically
represented by relation (32), allows obtaining stable schemes. However, in the case of parallel
implementation on multiprocessor systems, after each fractional time step (solving the three-point
difference problem), it is necessary to organize exchanges of blocks of three-dimensional grid informa-
tion. This process is similar to the parallel implementation of the transposition of a three-dimensional
matrix based on the united operational memories of processors (and/or cores) before the solution of
individual three-point problems and is an extremely time-consuming procedure [19].
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5. Investigation of the Two-Dimensional-One-Dimensional Alternating Direction
Schemes Accuracy

The study of the scheme accuracy (14)–(18) involves the estimation of errors at integer
and fractional time steps.

The errors of solutions need the estimation, the approximation errors of the difference
equations (14) and (16) were estimated. At the same time, it has been a motivation to set
the boundary condition (18). It is clear that these procedures are of a standard manner.
However, in order not to refer the reader to not too accessible sources, we present these
investigations here. Substitute instead of functions yn, yn+1/2, yn+1 respectively functions:

w
(→

x , tn

)
≡ wn, w

(→
x , tn + 0.5τ

)
≡ wn+1/2, w

(→
x , tn+1

)
≡ wn+1,

→
x ∈ ωh.

We get:

wn+1/2 − wn

0.5τ
+
(

A(1)
h + A(2)

h

)
wn+1/2 + A(3)

h wn − 2 f (1)n ≡ ψ
(1)
n ; (33)

wn+1 − wn+1/2

0.5τ
+
(

A(1)
h + A(2)

h

)
wn+1/2 + A(3)

h wn+1 − 2 f (2)n ≡ ψ
(2)
n . (34)

Add up these equalities term by term, we arrive at the equalities:
wn+1 − wn

0.5τ
+ 2
(

A(1)
h + A(2)

h

)
wn+1/2 + A(3)

h (wn+1 + wn)− 2 f (1)n − 2 f (2)n = ψ
(1)
n − ψ

(2)
n . (35)

In what follows, we will assume f (1)n ≡ f (2)n ≡ 0.5 fn.
Subtracting Equality (34) from Equality (33), we have:

wn+1/2 =
1
2
(wn + wn+1) +

τ

4
A(3)

h (wn+1 − wn) =
1
2
(wn + wn+1) +

τ2

4
A(3)

h
wn+1 − wn

τ
. (36)

In fact, the choice wn+1/2 is, in a sense, the best, because in this case the right side

2
(

f (1)n − f (2)n

)
and ψ̃n,τ equal to zero.

In addition, expression (36) remains correct on the lateral boundary Γver, Γver ≡ ω3 ×
(γ1 ∪ γ2) of a parallelepiped G, and therefore, the boundary condition has the form (18).

Now it is easy to estimate the errors zn ≡ yn − wn иzn+1/2 ≡ yn+1/2 − wn+1/2. The
tasks for them are written in an obvious way:

zn+1/2 − zn

0.5τ
+
(

A(1)
h + A(2)

h

)
zn+1/2 + A(3)

h zn = ψ
(1)
n ; (37)

zn+1 − zn+1/2

0.5τ
+
(

A(1)
h + A(2)

h

)
zn+1/2 + A(3)

h zn+1 = ψ
(2)
n , (38)

where:
ψ
(1)
n = −wn+1/2 − wn

0.5τ
−
(

A(1)
h + A(2)

h

)
wn+1/2 − A(3)

h wn + ϕn, (39)

ψ
(2)
n = −wn+1 − wn+1/2

0.5τ
−
(

A(1)
h + A(2)

h

)
wn+1/2 − A(3)

h wn+1 + ϕn. (40)

Using Equality (36) from Equation (39), we arrive at the following estimate:

ψ
(1)
n = −

(
A(1)

h + A(2)
h

)wn+1 + wn

2
− A(3)

h wn + ϕn −
wn+1 − wn

τ
− τ

2
A(3)

h
wn+1 − wn

τ
+ O

(
τ2
)

. (41)

Let us take into account that when discretizing diffusion and convective terms written
in symmetric form using central differences, their approximation error with respect to grid
steps is the value O

(
|h|2

)
, that is A(α)

h w = A(α)w + O
(
|h|2

)
, α ∈ {1, 2, 3}.

