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Abstract: This paper studies a quantile regression spatial dynamic Durbin panel data (SDDPD)
model with fixed effects. Conventional fixed effects estimators of quantile regression specification
are usually biased in the presentation of lagged response variables in spatial and time as regressors.
To reduce this bias, we propose the instrumental variable quantile regression (IVQR) estimator with
lagged covariates in spatial and time as instruments. Under some regular conditions, the consistency
and asymptotic normalityof the estimators are derived. Monte Carlo simulations show that our
estimators not only perform well in finite sample cases at different quantiles but also have robustness
for different spatial weights matrices and for different disturbance term distributions. The proposed
method is used to analyze the influencing factors of international tourism foreign exchange earnings
of 31 provinces in China from 2011 to 2017.

Keywords: SDDPD model; IVQR; large sample property; Monte Carlo simulation; international
tourism foreign exchange earnings

1. Introduction

A panel data set is one that follows a given sample of individuals over time and
thus provides multiple observations on each individual in the sample (Hsiao, 2014 [1]).
Compared with cross-sectional or time series data models, panel data models contain more
information and variation and have greater capacity for dealing with complex situations.
The specification and estimation of panel data models have received substantial attention
since the seminal paper (Balestra and Nerlove [2]) was published. Their theories, meth-
ods, and applications of panel data models are abundant and can be found in books by
Baltagi [3], Arellano [4], Baldev and Baltagi [5], and Hsiao [1], among others. Adding a
lagged response variableinto a panel data model, we can naturally establish a dynamic
panel data model that is more flexible. The estimation of dynamic panel data models
has been considered in many studies. Nickell [6] pointed out that ordinary least squares
estimators in dynamic panel data models are biased and inconsistent. To overcome the
adverse effect of lagged response variable, statisticians have developed the following
three commonly used estimation approaches to study the dynamic panel data models:
maximum likelihood (ML) estimation (Nerlove [7]; Hsiao et al. [8]), generalized method
of moment (GMM) estimation (Arellano and Bond [9]; Blundell and Bond [10]), and least
square dummy variable (LSDV) estimation (Kiviet [11]; Hahn and Kuersteiner [12]).

By using spatial weights matrix (for details, see Anselin [13] and Elhorst [14]) to
describe the presence and strength of a link between observations in the sample, spatial
econometrics deals with the spatial correlations between different individual units in
panel data models. The spatial correlations of observations have been widely used to
describe economic activities such as spillover effects, social interactions, externalities,
etc. According to Elhorst [14], there are three basic categories of spatial correlations that
have been commonly used in the literature. The first category is endogenous interaction
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effects among observations of response variable at different individual units, where the
observations of response variable for one individual unit is jointly determined with that
of neighboring units.By allowing endogenous interaction effects in a dynamic panel data
model, Anselin [13] provided a framework for spatial dynamic panel data (SDPD) models.
Yu et al. [15] studied the asymptotic properties of quasi-maximum likelihood (QML)
estimators for a SDPD model with individual fixed effects. Lee and Yu [16] extended this
methodology to a SDPD model with individual and time fixed effects. Yu and Lee [17]
obtained the asymptotic properties of QML estimators for a unit root SDPD model. Lee
and Yu [18] studied the asymptotic properties of GMM estimators for a SDPD model.
The second category is exogenous interaction effects among observations of covariates at
different individual units, where the response variable of one individual unit depends on
independent covariates of other units.By considering spatially lagged contemporaneous
covariates and spatially time-lagged covariates, which are the so-called spatial Durbin
terms (see LeSage and Pace [19]), we can capture the direct externality effects of exogenous
variables on response variable. There are many literature on the applications of dynamic
spatial Durbin model (DSDM); see Basile et al. [20], Vega and Elhorst [21], Rios [22],
and Feng and Wang [23], among others. The third category is interaction effects among
disturbance terms of different individual units. That is, the determinants of the response
variable omitted from the model are spatially autocorrelated or with a situation where
unobserved shocks follow a spatial pattern (Elhorst [14], 2014). The allowance of random
error spatial dependence complicates dynamic panel data models. Elhorst [24], Mutl [25],
Yang et al. [26] and Su and Yang [27] studied the dynamic panel data models with spatial
errors. By a suitable combination of the above three basic categories of spatial interaction
effects, some authors established different types of SDPD models and obtained their
estimation methods; see Lee and Yu [28], Qu et al. [29], Shi and Lee [30], and Yang and
Lee [31], among others.

Quantile regression was first proposed by Koenker and Bassett [32]; it is an extension
of mean regression to the quantiles of responses. It offers a systematic strategy for describ-
ing how covariates affect the location, scale, and shape of response distribution. Compared
with mean regression, which explores how the average of response variable dependson
the values of conditioning covariates, quantile regression has several advantages. First,
quantile regression allows for separate modelling at different quantiles of response distri-
bution such that the impacts of covariates can be differentiated at different quantiles of
response distribution. As a result, we can have a much richer view in applications than
could be achieved by mean regression. Second, quantile regression does not need any
reliance on global distributional assumptions, which is an attractive feature of quantile
regression compared with mean regression. Third, quantile regression can fully describe
the heterogeneity in response as well as takes unobserved heterogeneity into consideration.
Forth, quantile estimators are robust and less sensitive to the heteroscedasticity and outliers
that frequently present in real data. Based on the above advantages, quantile regression has
gradually become a valuable statistical methodology and attracted considerable interest in
many research fields. Koenker [33] provided an excellent exposition of quantile regression.

Quantile regression for panel data models can not only fully describe the conditional
distribution of a response variable but also control individual specific heterogeneity via
fixed effects. Koenker [34] explored quantile regression for longitudinal data with individ-
ual fixed effects. The fixed effects were regarded as location shift parameters of conditional
quantiles and shrank toward a common value. Based on `1 regularization, the author
proposed a penalized quantile regression estimator and obtained its asymptotic properties.
Galvao [35] extended quantile regression to dynamic panel data model. IVQR, which
was proposed by Chernozhukov and Hansen [36], was selected to reduce the estimation
bias caused by dynamic term. Based on the estimated model, the author obtained its
consistent estimator, asymptotic properties, and prediction. The estimation technique was
used to predict the output growth rates of 18 OECD countries. Tao et al. [37] considered
Hausman–Taylor instrumental variables and obtained two quantile regression estimators
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for a dynamic panel data model, the asymptotic properties of the proposed estimators were
studied, and the influencing factors of commercial residential prices in large and moderate
cities in China were analyzed. To the best of our knowledge, only two papers on quantile
regression of the spatial panel data models have been published. Dai et al. [38] studied
the IVQR of a spatial error panel data model with individual fixed effects. Dai et al. [39]
extended the IVQR to a spatial autoregressive panel data model with autoregressive dis-
turbances. The asymptotic properties of estimators in these two papers are based on the
assumption that the observations of response variable are independent and identically
distributed. However, in the spatial panel data models, the assumptions are whether the
endogenous interaction in spatial dimensions or autocorrelation in time series makes the
independent among observations of response variable unreasonable.

To summarize, our paper provides a complete set of quantile regression estimation
methodologies for the SDDPD model with fixed effects, accommodating different correla-
tions among response variable and covariates (spatial, temporally, and spatiotemporal). We
find that the panel data fixed effects estimators of quantile regression specification are usu-
ally biased. To reduce the bias, we suggest the use of the IVQR method by Chernozhukov
and Hansen [36] along with lagged covariates in spatial and time as instruments. Thus,
the IVQR estimator combines the instrument variable concept for a SDDPD model and
quantile regression framework. We study the asymptotic properties of quantile regression
estimators under reasonable assumptions. Monte Carlo simulations under various quan-
tiles indicate that our estimators perform well in finite samples even if the random error
distribution is heavy-tailed or asymmetrical. Finally, we illustrate our method with an
application to analyze the factors affecting international tourism foreign exchange earnings
of 31 provinces in China from 2011 to 2017. Our method is quite general and can be
generalized to other types of SDPD models and DSDM models. It is relatively easy to be
used in analyzing real data sets and thus greatly facilitates empirical research.

This paper is organized as follows. Section 2 introduces the IVQR of SDDPD models
with fixed effects, and its estimators are constructed. Section 3 proves the asymptotic
properties of the IVQR estimators under some regular conditions. Section 4 reports the
finite sample performance of estimates by Monte Carlo simulations. Section 5 illustrates
the proposed method by exploring the influencing factors of international tourism foreign
exchange earnings in 31 provinces of China from 2011 to 2017.

2. Model and Estimation

Consider a spatial dynamic Durbin panel data (SDDPD) model with fixed effects
under quantile restrictions:

yt = λ(τ)WNyt + γ1(τ)yt−1 + γ2(τ)WNyt−1 + Xtβ1(τ) + WN Xtβ2(τ)

+Xt−1β3(τ) + WN Xt−1β4(τ) + η0 + εt, (1)

where yt = (y1t, · · · , yNt)
′ is an N × 1 vector consisting of the observed values of the cross

sectional individuals (i = 1, · · · , N) at time t (t = 1, · · · , T), Xt = (x1t, · · · , xNt)
′ is an

N × p matrix of covariates at time t, η0 = (η01, · · · , η0N)
′ is an N × 1 vector consisting of

individual fixed effects, and εt = (ε1t, · · · , εNt)
′ is an N × 1 vector of innovation values

at time t. Normalized spatial weights matrix WN is an N × N known constant matrix, its
diagonal elements are all 0, and WN times a vector or matrix denotes its spatially lagged
value. Serially lagged value is represented by the subscript t− 1 of the vector or matrix.
The scale parameters λ(τ)(|λ(τ)| < 1), γ1(τ)(|γ1(τ)| < 1), and γ2(τ)(|γ2(τ)| < 1) are the
parameters of the response variable lagged in space, WNyt; the response variable lagged
in time, yt−1; and the response variable lagged in space and time, WNyt−1, respectively.
The p× 1 vectors β1(τ), β2(τ), β3(τ) and β4(τ) are parameters of exogenous variables.
All parameters depend on τ. This model can be used to simultaneously study the spa-
tial correlation and dynamic effects of response variable and covariates, and the spatial
correlation of the lagged response variable and covariates. Elhorst [14] pointed out its
application values.
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Extending the set of response variable to include endogenous interaction effects, yt−1 ,
(yt−1, WNyt−1), and the set of covariates to include exogenous interaction effects, Xt ,
(Xt, WN Xt, Xt−1, WN Xt−1). Let γ(τ) ,

(
γ1(τ), γ2(τ)

)′ and β(τ) ,
(

β′1(τ), β′2(τ), β′3(τ),
β′4(τ)

)′; then, the reduced form of model (1) is as follows:

yt = λ(τ)WNyt + γ(τ)yt−1 + Xtβ(τ) + η0 + εt, t = 1, · · · , T. (2)

The model (2) can be written in detail as

yit = λ(τ)
N

∑
j=1

wijyjt + γ(τ)yi,t−1 + β′(τ)xit + η0i + εit, i = 1, · · · , N, t = 1, · · · , T, (3)

where yit is an observation of the response variable for subject i at time t, xit is a p× 1
vector composed of observations of exogenous variables, η0i is the fixed effect of the ith
individual, and εit is a random error term. The lagged values of the response variable yit in
space and time are represented by ∑N

j=1 wijyjt and yi,t−1 respectively, where wij denotes the
(i, j)th element of spatial weights matrix WN . The scale parameters λ(τ) (|λ(τ)| < 1) and
γ(τ) (|γ(τ)| < 1) characterize the spatial effect and dynamic effect, respectively, and β(τ)
is a p× 1 regression coefficient vector. We always denote that yit = 0 when t ≤ 0.