Thus,
ψ
(1)
n = ψ

(2)
n = O

(
|h|2 + τ2

)
. (42)

Let us complete the estimation of the accuracy (errors) in some special (energy) norm
‖ · ‖

(E+ τ
2 A(3)

h )
, operator-defined A(3)

h > 0. Note that problems (37), (38) in structure coincide
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with problems (19), (20), for which, in connection with the study of stability, estimate (21)
was obtained. Let us take into account only that z0 = 0 (the initial condition has been
defined «exactly») and we obtain the estimation, bearing in mind Inequality (41):

‖
(

E +
τ

2
A(3)

h

)
zn+1‖ ≤

n

∑
k=0

τ
(
‖ψ(1)

k ‖+ ‖ψ
(2)
k ‖

)
= o

(
|h|2 + τ2

)
. (43)

Remark 3. If, for some reason, it is more preferable to obtain an estimate of the stability and
accuracy in the energy space norm, defined operator E + τ

2

(
A(1)

h + A(2)
h

)
, then in the construction

of the difference scheme (14)–(18) the order of using the operators A(1)
h + A(2)

h and A(3)
h in different

schemes should be reversed. Moreover, all the previous reasoning will be similar.

Remark 4. It is possible to relax the requirements for the shape of the region G. Permutability of
difference operators A(1)

h + A(2)
h and A(3)

h takes place when in the section of the region G all possible
planes parallel to the coordinate planes Ox1x3 and Ox2x3 are rectangles. For areas representing
geometric images of real water bodies, this is sufficient for:

(a) The transition to the “new” coordinate θ in the vertical direction (θ − coordinate), for example,
in accordance with the equality θ = x3−H

H ,0 ≤ θ ≤ 1,H = H(x1, x2) − the depth of the
reservoir.

(b) Section of the region G using the new coordinate θ : 0 ≤ θ ≤ 1 all possible planes
θ = const is a convex two-dimensional figure in R2—(Ox1, Ox2).

6. Discussion

A wide class of heat and mass transfer problems in liquid and gaseous media are de-
scribed by convection-diffusion equations. The two-dimensional-one-dimensional scheme
of alternating directions considered in the article takes into account the peculiarities of
convection and diffusion processes, in particular, suspended particles and salts in coastal
marine systems and can be used to predict the spread of pollutants in shallow seas like the
Azov and White Seas of Russia and in other water bodies.

For the numerical solution of multidimensional problems of mathematical physics,
the splitting method or the method of fractional steps has become widespread since the
fifties of the XX century [20–23]. Currently, the list of works related to this topic includes a
lot of thousands of units and continues to grow [24–28].

An important factor in motivating the development of this method is the widespread
use of multiprocessor systems and parallel computations, the introduction of which led to
the need to expand and, in some sense, rethink the concept of economical algorithms. In
most cases, the user is interested in minimizing the total time expenditure of solving the
problem, the main part of which is the cost of performing arithmetic, logical operations and
information exchange operations between the processor units. It seems expedient to con-
sider such a parallel algorithm as economical, which, among others, has the minimum total
time expenditures. It turned out that the one-dimensional splitting schemes, which imply
the replacement of the original multidimensional problem by a chain of one-dimensional
problems, being economical in terms of time spent on performing computations, in some
important cases are not economical in sense of time for performing information exchanges
between processors.

In this article, using the example of a three-dimensional convection-diffusion prob-
lem, one of the families of splitting schemes is considered, which implies replacing the
original problem with a chain of two-dimensional and one-dimensional problems. When
implemented on multiprocessor systems with fixed connections between processors—
for example—line type of communications between neighboring processor units, then
two-dimensional-one dimensional schemes, in this case, will require less time to perform
information exchanges in comparison to one-dimensional splitting schemes. The time
expenditure at each time step in the case of using a one-dimensional splitting scheme
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for information exchange is proportional to the value (N1 · N2 · N3 · p) · te, where p-is the
number processors, te-is the time required for one number (machine word) transfer be-
tween neighboring processor units. For the two-dimensional –one dimensional splitting
schemes this estimation is proportional to value (N1 · N2 · N3/p) · te · Nit(ε), where Nit(ε)
is the number of iterations for the numerical realization of two-dimensional difference
convection-diffusion tasks with the required precision ε. For a large enough number of p
(for massively parallel supercomputers) in the case of using advanced iteration methods,
the proposed two-dimensional—one-dimensional splitting scheme is more preferable in
comparison to the one-dimensional one. Detailed analysis is required for special investiga-
tion and may be the subject of another article.