Let y = (y1, · · · , yT)
′ be an NT × 1 vector, X = (X ′1, · · · , X ′T)

′ be an NT × p matrix,
and ε = (ε1, · · · , εT)

′ be an NT × 1 vector; then, the model (3) can represented as a more
concise matrix form

y = λ(τ)Wy + γ(τ)Ly + Xβ(τ) + Mη0 + ε, (4)

where W = IT
⊗

WN is an NT × NT weights matrix, L is the lagged operator, M = lT
⊗

IN
is an NT× N matrix, Ik denotes a k× k identity matrix, lT denotes a T× 1 vector with each
element is equal to 1, and

⊗
represents the Kronecker product.

Denote H(λ, γ) = INT − λW − γL; then, (4) can be reduced as follows:

y = H−1(λ(τ), γ(τ)
)(

Xβ(τ) + Mη0 + ε
)
, (5)

provided that H
(
λ(τ), γ(τ)

)
is nonsingular. This form is used to derive the asymptotic

properties of estimators proposed below.
It is obvious that the models (2)–(5) are equivalent, and the model (1) can be trans-

formed into the model (2). Therefore, to study the quantile regression model (1), we just
need to study the model (2). In the model (2), only the effects of covariates (WNyt, yt−1, Xt)
are allowed depending on τ. Obviously, when T is relatively small compared with N, it is
difficult to estimate the distribution of individual fixed effects that depend on τ. There-
fore, we restrict the estimates of η0 to be independent of τ across all quantiles. Similar to
Koenker [34] and Galvao [35], we treat the individual fixed effects as pure location-shift
parameters to all quantiles and may be subject to shrinkage toward a common value as in
the Gaussian random effects paradigm.

Koenker [34] proposed a general approach to estimating the quantile regression
models for panel data. Using this method to the model (3), for fixed τ, the quantile
regression estimators of (λ(τ), γ(τ), η0, β(τ)) can be derived by

(λ̂, γ̂, η̂, β̂) = arg min
(λ,γ,η,β)

N

∑
i=1

T

∑
t=1

vτρτ

(
yit − λȳit − γyi,t−1 − η′ei − β′xit

)
,

where ρτ(u) = u(τ − 1{u ≤ 0}) is the check function, 1{·} is an indicator function, and
vτ is a nonnegative scale weight used to control the influence of different quantiles on the
estimation of η0, ȳit = ∑N

j=1 wijyjt and η0i = η′0ei, where ei is an N × 1 vector in which the
ith element is equal to 1 and the other elements are equal to 0.
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In general, the estimators that we obtained from the above method are usually biased
due to the endogeneity of the model. This problem can be improved by using instrumental
variables, which affect ȳit and yi,t−1 in an appropriate way and are independent of εit.
According to Chernozhukov and Hansen [36] and Galvao [35], suppose that q× 1 vector
zit is an available instrumental variable, and for fixed τ, define the objective function

QNTτ(λ, γ, η, β, δ) =
N

∑
i=1

T

∑
t=1

vτρτ(yit − λȳit − γyi,t−1 − η′ei − β′xit − δ′zit). (6)

Here, vτ is a positive scalar weight, which is not important in parameter quantile regression,
and we can set it as 1 in practice. For a given quantile τ, we define the IVQR estimators for
the model (3) as (

λ̂(τ), γ̂(τ)
)
= arg min

(λ,γ)
‖δ̂(λ, γ, τ)‖A, (7)

where (
η̂′(λ, γ, τ), β̂′(λ, γ, τ), δ̂′(λ, γ, τ)

)′
= arg min

(η,β,δ)
QNTτ(λ, γ, η, β, δ), (8)

with ‖x‖A =
√

x′Ax, and A is a positive define matrix. The final parameter estimators of
interest parameters are given by(

λ̂(τ), γ̂(τ), β̂′(τ)
)′

=
(
λ̂(τ), γ̂(τ), β̂′(λ̂(τ), γ̂(τ), τ)

)′. (9)

Intuitively, a valid instrumental variable zit, which is independent of εit, should have
a zero coefficient. Hence, the finite sample objective function QNTτ(λ, γ, η, β, δ) meets the
identification condition, which is that the estimate of δ is close to zero when (λ, γ, β′)′ is
close to the true population values

(
λ(τ), γ(τ), β′(τ)

)′. We look for parameter values for(
λ̂(τ), γ̂(τ), β̂′(τ)

)′ through the inverse step (7) so that the value of coefficient δ(λ, γ, τ)
on the instrument variable is driven as close to zero as possible. A grid research can be
used to implement the IVQR procedure in practice:

(i) For a given τ, define a pair of grid values {(λj, γl) : |λj| < 1, |γl | < 1, j = 1, · · · , J, l =
1, · · · , L} and run the ordinary quantile regression of (yit−λjȳit−γlyi,t−1) on (ei, xit, zit)
to obtain(

η̂′(λj, γl , τ), β̂′(λj, γl , τ), δ̂′(λj, γl , τ)
)′

= arg min
(η,β,δ)

QNTτ(λj, γl , η, β, δ).

(ii) Choose
(
λ̂(τ), γ̂(τ)

)
as the values among

{
(λj, γl), j = 1, · · · , J, l = 1, · · · , L

}
that

makes ‖δ̂(λ, γ, τ)‖Â closest to zero, where Â = A + op(1).
(iii) The estimator of β(τ) is then given by β̂

(
λ̂(τ), γ̂(τ), τ

)
, which leads to the final

estimates
(
λ̂(τ), γ̂(τ), β̂′(τ)

)′
=
(
λ̂(τ), γ̂(τ), β̂′(λ̂(τ), γ̂(τ), τ)

)′.
Remark 1. The pair of grid values of (λ, γ) can be determined based on actual requirements: the
smaller the grid values are divided, the more accurate the estimators can be, and of course, the more
time it takes.

Remark 2. We can also consider different quantiles (τ1, · · · , τK) at the same time, where K > 1.
However, for this case, the amount of calculation depends on the number of estimated quantiles
and is very large. Therefore, we can use a numerical optimization function in R instead of the grid
research according to Galvao [35].
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3. Asymptotic Properties

Let Λ, Γ, E , and B be the parameter spaces of λ, γ, η, and β, respectively. In order to
prove the asymptotic properties of the IVQR estimators defined in the above section, we
need to establish the following assumptions.

Assumption 1. The disturbance terms {εit} are independent of each other, covariance stationary,
with conditional distribution functions Fit, and differentiable conditional densities fit, 0 < fit < ∞
with bounded continuous derivatives f (1)it , where i = 1, · · · , N and t = 1, · · · , T.

Assumption 2.

(i) The matrix H
(
λ(τ), γ(τ)

)
= INT − λ(τ)W − γ(τ)L is nonsingular;

(ii) The sequence of matrices {WN} and {H−1(λ(τ), γ(τ)
)
} are uniformly bounded in both row

and column sums;
(iii) The sequence of matrices {H−1(λ, γ)} are uniformly bounded in either row or column sums,

uniformly in (λ, γ) ∈ Λ× Γ;
(iv) The elements wij of spatial weights matrix WN are uniformly at most of order l−1

N , such that
lN → ∞ and lN/N → 0 as N tends to infinity.

For identification purpose, define Qτ(λ, γ, η, β, δ) = E
[
vτρτ(y− λWy− γLy−Mη−

Xβ− Zδ)
]
. Let

(
λ∗(τ), γ∗(τ)

)
= arg min

(λ,γ)
‖δ∗(λ, γ, τ)‖A, where

(
η∗(λ, γ, τ), β∗(λ, γ, τ),

δ∗(λ, γ, τ)
)
= arg min

(η,β,δ)
Qτ(λ, γ, η, β, δ). Denote η∗(τ) = η∗

(
λ∗(τ), γ∗(τ), τ

)
, β∗(τ) =

β∗
(
λ∗(τ), γ∗(τ), τ

)
and δ∗(τ) = δ∗

(
λ∗(τ), γ∗(τ), τ

)
.

Assumption 3. Let Z = (zit) be an NT × q matrix and ξ = (M, X, Z). For a given τ, define

Rτ(λ, γ, η, β) = E
[
vτ

(
τ − 1{y ≤ λWy + γLy + Mη+ Xβ}

)
ξ
]
,

Rτ(λ, γ, η, β, δ) = E
[
vτ

(
τ − 1{y ≤ λWy + γLy + Mη+ Xβ + Zδ}

)
ξ
]
.

Then,

(i) the Jacobian matrices ∂Rτ(λ, γ, η, β)/∂(λ, γ, η, β) and ∂Rτ(λ, γ, η, β, δ)/∂(η, β, δ) are
continuous and have full rank at Π = Λ× Γ× E × B ×D, where D is the parameter space
of δ;

(ii) The parameter space Λ× Γ× E × B is a convex compact set;
(iii) Under the mapping (λ, γ, η, β)→ Rτ(λ, γ, η, β), the image of the parameter space Λ× Γ×

E × B is simply connected.