7. Conclusions

For the numerical realization of the initial-boundary value problem corresponding
to the 3D model of suspended matter convection-diffusion in an aqueous medium, the
authors proposed an approach based on two-dimensional- one-dimensional splitting
schemes taking into account the specific features of convection-diffusion processes in the
coastal system. An analog of such schemes is the Peaceman–Rachford alternating direction
scheme. The use of two-dimensional-one-dimensional schemes gives the possibility to
obtain low-cost algorithms in sense of total time for numerical realization on massively
parallel computer systems. In the norm of the Hilbert space of grid functions, an estimate
of stability is obtained with respect to the initial data and the right-hand side function. The
study of accuracy (errors) was carried out for the proposed difference scheme in a certain
special (energy) norm determined by the operator A(3)

h and has been estimated the rate of

convergence, which is the value of O
(
|h|2 + τ2

)
.

The study of the problem of choosing a parallel algorithm that is economical in terms
of total time costs is a rather complicated and time-consuming procedure and deserves a
separate article, which the authors are currently working on.

Finally, the following text has been added:
System study of this problem requires taking into account the following factors:

- The nodes number of the spatial grid;
- Parallel computing system architecture, including p the number of calculators (pro-

cessors), the structure of information transmission channels between processors and
their performance, in particular, the characteristic time of the exchange of the number
texc and characteristic latency time tlat, execution time of one arithmetic operation tar
the method used for solving grid equations and its parallel analog, etc.

To solve two-dimensional grid equations in a two-dimensional-one-dimensional
scheme, the authors previously used the adaptive iterative alternating-triangular method
developed by them for problems with a non-self-adjoint operator. The articles [17,29] are
devoted to the study of its characteristics.

It was found that for the number of computers from 16 to 128, this algorithm has
an efficiency of more than 50% when using a distributed memory system installed at the
Southern Federal University, Russia (SFedU).

To solve one-dimensional three-point problems in the case of two-dimensional-one-
dimensional schemes, the Thomas algorithm is used and no additional information ex-
changes between the processors are required for this. A completely different situation
develops if one-dimensional splitting schemes are used, which, after each fractional time
step, lead to the need to transpose a set of two-dimensional arrays based on the union of
processor memories—to rotate them relative to the coordinate axes.

The authors for two multiprocessor systems: SFedU and Sirius University of Science
and Technology with the characteristics are indicated in Table 1.
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Table 1. Characteristics of multiprocessor systems SFedU and Sirius University of Science and
Technology for which experiments were performed.

tar texc tlat

Sirius 4 × 10−9 s 3.3 × 10−9 s 7 × 10−6 s
SFedU 2 × 10−9 s 4 × 10−8 s 5 × 10−7 s

Experiments were carried out to solve the model problem of convection-diffusion on
a grid Nx1 × Nx2 × Nx3 , where Nx1 = Nx2 = 1024, Nx3 = 128 for a different number p
processors p = 8, 32, 128.

The time required to perform arithmetic operations tar and exchange operations texc
information between processors when switching to a new integer time layer, depending on
the number of processors, is indicated in Tables 2 and 3.

Table 2. Time spent transitions to new integer time slices for the Sirius multiprocessor system.

Sirius p = 8 p = 32 p = 128

tar 1.61 s 0.40 s 0.10 s
texc 78.6 s 314.6 s 1258.2 s

texc/tar 48.8 786.5 12,582

Table 3. Time spent transitions to new integer time slices for the SFedU multiprocessor system.

SFedU p = 8 p = 32 p = 128

tar 0.805 s 0.20 s 0.05 s
texc 11.7 s 46.8 s 187.4 s

texc/tar 14.53 234 3748

A preliminary conclusion can be drawn that for p ≥ 32, N ≥ 108, where N =
N1 · N2 · N3 are one-dimensional splitting schemes on these multiprocessor systems have
low efficiency, since the overwhelming time expenditure—more than 99.5%—is the time
spent on exchanging information between processors, and here two-dimensional one-
dimensional schemes are preferable (best) in terms of total time costs.
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