Let H1 = W H−1(λ(τ), γ(τ)
)

and H2 = LH−1(λ(τ), γ(τ)
)
, and use h(1)r,s , h(2)r,s to

represent the (r, s)th element of H1 and H2 respectively, where r = N(t − 1) + i, s =
N(l − 1) + j, i, j = 1, · · · , N; t, l = 1, · · · , T. Define

br = 1−
[
λ∗(τ)− λ(τ)

]
h(1)rr −

[
γ∗(τ)− γ(τ)

]
h(2)rr ,

ar =
[(

λ∗(τ)− λ(τ)
)
e′NT,r H1 +

(
γ∗(τ)− γ(τ)

)
e′NT,r H2

](
Mη0 + Xβ(τ)

)
+
(
λ∗(τ)− λ(τ)

)
∑
s 6=r

h(1)r,s ε jl +
(
γ∗(τ)− γ(τ)

)
∑
s 6=r

h(2)r,s ε jl +
(
α∗(τ)− α(τ)

)′
ξ it,

where α∗(τ) =
(
η∗′(τ), β∗′(τ), δ∗′(τ)

)′, α(τ) =
(
η′(τ), β′(τ), 0′

)′ and ξ it =
(
e′i, x′it, z′it

)′.
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Assumption 4. Denote Φ(τ) = diag
( 1

br
fit
( ar

br

))
. Let SM = INT − PM , PM = M

(
M ′Φ(τ)

M
)−1M ′Φ(τ) and ξ̃ = (X, Z); then, the following matrices

Jλ = lim
N→∞

lim
T→∞

1
NT

vτ ξ̃′S′MΦ(τ)SMWy,

Jγ = lim
N→∞

lim
T→∞

1
NT

vτ ξ̃′S′MΦ(τ)SM Ly,

Jϑ = lim
N→∞

lim
T→∞

1
NT

vτ ξ̃′S′MΦ(τ)SM ξ̃,

Ω0(τ) = τ(1− τ) lim
N→∞

lim
T→∞

1
NT

v2
τ ξ̃′S′MSM ξ̃,

ΩD = τ(1− τ) lim
N→∞

lim
T→∞

1
NT

(
M, Wy, Ly, ξ̃

)′(M, Wy, Ly, ξ̃
)

are positive definite. In addition, Jϑ , J′λ J̄′δ AJ̄δ Jλ and J′γ J̄′δ AJ̄δ Jγ are invertible, where J−1
ϑ =

( J̄′β, J̄′δ)
′, J̄β and J̄δ are p× (p + q) and q× (p + q) matrices, respectively.

Assumption 5. For τ ∈ T ,
(
λ(τ), γ(τ), β′(τ)

)′ is a interior point of Λ× Γ× B, which is a
convex compact set.

Assumption 6. Suppose max
i,t
‖yit‖ = O(

√
NT), max

i,t
‖xit‖ = O(

√
NT) and max

i,t
‖zit‖ =

O(
√

NT).

Assumption 7. For some a > 0, Na/T → 0, when N → ∞ and T → ∞.

Remark 3. Assumption 1 limits the density function of εit. Assumption 2 is some essential
features of the spatial weights matrix in the literature. Assumption 2 (i) guarantees that the random
disturbances are well defined. By Kelejian and Prucha [40], and Lee [41], Assumption 2 (ii) limits
the spatial correlation to a certain degree but helps to derive the asymptotic properties of spatial
parameter estimator. Similar to Su and Yang [42], Assumption 2 (iii) requires {H−1(λ, γ)} to be
true uniformly in (λ, γ) ∈ Λ× Γ. Assumption 2 (iv) requires that wij tends to 0 uniformly as N →
∞, which is also adapted from Su and Yang [42]. Assumption 3 emphasizes the global identifiability.
Assumption 3 (i) requires the influence of instrument Z on the conditional distribution of y at
relevant points, similar to Chernozhukov and Hansen [36]. Assumption 3 (ii) imposes the parameter
space is compact and convex. Assumption 3 (iii) requires that the image of Λ× Γ×E ×B under the
mapping (λ, γ, η, β)→ Rτ(λ, γ, η, β) is simply connected. By Chernozhukov and Hansen [43],
and Galvao [35], the mapping is a homeomorphism between (Λ× Γ× E × B) and Rτ(Λ, Γ, E ,B).
Assumption 4 gives the condition of matrices for guaranteeing asymptotic normality. Assumption 5
imposes a restriction on the compactness of the parameter space of

(
λ(τ), γ(τ)

)
and requires that

the objective function is convex at (λ, γ). Galvao [35] also assumed Assumption 6, which limits the
boundaries of the variables. Assumption 7 is the same assumption as A6 in Galvao [35].

Let θ(τ) =
(
λ(τ), γ(τ), β′(τ)

)′, θ̂(τ) =
(
λ̂(τ), γ̂(τ), β̂′(τ)

)′ is the estimator of θ(τ).
Noting that ψτ(u) = ∂ρτ(u)/∂u = τ − 1(u ≤ 0). Next, we study the consistency and
asymptotic properties of the IVQR estimators defined in (7)–(9). All proofs are given in
Appendix A.

Theorem 1. Under Assumptions 1–7, we have that
(
λ(τ), γ(τ), η′0, β′(τ)

)′ is an uniquely solu-
tion of equation E

[
vτψτ(y−λWy−γLy−Mη−Xβ)ξ

]
= 0 in parameter space Λ×Γ×E ×B,

and θ̂(τ) is a consistent estimator of θ(τ).
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Theorem 2. Suppose Assumptions 1–7 hold; then, we have

√
NT
(
θ̂(τ)− θ(τ)

) d−→ N(0, Ω),

where Ω = Ω(A)Ω0(τ)Ω
′(A), Ω0(τ) = τ(1− τ)E(VV ′), V = vτ ξ̃′S′M , Ω(A) = (K′λ, K′γ,

K′β)
′, Kλ = (φλλ−φλγφ−1

γγ φγλ)
−1(φλ−φλγφ−1

γγ φγ), Kγ = (φγγ−φγλφ−1
λλ φλγ)

−1(φγ−
φγλφ−1

λλ φλ), Kβ = J̄β(Ip+q − JλKλ − JγKγ), φλλ = J′λ J̄′δ AJ̄δ Jλ, φλγ = J′λ J̄′δ AJ̄δ Jγ, φγγ =
J′γ J̄′δ AJ̄δ Jγ, φγλ = J′γ J̄′δ AJ̄δ Jλ, φλ = J′λ J̄′δ AJ̄δ, φγ = J′γ J̄′δ AJ̄δ, and the other notations are given
in Assumption 4.

Remark 4. The asymptotic covariance matrix Ω depends on the weights matrix A. If dim(δ) =
dim(λ, γ), then the choice of A does not affect the result, and we can simply choose it as the
identity matrix. According to Galvao [35], if dim(δ) > dim(λ, γ), then the choice of A affects the
efficiency, and we can choose the inverse of covariance matrix of δ̂(λ, γ, τ).

Remark 5. The estimation of Ω depends on Ω0(τ), Jλ, Jγ and Jϑ . The sample counterpart
ΩNT(τ) = τ(1 − τ) 1

NT v2
τ ξ̃′S′MSM ξ̃ can be used to consistently estimate Ω0(τ). Following

Powell [44] and Galvao [35], Jλ, Jγ and Jϑ can be estimated as in Assumption 4. The estimators of
Jλ, Jγ and Jϑ take the following forms:

Ĵλ =
1

2NTln
vτ

N

∑
i=1

T

∑
t=1

1{|ε̂(τ)| ≤ ln}ξ̃′S′MSMWy,

Ĵγ =
1

2NTln
vτ

N

∑
i=1

T

∑
t=1

1{|ε̂(τ)| ≤ ln}ξ̃′S′MSM Ly,

Ĵϑ =
1

2NTln
vτ

N

∑
i=1

T

∑
t=1

1{|ε̂(τ)| ≤ ln}ξ̃′S′MSM ξ̃,

where ε̂(τ) = y − λ̂(τ)Wy − γ̂(τ)Ly − Mη̂(τ) − X β̂(τ), and ln is an appropriately chosen
bandwidth. The element M ′Φ̂(τ)M in PM can be estimated using the same procedure.

4. Monte Carlo Simulations

In this section, Monte Carlo simulations are used to assess the finite sample per-
formance of proposed estimators. We use the bias, mean square error (MSE), relative
bias (rB), and relative mean square error (rMSE) as the evaluation criteria. Here rB =( 1

mcn ∑mcn
j=1 (ξ̂ j− ξ0)

)
/ξ0× 100% and rMSE =

( 1
mcn ∑mcn

j=1 (ξ̂ j− ξ0)
2)/ξ0× 100%, where mcn

is the total number of simulations, ξ j is the jth (j = 1, 2, . . . , mcn) simulated estimate, and
ξ0 is the true value of parametric estimates. The results to be reported in this section were
estimated using R routines.

We run a small simulation experiment with mcn = 5000 and use data generated from
the following model:

yit = λ0

N

∑
j=1

wijyjt + γ0yi,t−1 + β′0xit + η0i + εit, i = 1, · · · , N, t = 1, · · · , T,

where fixed effect η0i = ui + T−1 ∑T
t=1 xit and ui ∼ N(0, σ2

u). The covariate xit is gener-
ated according to xit = µi + νit, where νit follows an ARMA(1, 1) process (1− φ)νit =
ζit + ϑζi,t−1, ζit ∼ N(0, σ2

ζ ), µi = u∗i + T−1 ∑T
t=1 ζit and u∗i ∼ N(0, σ2

u∗). The spatial
weightsmatrix WN is generated under Rook contiguity and Case group interaction, and a
detailed description can be found in Su and Yang [42] and in Lin and Lee [45]. We consider
N = {30, 50, 80}, T = {5, 10, 15}, and the values for remaining parameters as follows:
(λ0, γ0, β0) = (0.2, 0.5, 2), φ = 0.7, ϑ = 0.2, and σ2

ζ = σ2
u = σ2

u∗ = 1. We always discard the
first 50 observations of yit to ensure that xit is not affected by its initial values.
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In order to investigate the Monte Carlo results with variations on different quantiles,
we try τ = 0.25, 0.5, and 0.75. According to Su and Yang [42], and Galvao [35], we set
the instrumental variables as ∑j wijxjt and xi,t−1. Our simulation results are presented in
Tables 1–6 under three cases of εit ∼ N(0, 1), εit ∼ t(3), and εit ∼ χ2(3).

By observing the simulation results in Tables 1–6, we find the following conclusions:

(1) The biases, MSEs, rBs (in percent), and rMSEs (in percent) are all small whether the
random error distribution follows symmetrical distributions (N(0, 1) and t(3)) or a
asymmetric distribution (χ2(3)). The MSEs and rMSEs of estimates drop quickly with
increasing T. The accuracy of estimates improves significantly with increasing N or T.

(2) The results in Tables 1 and 3 show that, under normal and t distributions of random
error term, the rMSEs of estimates at quantile τ = 0.5 are smaller than that at quantiles
τ = 0.25 and τ = 0.75. Tables 2 and 4 display the same phenomenon. The results
in Table 5 show that, under χ2 distribution of the random error term, the rMSEs of
estimates at quantile τ = 0.25 are the smallest, followed by the quantile τ = 0.5, and
finally, the quantile τ = 0.75. Table 6 displays the same phenomenon.

Table 1. The results of estimates with Rook Matrix and normal errors.

τ Parameter λ γ β λ γ β λ γ β

N = 30, T = 5 N = 30, T = 10 N = 30, T = 15

0.25 Bias − 0.0038 −0.0128 0.0105 −0.0018 −0.0055 0.0051 −0.0011 −0.0032 0.0033
MSE 5.11× 10−4 4.99× 10−4 4.43× 10−3 3.44× 10−4 2.11× 10−4 9.12× 10−4 2.55× 10−4 1.31× 10−4 4.85× 10−4

rB −1.9000 −2.5600 0.5250 −0.9000 −1.1000 0.2550 −0.5270 −0.6352 0.1639
rMSE 0.2555 0.0998 0.2215 0.1720 0.0422 0.0456 0.1277 0.0261 0.0242

0.50 Bias −0.0036 −0.0106 0.0058 −0.0016 −0.0040 0.0041 −0.0011 −0.0024 0.0028
MSE 4.60× 10−4 4.21× 10−4 2.24× 10−3 3.03× 10−4 1.79× 10−4 7.10× 10−4 2.20× 10−4 1.01× 10−4 3.81× 10−4

rB −1.8000 −2.1200 0.2900 −0.8000 −0.8000 0.2050 −0.5290 −0.4768 0.1384
rMSE 0.2300 0.0842 0.1120 0.1515 0.0358 0.0355 0.1099 0.0202 0.0191

0.75 Bias −0.0038 −0.0134 0.0091 −0.0017 −0.0056 0.0052 −0.0009 −0.0030 0.0036
MSE 5.09× 10−4 5.05× 10−4 4.33× 10−3 3.42× 10−4 2.16× 10−4 8.59× 10−4 2.54× 10−4 1.23× 10−4 4.97× 10−4

rB −1.9000 −2.6800 0.4550 −0.8500 −1.1200 0.2600 −0.4670 −0.5980 0.1778
rMSE 0.2545 0.1010 0.2165 0.1710 0.0432 0.0430 0.1271 0.0247 0.0249

N = 50, T = 5 N = 50, T = 10 N = 50, T = 15

0.25 Bias −0.0034 −0.0147 0.0084 −0.0013 −0.0056 0.0048 −0.0003 −0.0031 0.0035
MSE 4.79× 10−4 4.85× 10−4 2.50× 10−3 2.85× 10−4 1.52× 10−4 5.21× 10−4 1.96× 10−4 7.93× 10−5 2.86× 10−4

rB −1.7000 −2.9400 0.4200 −0.6500 −1.1200 0.2400 −0.1360 −0.6176 0.1725
rMSE 0.2395 0.0970 0.1250 0.1425 0.0304 0.0261 0.0981 0.0159 0.0143

0.50 Bias −0.0025 −0.0114 0.0047 −0.0010 −0.0039 0.0038 0.0002 −0.0024 0.0025
MSE 4.17× 10−4 3.73× 10−4 1.36× 10−3 2.55× 10−4 1.22× 10−4 4.40× 10−4 1.65× 10−4 6.44× 10−5 2.27× 10−4

rB −1.2500 −2.2800 0.2350 −0.5000 −0.7800 0.1900 0.0820 −0.4832 0.1238
rMSE 0.2085 0.0746 0.0680 0.1275 0.0244 0.0220 0.0825 0.0129 0.0113

0.75 Bias −0.0033 −0.0146 0.0087 −0.0012 −0.0055 0.0050 0.0000 −0.0031 0.0034
MSE 4.75× 10−4 4.85× 10−4 2.50× 10−3 2.79× 10−4 1.52× 10−4 5.37× 10−4 1.96× 10−4 8.31× 10−5 2.94× 10−4

rB −1.6500 −2.9200 0.4350 −0.6000 −1.1000 0.2500 −0.0120 −0.6132 0.1685
rMSE 0.2375 0.0970 0.1250 0.1395 0.0304 0.0269 0.0982 0.0166 0.0147

N = 80, T = 5 N = 80, T = 10 N = 80, T = 15

0.25 Bias −0.0025 −0.0165 0.0083 −0.0004 −0.0054 0.0047 0.0000 −0.0031 0.0032
MSE 4.42× 10−4 4.77× 10−4 1.58× 10−3 2.22× 10−4 1.09× 10−4 3.43× 10−4 1.41× 10−4 5.60× 10−5 1.91× 10−4

rB −1.4080 −3.2976 0.4155 −0.2070 −1.0784 0.2359 0.0200 −0.6124 0.1577
rMSE 0.2210 0.0954 0.0790 0.1110 0.0218 0.0172 0.0703 0.0112 0.0095

0.50 Bias −0.0020 −0.0121 0.0046 −0.0003 −0.0010 0.0034 −0.0001 −0.0023 0.0023
MSE 3.62× 10−4 3.33× 10−4 8.51× 10−4 1.92× 10−4 8.50× 10−5 2.69× 10−4 1.12× 10−4 4.48× 10−5 1.45× 10−4

rB −0.9840 −2.4232 0.2324 −0.1710 −0.7996 0.1713 −0.0390 −0.4644 0.1142
rMSE 0.1810 0.0666 0.0426 0.0960 0.0170 0.0135 0.0558 0.0090 0.0073

0.75 Bias −0.0025 −0.0162 0.0086 −0.0003 −0.0055 0.0043 −0.0002 −0.0031 0.0033
MSE 4.37× 10−4 4.74× 10−4 1.56× 10−3 2.21× 10−4 1.10× 10−4 3.31× 10−4 1.46× 10−4 5.67× 10−5 1.88× 10−4

rB −1.2300 −3.2384 0.4318 −0.1620 −1.0908 0.2172 −0.1070 −0.6220 0.1646
rMSE 0.2185 0.0948 0.0780 0.1105 0.0220 0.0166 0.0729 0.0113 0.0094



Mathematics 2021, 9, 3261 10 of 24

Table 2. The results of estimates with Case Matrix and normal errors.

τ Parameter λ γ β λ γ β λ γ β

N = 30, T = 5 N = 30, T = 10 N = 30, T = 15

0.25 Bias −0.0038 −0.0130 0.0087 −0.0012 −0.0053 0.0044 −0.0008 −0.0031 0.0035
MSE 5.06× 10−4 5.03× 10−4 4.44× 10−3 3.28× 10−4 2.14× 10−4 8.94× 10−4 2.45× 10−4 1.24× 10−4 4.97× 10−4

rB −1.9000 −2.6000 0.4350 −0.6000 −1.0600 0.2200 −0.3840 −0.6200 0.1765
rMSE 0.2530 0.1006 0.2220 0.1640 0.0428 0.0447 0.1225 0.0247 0.0248

0.50 Bias −0.0035 −0.0102 0.0055 −0.0013 −0.0041 0.0035 −0.0003 −0.0022 0.0027
MSE 4.56× 10−4 4.12× 10−4 2.38× 10−3 2.88× 10−4 1.80× 10−4 7.28× 10−4 1.96× 10−4 1.01× 10−4 3.86× 10−4

rB −1.7500 −2.0400 0.2750 −0.6500 −0.8200 0.1750 −0.1640 −0.4484 0.1329
rMSE 0.2280 0.0824 0.1190 0.1440 0.0360 0.0364 0.0980 0.0202 0.0193

0.75 Bias −0.0040 −0.0130 0.0099 −0.0014 −0.0056 0.0051 −0.0005 −0.0030 0.0033
MSE 5.01× 10−4 5.00× 10−4 4.46× 10−3 3.31× 10−4 2.16× 10−4 9.05× 10−4 2.37× 10−4 1.27× 10−4 5.01× 10−4

rB −2.0000 −2.6000 0.4950 −0.7000 −1.1200 0.2550 −0.2620 −0.5952 0.1634
rMSE 0.2505 0.1000 0.2230 0.1655 0.0432 0.0453 0.1187 0.0253 0.0251

N = 50, T = 5 N = 50, T = 10 N = 50, T = 15

0.25 Bias −0.0034 −0.0148 0.0096 −0.0008 −0.0056 0.0049 −0.0003 −0.0031 0.0029
MSE 4.86× 10−4 4.88× 10−4 2.47× 10−3 2.62× 10−4 1.16× 10−4 3.41× 10−4 1.89× 10−4 8.36× 10−5 2.98× 10−4

rB −1.7000 −2.9600 0.4800 −0.5000 −1.0600 0.2700 −0.1410 −0.6232 0.1428
MSE 0.2430 0.0976 0.1235 0.1420 0.0308 0.0263 0.0947 0.0167 0.0149

0.50 Bias −0.0026 −0.0114 0.0056 −0.0009 −0.0040 0.0038 −0.0003 −0.0023 0.0025
MSE 4.16× 10−4 3.78× 10−4 1.37× 10−3 2.47× 10−4 1.27× 10−4 4.32× 10−4 1.56× 10−4 6.65× 10−5 2.23× 10−4

rB −1.3000 −2.2800 0.2800 −0.4500 −0.8000 0.1900 −0.1460 −0.4616 0.1232
rMSE 0.2080 0.0756 0.0685 0.1235 0.0254 0.0216 0.0779 0.0133 0.0112

Bias −0.0035 −0.0144 0.0089 −0.0010 −0.0056 0.0049 −0.0001 −0.0031 0.0036
MSE 4.91× 10−4 4.88× 10−4 2.59× 10−3 2.86× 10−4 1.56× 10−4 5.29× 10−4 1.91× 10−4 8.16× 10−5 2.99× 10−4

rB −1.7500 −2.8800 0.4450 −0.5000 −1.1200 0.2450 −0.0550 −0.6140 0.1777
rMSE 0.2455 0.0976 0.1295 0.1430 0.0312 0.0265 0.0955 0.0163 0.0150

N = 80, T = 5 N = 80, T = 10 N = 80, T = 15

0.25 Bias −0.0030 −0.0161 0.0084 −0.0002 −0.0030 0.0032 −0.0002 −0.0030 0.0032
MSE 4.76× 10−4 4.78× 10−4 1.50× 10−3 1.64× 10−4 5.71× 10−5 1.88× 10−4 1.64× 10−4 5.71× 10−5 1.88× 10−4

rB −1.5180 −3.2288 0.4222 −0.3760 −1.1152 0.2473 −0.0810 −0.5944 0.1575
rMSE 0.2382 0.0956 0.0750 0.1312 0.0232 0.0170 0.0820 0.0114 0.0094

0.50 Bias −0.0022 −0.0124 0.0049 −0.0005 −0.0043 0.0037 −0.0002 −0.0023 0.0023
MSE 4.04× 10−4 3.48× 10−4 8.53× 10−4 2.19× 10−4 9.02× 10−5 2.63× 10−4 1.30× 10−4 4.62× 10−5 1.45× 10−4

rB −1.0940 −2.4780 0.2433 −0.2530 −0.8564 0.1860 −0.1080 −0.4676 0.1158
rMSE 0.2018 0.0695 0.0426 0.1097 0.0180 0.0131 0.0648 0.0092 0.0072

0.75 Bias −0.0027 −0.0162 0.0080 −0.0007 −0.0058 0.0048 −0.0001 −0.0030 0.0031
MSE 4.69× 10−4 4.80× 10−4 1.58× 10−3 2.58× 10−4 1.19× 10−4 3.20× 10−4 1.66× 10−4 5.80× 10−5 1.91× 10−4

rB −1.3670 −3.2436 0.4022 −0.3670 −1.1508 0.2399 −0.0710 −0.6096 0.1555
rMSE 0.2346 0.0960 0.0789 0.1289 0.0238 0.0160 0.0830 0.0116 0.0096

Table 3. The results of estimates with Rook Matrix and t errors.

τ Parameter λ γ β λ γ β λ γ β

N = 30, T = 5 N = 30, T = 10 N = 30, T = 15

0.25 Bias −0.0041 −0.0128 0.0145 −0.0018 −0.0064 0.0058 −0.0017 −0.0038 0.0038
MSE 5.22× 10−4 5.26× 10−4 6.69× 10−3 3.99× 10−4 2.91× 10−4 1.43× 10−3 3.22× 10−4 1.81× 10−4 7.59× 10−4

rB −2.0500 −2.5600 0.7250 −0.9000 −1.2800 0.2900 −0.8550 −0.7656 0.1910
rMSE 0.2610 0.1052 0.3345 0.1995 0.0582 0.0715 0.1612 0.0362 0.0379

0.50 Bias −0.0034 −0.0108 0.0072 −0.0014 −0.0040 0.0036 −0.0022 −0.0137 0.0058
MSE 4.87× 10−4 4.53× 10−4 3.43× 10−3 3.39× 10−4 2.20× 10−4 9.07× 10−4 2.48× 10−4 1.25× 10−4 4.80× 10−4

rB −1.7000 −2.1600 0.3600 −0.7000 −0.8000 0.1800 −0.5500 −0.5592 0.1152
rMSE 0.2435 0.0906 0.1715 0.1695 0.0440 0.0454 0.1241 0.0250 0.0240

0.75 Bias −0.0038 −0.0135 0.0123 −0.0023 −0.0061 0.0066 −0.0011 −0.0041 0.0045
MSE 5.16× 10−4 5.32× 10−4 6.70× 10−3 3.95× 10−4 2.86× 10−4 1.43× 10−3 3.19× 10−4 1.83× 10−4 7.71× 10−4

rB −1.9000 −2.7000 0.6150 −1.1500 −1.2200 0.3300 −0.5620 −0.8184 0.2228
rMSE 0.2580 0.1064 0.3350 0.1975 0.0572 0.0715 0.1597 0.0367 0.0385

N = 50, T = 5 N = 50, T = 10 N = 50, T = 15

0.25 Bias −0.0032 −0.0145 0.0127 −0.0014 −0.0065 0.0055 −0.0011 −0.0040 0.0042
MSE 4.95× 10−4 5.24× 10−4 3.69× 10−3 3.38× 10−4 2.23× 10−4 8.40× 10−4 2.62× 10−4 1.26× 10−4 4.57× 10−4

rB −1.6000 −2.9000 0.6350 −0.7000 −1.3000 0.2750 −0.5480 −0.8060 0.2098
rMSE 0.2475 0.1048 0.1845 0.1690 0.0446 0.0420 0.1312 0.0253 0.0229

0.50 Bias −0.0027 −0.0119 0.0071 −0.0006 −0.0045 0.0036 −0.0005 −0.0027 0.0029
MSE 4.43× 10−4 4.21× 10−4 1.96× 10−3 2.79× 10−4 1.52× 10−4 5.58× 10−4 1.88× 10−4 8.12× 10−5 2.95× 10−4

rB −1.3500 −2.3800 0.3550 −0.3000 −0.9000 0.1800 −0.2490 −0.5440 0.1448
rMSE 0.2215 0.0842 0.0980 0.1395 0.0304 0.0279 0.0940 0.0162 0.0148

0.75 Bias −0.0031 −0.0146 0.0122 −0.0015 −0.0065 0.0053 −0.0007 −0.0039 0.0042
MSE 4.96× 10−4 5.24× 10−4 3.88× 10−3 3.40× 10−4 2.22× 10−4 8.11× 10−4 2.51× 10−4 1.27× 10−4 4.80× 10−4

rB −1.5500 −2.9200 0.6100 −0.7500 −1.3000 0.2650 −0.3450 −0.7800 0.2098
rMSE 0.2480 0.1057 0.1940 0.1700 0.0444 0.0406 0.1253 0.0254 0.0240
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Table 3. Cont.

N = 80, T = 5 N = 80, T = 10 N = 80, T = 15

0.25 Bias −0.0033 −0.0170 0.0105 −0.0007 −0.0062 0.0054 −0.0002 −0.0037 0.0037
MSE 4.73× 10−4 5.15× 10−4 2.29× 10−3 2.82× 10−4 1.65× 10−4 5.25× 10−4 2.01× 10−4 8.54× 10−5 2.90× 10−4

rB −1.6670 −3.3964 0.5274 −0.3440 −1.2992 0.2700 −0.1020 −0.7392 0.1858
rMSE 0.2367 0.1030 0.1145 0.1412 0.0329 0.0263 0.1006 0.0171 0.0145

0.50 Bias −0.0022 −0.0137 0.0058 −0.0003 −0.0043 0.0040 0.0002 −0.0028 0.0026
MSE 4.04× 10−4 3.99× 10−4 1.14× 10−3 2.20× 10−4 1.06× 10−4 3.47× 10−4 1.36× 10−4 5.75× 10−5 1.79× 10−4

rB −1.1200 −2.7364 0.2881 −0.1730 −0.8652 0.1983 0.1080 −0.5512 0.1306
rMSE 0.2020 0.0797 0.0572 0.1100 0.0212 0.0174 0.0678 0.0115 0.0089

0.75 Bias −0.0031 −0.0171 0.0100 −0.0008 −0.0066 0.0058 −0.0003 −0.0040 0.0041
MSE 4.63× 10−4 5.29× 10−4 2.14× 10−3 2.86× 10−4 1.63× 10−4 5.11× 10−4 1.95× 10−4 8.87× 10−5 3.03× 10−4

rB −1.5410 −3.4284 0.4989 −0.4170 −1.3160 0.2915 −0.1340 −0.7948 0.2038
rMSE 0.2313 0.1048 0.1068 0.1428 0.0327 0.0255 0.0974 0.0177 0.0151

Table 4. The results of estimates with Case Matrix and t errors.

τ Parameter λ γ β λ γ β λ γ β

N = 30, T = 5 N = 30, T = 10 N = 30, T = 15

0.25 Bias −0.0038 −0.0134 0.0118 −0.0022 −0.0064 0.0063 −0.0013 −0.0040 0.0035
MSE 5.12× 10−4 5.37× 10−4 6.61× 10−3 3.78× 10−4 2.86× 10−4 1.35× 10−3 2.97× 10−4 1.84× 10−4 7.98× 10−4

rB −1.9000 −2.6800 0.5900 −1.1000 −1.2800 0.3150 −0.6590 −0.7928 0.1768
rMSE 0.2560 0.1074 0.3305 0.1890 0.0572 0.0675 0.1486 0.0368 0.0399

0.50 Bias −0.0035 −0.0109 0.0069 −0.0020 −0.0045 0.0042 −0.0008 −0.0026 0.0026
MSE 4.76× 10−4 4.57× 10−4 3.35× 10−3 3.27× 10−4 2.15× 10−4 9.19× 10−4 2.30× 10−4 1.22× 10−4 4.97× 10−4

rB −1.7500 −2.1800 0.3450 −1.0000 −0.9000 0.2100 −0.3840 −0.5264 0.1312
rMSE 0.2380 0.0914 0.1675 0.1635 0.0430 0.0460 0.1152 0.0243 0.0249

0.75 Bias −0.0038 −0.0131 0.0129 −0.0021 −0.0065 0.0071 −0.0011 −0.0040 0.0035
MSE 5.14× 10−4 5.37× 10−4 6.60× 10−3 3.83× 10−4 2.90× 10−4 1.46× 10−3 2.97× 10−4 1.80× 10−4 7.70× 10−4

rB −1.9000 −2.6200 0.6450 −1.0500 −1.3000 0.3550 −0.5590 −0.7936 0.1734
rMSE 0.2570 0.1074 0.3300 0.1915 0.0580 0.0730 0.1483 0.0359 0.0385

N = 50, T = 5 N = 50, T = 10 N = 50, T = 15

0.25 Bias −0.0038 −0.0143 0.0108 −0.0015 −0.0068 0.0056 −0.0004 −0.0038 0.0045
MSE 5.07× 10−4 5.20× 10−4 3.98× 10−3 3.44× 10−4 2.24× 10−4 8.45× 10−4 2.47× 10−4 1.28× 10−4 4.67× 10−4

rB −1.9000 −2.8600 0.5400 −0.7500 −1.3600 0.2800 −0.1890 −0.7596 0.2246
rMSE 0.2535 0.1040 0.1990 0.1720 0.0448 0.0423 0.1234 0.0256 0.0233

0.50 Bias −0.0027 −0.0123 0.0058 −0.0009 −0.0048 0.0037 0.0000 −0.0025 0.0029
MSE 4.58× 10−4 4.32× 10−4 1.93× 10−3 2.81× 10−4 1.59× 10−4 5.67× 10−4 1.84× 10−4 7.95× 10−5 2.91× 10−4

rB −1.3500 −2.4600 0.2900 −0.4500 −0.9600 0.1850 −0.0130 −0.5064 0.1458
rMSE 0.2290 0.0864 0.0965 0.1405 0.0318 0.0284 0.0922 0.0159 0.0145

0.75 Bias −0.0033 −0.0152 0.0105 −0.0017 −0.0070 0.0055 −0.0006 −0.0039 0.0043
MSE 4.98× 10−4 5.33× 10−4 3.81× 10−3 3.42× 10−4 2.32× 10−4 8.59× 10−4 2.58× 10−4 1.29× 10−4 4.62× 10−4

rB −1.6500 −3.0400 0.5250 −0.8500 −1.4000 0.2750 −0.3010 −0.7892 0.2161
rMSE 0.2490 0.1066 0.1905 0.1710 0.0464 0.0430 0.1290 0.0259 0.0231

N = 80, T = 5 N = 80, T = 10 N = 80, T = 15

0.25 Bias −0.0037 −0.0157 0.0107 −0.0012 −0.0067 0.0063 −0.0005 −0.0038 0.0043
MSE 4.96× 10−4 5.07× 10−4 2.24× 10−3 3.24× 10−4 1.75× 10−4 5.31× 10−4 2.19× 10−4 8.90× 10−5 3.01× 10−4

rB −1.8720 −3.1476 0.5357 −0.5800 −1.3360 0.3132 −0.2360 −0.7584 0.2142
rMSE 0.2479 0.1015 0.1120 0.1621 0.0350 0.0265 0.1094 0.0178 0.0150

0.50 Bias −0.0027 −0.0132 0.0056 −0.0005 −0.0043 0.0038 −0.0001 −0.0025 0.0027
MSE 4.32× 10−4 4.00× 10−4 1.20× 10−3 2.52× 10−4 1.12× 10−4 3.43× 10−4 1.57× 10−4 5.54× 10−5 1.85× 10−4

rB −1.3740 −2.6380 0.2816 −0.2510 −0.8692 0.1910 −0.0360 −0.5024 0.1362
rMSE 0.2158 0.0799 0.0601 0.1259 0.0224 0.0172 0.0785 0.0111 0.0092

0.75 Bias −0.0032 −0.0162 0.0109 −0.0011 −0.0067 0.0062 −0.0005 −0.0037 0.0039
MSE 4.97× 10−4 5.14× 10−4 2.30× 10−3 3.23× 10−4 1.73× 10−4 5.36× 10−4 2.27× 10−4 8.77× 10−5 3.08× 10−4

rB −1.5750 −3.2336 0.5446 −0.5590 −1.3408 0.3076 −0.2290 −0.7420 0.1944
rMSE 0.2485 0.1028 0.1151 0.1614 0.0346 0.0268 0.1134 0.0175 0.0154

Table 5. The results of estimates with Rook Matrix and χ2 errors.

τ Parameter λ γ β λ γ β λ γ β

N = 30, T = 5 N = 30, T = 10 N = 30, T = 15

0.25 Bias −0.0039 −0.0084 0.0066 −0.0022 −0.0040 0.0038 −0.0015 −0.0025 0.0026
MSE 5.00× 10−4 4.64× 10−4 5.09× 10−3 3.82× 10−4 2.60× 10−4 1.29× 10−3 3.11× 10−4 1.74× 10−4 7.96× 10−4

rB −1.9500 −1.6800 0.3300 −1.1000 −0.8000 0.1900 −0.7540 −0.5016 0.1322
rMSE 0.2500 0.0928 0.2545 0.1910 0.0520 0.0645 0.1553 0.0347 0.0398

0.50 Bias −0.0048 −0.0102 0.0082 −0.0033 −0.0059 0.0050 −0.0024 −0.0035 0.0038
MSE 5.46× 10−4 5.15× 10−4 8.86× 10−3 4.66× 10−4 3.78× 10−4 2.97× 10−3 4.07× 10−4 2.84× 10−4 1.68× 10−3

rB −2.4000 −2.0400 0.4100 −1.6500 −1.1800 0.2500 −1.2220 −0.7096 0.1889
rMSE 0.2730 0.1030 0.4430 0.2330 0.0756 0.1485 0.2035 0.0568 0.0839

0.75 Bias −0.0052 −0.0160 0.0255 −0.0039 −0.0093 0.0122 −0.0034 −0.0065 0.0095
MSE 5.91× 10−4 6.43× 10−4 3.34× 10−2 5.37× 10−4 4.82× 10−4 7.96× 10−3 5.02× 10−4 4.18× 10−4 4.70× 10−3

rB −2.6000 −3.2000 1.2750 −1.9500 −1.8600 0.6100 −1.6820 −1.3036 0.4753
rMSE 0.2955 0.1285 1.6700 0.2685 0.0964 0.3980 0.2512 0.0836 0.2351
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Table 5. Cont.

τ Parameter λ γ β λ γ β λ γ β

N = 50, T = 5 N = 50, T = 10 N = 50, T = 15

0.25 Bias −0.0035 −0.0091 0.0057 −0.0017 −0.0040 0.0030 −0.0011 −0.0019 0.0018
MSE 4.80× 10−4 4.24× 10−4 2.96× 10−3 3.26× 10−4 1.99× 10−4 7.71× 10−4 2.55× 10−4 1.16× 10−4 4.69× 10−4

rB −1.7500 −1.8200 0.2850 −0.8500 −0.8000 0.1500 −0.5640 −0.3736 0.0919
rMSE 0.2400 0.0848 0.1480 0.1630 0.0398 0.0386 0.1274 0.0233 0.0234

0.50 Bias −0.0045 −0.0105 0.0085 −0.0031 −0.0056 0.0045 −0.0020 −0.0033 0.0032
MSE 5.37× 10−4 4.94× 10−4 5.40× 10−3 4.39× 10−4 3.21× 10−4 1.80× 10−3 3.52× 10−4 2.15× 10−4 1.02× 10−3

rB −2.2500 −2.1000 0.4250 −1.5500 −1.1200 0.2250 −0.9800 −0.6692 0.1590
rMSE 0.2685 0.0988 0.2700 0.2195 0.0642 0.0900 0.1760 0.0431 0.0509

0.75 Bias −0.0048 −0.0165 0.0250 −0.0041 −0.0099 0.0122 −0.0034 −0.0071 0.0083
MSE 5.80× 10−4 6.37× 10−4 1.95× 10−2 5.21× 10−4 4.63× 10−4 4.76× 10−3 4.78× 10−4 3.77× 10−4 2.79× 10−3

rB −2.4000 −3.3000 1.2500 −2.0500 −1.9800 0.6100 −1.7090 −1.4216 0.4125
rMSE 0.2900 0.1274 0.9750 0.2605 0.0926 0.2380 0.2388 0.0755 0.1396

N = 80, T = 5 N = 80, T = 10 N = 80, T = 15

0.25 Bias −0.0027 −0.0098 0.0050 −0.0009 −0.0037 0.0034 −0.0002 −0.0022 0.0023
MSE 4.47× 10−4 3.90× 10−4 1.81× 10−3 2.73× 10−4 1.37× 10−4 4.70× 10−4 1.93× 10−4 8.03× 10−5 2.96× 10−4

rB −1.3490 −1.9504 0.2487 −0.4590 −0.7312 0.1712 −0.1210 −0.4448 0.1131
rMSE 0.2233 0.0779 0.0907 0.1364 0.0274 0.0235 0.0963 0.0161 0.0148

0.50 Bias −0.0036 −0.0124 0.0070 −0.0017 −0.0054 0.0057 −0.0013 −0.0032 0.0035
MSE 5.10× 10−4 4.71× 10−4 3.18× 10−3 3.83× 10−4 2.62× 10−4 1.12× 10−3 3.05× 10−4 1.55× 10−4 6.44× 10−4

rB −1.7910 −2.4732 0.3523 −0.8630 −1.0872 0.2871 −0.6550 −0.6364 0.1759
rMSE 0.2552 0.0942 0.1590 0.1915 0.0524 0.0559 0.1526 0.0309 0.0322

0.75 Bias −0.0046 −0.0191 0.0274 −0.0031 −0.0106 0.0136 −0.0023 −0.0072 0.0075
MSE 5.70× 10−4 6.22× 10−4 1.21× 10−2 4.96× 10−4 4.33× 10−4 3.05× 10−3 4.33× 10−4 3.26× 10−4 1.78× 10−3

rB −2.2920 −3.8224 1.3702 −1.5510 −2.1192 0.6818 −1.1730 −1.4332 0.3744
rMSE 0.2852 0.1244 0.6067 0.2479 0.0866 0.1523 0.2163 0.0652 0.0888

Table 6. The results of estimates with Case Matrix and χ2 errors.

τ Parameter λ γ β λ γ β λ γ β

N = 30, T = 5 N = 30, T = 10 N = 30, T = 15

0.25 Bias −0.0037 −0.0086 0.0066 −0.0015 −0.0038 0.0029 −0.0009 −0.0025 0.0023
MSE 4.97× 10−4 4.68× 10−4 5.43× 10−3 3.62× 10−4 2.57× 10−4 1.33× 10−3 2.86× 10−4 1.76× 10−4 7.98× 10−4

rB −1.8500 −1.7200 0.3300 −0.7500 −0.7600 0.1450 −0.4660 −0.4964 0.1168
rMSE 0.2485 0.0936 0.2715 0.1810 0.0514 0.0665 0.1431 0.0352 0.0399

0.50 Bias −0.0038 −0.0099 0.0101 −0.0025 −0.0057 0.0038 −0.0019 −0.0040 0.0037
MSE 5.27× 10−4 5.18× 10−4 9.23× 10−3 4.44× 10−4 3.76× 10−4 2.98× 10−3 3.86× 10−4 2.88× 10−4 1.72× 10−3

rB −1.9000 −1.9800 0.5050 −1.2500 −1.1400 0.1900 −0.9470 −0.8000 0.1849
rMSE 0.2635 0.1036 0.4615 0.2220 0.0752 0.1490 0.1931 0.0577 0.0861

0.75 Bias −0.0044 −0.0157 0.0288 −0.0033 −0.0090 0.0135 −0.0031 −0.0073 0.0087
MSE 5.74× 10−4 6.30× 10−4 3.41× 10−2 5.19× 10−4 4.80× 10−4 8.05× 10−3 4.87× 10−4 4.25× 10−4 4.72× 10−3

rB −2.2000 −3.1400 1.4400 −1.6500 −1.8000 0.6750 −1.5700 −1.4600 0.4374
rMSE 0.2870 0.1260 1.7050 0.2590 0.0960 0.4025 0.2436 0.0851 0.2360

N = 50, T = 5 N = 50, T = 10 N = 50, T = 15

0.25 Bias −0.0029 −0.0097 0.0056 −0.0018 −0.0036 0.0038 −0.0005 −0.0020 0.0024
MSE 4.71× 10−4 4.35× 10−4 2.94× 10−3 3.27× 10−4 1.88× 10−4 7.68× 10−4 2.46× 10−4 1.15× 10−4 4.64× 10−4

rB −1.4500 −1.9400 0.2800 −0.9000 −0.7200 0.1900 −0.2470 −0.4084 0.1220
rMSE 0.2355 0.0870 0.1470 0.1635 0.0376 0.0384 0.1231 0.0230 0.0232

0.50 Bias −0.0038 −0.0119 0.0088 −0.0029 −0.0054 0.0058 −0.0015 −0.0029 0.0039
MSE 5.26× 10−4 5.05× 10−4 5.21× 10−3 4.31× 10−4 3.22× 10−4 1.82× 10−3 3.52× 10−4 2.14× 10−4 9.76× 10−4

rB −1.9000 −2.3800 0.4400 −1.4500 −1.0800 0.2900 −0.7670 −0.5764 0.1974
rMSE 0.2635 0.1010 0.2605 0.2155 0.0644 0.0910 0.1758 0.0428 0.0488

0.75 Bias −0.0044 −0.0172 0.0279 −0.0036 −0.0100 0.0129 −0.0031 −0.0064 0.0092
MSE 5.73× 10−4 6.29× 10−4 2.03× 10−2 5.18× 10−4 4.68× 10−4 4.74× 10−3 4.72× 10−4 3.69× 10−4 2.81× 10−3

rB −2.2000 −3.4400 1.3950 −1.8000 −2.0000 0.6450 −1.5740 −1.2736 0.4595
rMSE 0.2864 0.1257 1.0150 0.2590 0.0936 0.2370 0.2361 0.0738 0.1405

N = 80, T = 5 N = 80, T = 10 N = 80, T = 15

0.25 Bias −0.0029 −0.0101 0.0047 −0.0011 −0.0039 0.0032 −0.0008 −0.0022 0.0023
MSE 4.62× 10−4 3.99× 10−4 1.76× 10−3 2.94× 10−4 1.41× 10−4 4.93× 10−4 2.15× 10−4 8.22× 10−5 2.82× 10−4

rB −1.4520 −2.0184 0.2367 −0.5570 −0.7704 0.1622 −0.4110 −0.4496 0.1128
rMSE 0.2312 0.0797 0.0881 0.1469 0.0282 0.0246 0.1074 0.0164 0.0141

0.50 Bias −0.0034 −0.0124 0.0072 −0.0022 −0.0056 0.0049 −0.0019 −0.0034 0.0039
MSE 5.18× 10−4 4.85× 10−4 3.02× 10−3 4.06× 10−4 2.65× 10−4 1.16× 10−3 3.30× 10−4 1.58× 10−4 6.20× 10−4

rB −1.7230 −2.4848 0.3591 −1.0900 −1.1172 0.2475 −0.9350 −0.6860 0.1969
rMSE 0.2590 0.0970 0.1510 0.2031 0.0529 0.0582 0.1650 0.0316 0.0310

0.75 Bias −0.0040 −0.0184 0.0260 −0.0030 −0.0112 0.0124 −0.0032 −0.0072 0.0087
MSE 5.70× 10−4 6.27× 10−4 1.20× 10−2 5.05× 10−4 4.42× 10−4 3.10× 10−3 4.62× 10−4 3.24× 10−4 1.80× 10−3

rB −2.0160 −3.6832 1.2983 −1.5090 −2.2404 0.6209 −1.5890 −1.4340 0.4350
rMSE 0.2850 0.1254 0.5983 0.2525 0.0884 0.1551 0.2308 0.0649 0.0898
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(3) Comparing Tables 1 and 3, it is found that the rMSEs of estimates under normal errors
are smaller than that under t errors, what implies that the accuracy of estimates under
normal distribution of random error term is higher than that under t distribution;
Tables 2 and 4 display the same phenomenon. Comparing Tables 1 and 5, it is found
that the rMSEs of estimates under normal errors are smaller than that under χ2

errors except for the special case of quantile τ = 0.25 and T = 5; Tables 2 and 6
display the same phenomenon. Comparing Tables 3 and 5, it is found that the rMSEs
of estimates under t errors are smaller than that under χ2 errors expect for lower
quantile; Tables 4 and 6 display the same phenomenon.

(4) Under the same distribution of random error term, the accuracy of the estimates has
no significant difference for Rook and Case spatial weights matrices. This indicates
that our estimation method is less affected by the choice of the spatial weights matrix.

5. Application

The tourism industry plays an important role for promoting economic development,
social employment, and culture exchanges, and it has been paid much attention by govern-
ments in the world. As our model studies not only the influencing effects of covariates but
also the spatial effects and dynamic effects of response variable, the lagged response vari-
able, covariates, and the lagged covariates, it is interesting to use its estimation method to
explore the influencing factors of international tourism foreign exchange earnings in China.

In this application, we mainly consider the influencing factors of international tourism
foreign exchange earnings from the aspects of living standard, trade openness, tourism
resources, transportation convenience, and service facilities in China. The data are based
on a panel data of 31 provinces in China from 2011 to 2017 and were collected from the
China Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/, 24 October 2018) and The
Yearbook of China Tourism Statistics (https://data.cnki.net/yearbook/Single/N2020030
028, 1 November 2018). The established model is given by

log(yt) = λ(τ)WN log(yt) + γ1(τ) log(yt−1) + γ2(τ)WN log(yt−1) + xtβ1(τ)

+WN xtβ2(τ) + xt−1β3(τ) + WN xt−1β4(τ) + η+ εt, t = 1, · · · , 7, (10)

where response variable yt is provincial international tourism foreign exchange earnings
and xt =

(
log(PGDPt), log(TOt), log(TAt), log(TCt), log(SHt)

)′. Covariates PGDPt, TOt,
TAt, TCt, and SHt are measured by the following methods:

PGDPt: per capita GDP. It represents the living standard of provincial residents.
TOt: proportion of the total value of imports and exports trade in GDP multiplied by

100. It is used to describe the provincial trade openness.
TAt: total number of A-rated tourist attractions. It reflects the level of provincial

tourism resources.
TCt: weighted panel standardized indicators of civil aviation throughput, highway

network density, railway network density, and inland waterway network density. Accord-
ing to the suggestion of Zhou and Sheng [46], we obtained the weighted panel standardiza-
tion index of above four indicators by following formula

xit = ∑
k

zk,it −min1≤j≤N{zk,jt}
max1≤j≤N{zk,jt} −min1≤j≤N{zk,jt}

ωk,

where z1,it, z2,it, z3,it, and z4,it denote the observations of civil aviation throughput, high-
way network density, railway network density, and inland waterway network density,
respectively; i = 1, · · · , 31; t = 1, · · · , 7; and k = 1, · · · , 4. According to the importance
of these four indicators, we assigned weights ω1 = 0.3, ω2 = 0.3, ω3 = 0.2, and ω4 = 0.2.
TCt is used to reflect provincial transportation convenience.

SHt: total number of star-rated hotels. It represents the level of provincial service facilities.
The spatial weights matrix we adopted is the inverse of the greater circle distance

calculated based on the longitude and latitude of China’s provincial capital cities. It is

http://www.stats.gov.cn/tjsj/ndsj/
https://data.cnki.net/yearbook/Single/N2020030028
https://data.cnki.net/yearbook/Single/N2020030028
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standardized to ensure that the sum of each row elements is equal to 1. The estimation
results of model (10) at quantiles τ = 0.10, 0.25, 0.50, 0.75, and 0.90 are reported in Table 7.
For a comparative analysis, we also report the ordinary least squares (OLS) estimates in
the last column of the Table 7.

According to Table 7, we find the following results: (1) For IVQR, all estimates
of parameters are significant at test level 0.01 and not the same at different quantiles.
(2) For IVQR, the serial dynamic effects of response variable and covariates exist be-
tween adjacent years. The spatial spillover effects of response variable, covariates, and
their lagged terms exist among Chinese provinces. (3) The estimates of coefficients for
covariates log(PGDPt), log(TOt), and log(TCt) are uniformly positive at different quan-
tiles, which implies that these influencing factors have positive effects on international
tourism foreign exchange earnings. The estimates of coefficient for covariate log(TAt−1)
is uniformly negative at different quantiles, which indicates that this influencing fac-
tor has an inhibitory effect on international tourism foreign exchange earnings. (4) The
estimates of the coefficient for the Durbin term WN log(TCt) is uniformly positive at dif-
ferent quantiles, which means that the improvement of transportation convenience in
neighboring regions has a positive impact on the provincial international tourism foreign
exchange earnings. The estimates of the coefficients for the Durbin terms WN log(TAt),
WN log(TOt−1), and WN log(SHt−1) are uniformly negative at different quantiles, which
show that the improvement of tourist attractions, trade openness, and star-rated hotels
in neighboring regions all have negative effects on response variable. (5) The influences
of other covariates on international tourism foreign exchange earnings have positive
and negative effects at different earning levels. The estimates of most covariates at
quantiles τ = 0.25, 0.50, and 0.75 have same positive or negative influence directions.
(6) OLS estimates reflect the influence of conditioning covariates on the average of re-
sponse variable, and they are quite different from the IVQR estimates. Variables log(yt−1),
log(PGDPt), log(TOt), log(TCt), WN log(TCt) and WN log(TAt−1) have significant posi-
tive effects on international tourism foreign exchange earnings; variables WN log(PGDPt),
WN log(TOt), WN log(TAt), log(TOt−1), log(TAt−1), and WN log(TOt−1) have signifi-
cant negative effects on international tourism foreign exchange earnings; and the influences
of variables WN log(yt), WN log(yt−1), log(TAt), log(SHt), WN log(SHt), log(PGDPt−1),
log(TCt−1), log(SHt−1), WN log(PGDPt−1), WN log(TCt−1), and WN log(SHt−1) on in-
ternational tourism foreign exchange earnings are not significant. By establishing a
quantile regression SDDPD model with fixed effects, we explored the influencing factors of
international tourism foreign exchange earnings at different quantiles. In order to increase
international tourism foreign exchange earnings, local governments should take appro-
priate measures to exert positive effects and to restrain the negative effects of influencing
factors according to their development stage of foreign tourism. Variables log(PGDPt),
log(TOt), and log(TCt) have positive effects on international tourism foreign exchange
earnings at different quantiles, which implies that all provinces should improve living
standard, promote trade openness, and provide convenient transportation. Provinces at
quantile 0.1 should appropriately control the number of tourist attractions and improve
their quality. For provinces at other quantiles, the number of tourist attractions can be
increased. Provinces at quantiles higher than 0.75 should appropriately control the number
of hotels. For provinces at other quantiles, the number of hotels can be increased. Neigh-
boring provinces should carry out coordination and cooperation, share tourism resources
and facilities, avoid vicious competition, and jointly promote increases in international
tourism foreign exchange earnings.
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Table 7. Corresponding parametric estimation results of the variables.

IVQR

Variable τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 OLS

WN log(yt) −0.8 *** 0.23 *** 0.53 *** 0.43 *** −0.33 *** −0.5555
(5.50× 10−5) (7.70× 10−5) (2.65× 10−4) (2.14× 10−4) (4.70× 10−5) (0.3390)

log(yt−1) −0.18 *** 0.34 *** 0.50 *** 0.49 *** −0.05 *** 0.1594 ***
(2.08× 10−5) (2.90× 10−5) (1.00× 10−4) (8.09× 10−5) (1.77× 10−5) (0.0482)

WN log(yt−1) 0.5 *** −0.57 *** −0.34 *** −0.43 *** −0.13 *** −0.1188
(5.84× 10−5) (8.16× 10−5) (2.81× 10−4) (2.27× 10−4) (4.98× 10−5) (0.2803)

log(PGDPt) 0.1989 *** 1.0897 *** 1.3576 *** 0.8100 *** 0.7837 *** 1.5760 ***
(5.51× 10−5) (7.70× 10−5) (2.65× 10−4) (2.15× 10−4) (4.71× 10−5) (0.3497)

log(TOt) 0.1455 *** 0.1806 *** 0.2511 *** 0.2330 *** 0.1842 *** 0.2431 ***
(1.72× 10−5) (2.41× 10−5) (8.29× 10−5) (6.70× 10−5) (1.47× 10−5) (0.0856)

log(TAt) −0.0640 *** 0.0904 *** 0.1805 *** 0.0394 *** 0.1907 *** 0.0153
(1.93× 10−5) (2.70× 10−5) (9.30× 10−5) (7.52× 10−5) (1.65× 10−5) (0.1154)

log(TCt) 0.9588 *** 0.3695 *** 0.4468 *** 1.1160 *** 1.5895 *** 1.9760 ***
(8.67× 10−5) (1.21× 10−4) (4.18× 10−4) (3.38× 10−4) (7.41× 10−5) (0.5170)

log(SHt) 0.0077 *** 0.0245 *** 0.0164 *** −0.0146 *** −0.0024 *** 0.0973
(1.00× 10−5) (1.40× 10−5) (4.83× 10−5) (3.90× 10−5) (8.57× 10−6) (0.0615)

WN log(PGDPt) 1.9966 *** −1.1102 *** −2.7342 *** −1.3240 *** −1.1430 *** −3.1418 **
(2.53× 10−4) (3.54× 10−4) (1.22× 10−3) (9.85× 10−4) (2.16× 10−4) (1.3526)

WN log(TOt) −1.7958 *** −1.1397 *** 0.3638 *** −0.6449 *** −0.2728 *** −1.3141 **
(1.08× 10−4) (1.51× 10−4) (5.19× 10−4) (4.19× 10−4) (9.20× 10−5) (0.5997)

WN log(TAt) −0.3575 *** −1.5367 *** −0.0350 *** −0.8780 *** −0.2632 *** −1.7168 **
(1.23× 10−4) (1.72× 10−4) (5.94× 10−4) (4.80× 10−4) (1.05× 10−4) (0.6619)

WN log(TCt) 5.9331 *** 5.2462 *** 1.1112 *** 2.8887 *** 3.4709 *** 8.2126 ***
(5.67× 10−4) (7.93× 10−4) (2.73× 10−3) (2.21× 10−3) (4.85× 10−4) (2.9009)

WN log(SHt) 0.0391 *** −0.0270 *** −0.2931 *** −0.1619 *** −0.3138 *** −0.3733
(4.65× 10−5) (6.50× 10−5) (2.24× 10−4) (1.81× 10−4) (3.97× 10−5) (0.2754)

log(PGDPt−1) 0.2034 *** −0.4970 *** −0.7139 *** −0.3983 *** 0.2566 *** −0.0426
(3.59× 10−5) (5.02× 10−5) (1.73× 10−4) (1.40× 10−4) (3.07× 10−5) (0.1709)

log(TOt−1) −0.0924 *** −0.2671 *** −0.2380 *** −0.1875 *** 0.0071 *** −0.1256 *
(1.52× 10−5) (2.12× 10−5) (7.32× 10−5) (5.92× 10−5) (1.30× 10−5) (0.0647)

log(TAt−1) −0.0743 *** −0.2065 *** −0.2558 *** −0.3292 *** −0.0802 *** −0.2489 ***
(1.38× 10−5) (1.93× 10−5) (6.64× 10−5) (5.37× 10−5) (1.18× 10−5) (0.0714)

log(TCt−1) 0.2500 *** 0.0864 *** −0.1156 *** −0.1884 *** 0.0242 *** 0.0033
(1.66× 10−5) (2.32× 10−5) (7.98× 10−5) (6.45× 10−5) (1.42× 10−5) (0.0723)

log(SHt−1) 0.0843 *** −0.0069 *** −0.0096 *** −0.0137 *** 0.0476 *** 0.0806
(1.05× 10−5) (1.46× 10−5) (5.04× 10−5) (4.08× 10−5) (8.94× 10−6) (0.0612)

WN log(PGDPt−1) −1.6338 *** 2.3268 *** 3.0034 *** 2.1854 *** 0.7256 *** 0.5548
(1.64× 10−4) (2.29× 10−4) (7.89× 10−4) (6.38× 10−4) (1.40× 10−4) (0.7549)

WN log(TOt−1) −0.7397 *** −0.2595 *** −0.4987 *** −0.5457 *** −1.4070 *** −1.0786 **
(9.73× 10−5) (1.36× 10−4) (4.69× 10−4) (3.79× 10−4) (8.31× 10−5) (0.4638)

WN log(TAt−1) −0.2756 *** 0.9645 *** 0.8867 *** −0.1130 *** −0.0450 *** 0.6357 **
(7.34× 10−5) (1.03× 10−4) (3.53× 10−4) (2.86× 10−4) (6.27× 10−5) (0.3161)

WN log(TCt−1) 1.2878 *** −0.8952 *** −1.0382 *** 1.1450 *** 1.9072 *** 0.6596
(2.20× 10−4) (3.08× 10−4) (1.06× 10−3) (8.58× 10−4) (1.88× 10−4) (0.8740)

WN log(SHt−1) −0.0967 *** −0.1795 *** −0.1457 *** −0.2267 *** −0.3831 *** −0.3665
(5.02× 10−5) (7.02× 10−5) (2.42× 10−4) (1.96× 10−4) (4.29× 10−5) (0.2826)

Note: Standard errors are reported in parentheses. *** indicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

6. Conclusions

This paper focuses on studying estimation and inference in a quantile regression
SDDPD model with fixed effects. Conventional fixed effects estimators of quantile re-
gression specification are usually biased in their presentation of lagged response variable
in spatial and time as regressors. We first simplified this model as a spatial autoregres-
sive dynamic panel data model with fixed effects. In order to eliminate the endogeneity,
we used the IVQR method proposed by Chernozhukov and Hansen [36] to obtain the
quantile estimators of parameters. Under some regular assumptions, the consistency and
asymptotic properties of IVQR estimators were derived. Monte Carlo simulations show
that our estimators not only have outstanding finite sample performance but also have
good robustness for different spatial weights matrices and for different disturbance term
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distributions. Finally, we illustrated our method with an application to analyze the factors
affecting international tourism foreign exchange earnings of 31 provinces in China from
2011 to 2017, and the results we obtained are consistent with the actual situations.

This paper only focused on the IVQR of the SDDPD model with fixed effects. In future
research, we may try to extend our method to the SDDPD model with autoregressive
disturbance. In addition, we also need to study issues such as variable selection and
Baysian analysis, as these research scenarios are also very interesting.
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Appendix A

Recall

QNTτ(λ, γ, η, β, δ) =
N

∑
i=1

T

∑
t=1

vτρτ(yit − λȳit − γyi,t−1 − η′ei − β′xit − δ′zit),

(
η̂′(λ, γ, τ), β̂′(λ, γ, τ), δ̂′(λ, γ, τ)

)′
= arg min

(η,β,δ)
QNTτ(λ, γ, η, β, δ),

(
λ̂(τ), γ̂(τ)

)
= arg min

(λ,γ)
‖δ̂(λ, γ, τ)‖Â.

Let ε̂it(τ) = yit − λ̂(τ)ȳit − γ̂(τ)yi,t−1 − η̂′(τ)ei − β̂′(τ)xit − δ̂′(τ)zit, where η̂(τ) =
η̂
(
λ̂(τ),

γ̂(τ), τ
)
, β̂(τ) = β̂

(
λ̂(τ), γ̂(τ), τ

)
and δ̂(τ) = δ̂

(
λ̂(τ), γ̂(τ), τ

)
. Recall

Qτ(λ, γ, η, β, δ) = E
[
vτρτ(y− λWy− γLy−Mη− Xβ− Zδ)

]
,

(
η∗(λ, γ, τ), β∗(λ, γ, τ), δ∗(λ, γ, τ)

)
= arg min

(η,β,δ)
Qτ(λ, γ, η, β, δ),

(
λ∗(τ), γ∗(τ)

)
= arg min

(λ,γ)
‖δ∗(λ, γ, τ)‖A.

Let ε∗it(τ) = yit − λ∗(τ)ȳit − γ∗(τ)yi,t−1 − η∗′(τ)ei − β∗′(τ)xit − δ∗′(τ)zit, where
η∗(τ) = η∗

(
λ∗(τ), γ∗(τ), τ

)
, β∗(τ) = β∗

(
λ∗(τ), γ∗(τ), τ

)
and δ∗(τ) = δ∗

(
λ∗(τ), γ∗(τ), τ

)
.

Next, we first give two necessary lemmas.
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Lemma A1. Under Assumptions 1–7,
(
λ(τ), γ(τ), η0, β(τ)

)
is an unique solution of equation

E
[
vτψτ

(
y− λWy− γLy−Mη− Xβ

)
ξ
]
= 0 in Λ× Γ× E × B.

Proof of Lemma A1. It is obvious that
(
λ(τ), γ(τ), η0, β(τ)

)
is a solution of equation

Rτ(λ, γ, η, β) = 0. By Assumption 3 (i), ∂Rτ(λ, γ, η, β)/∂(λ, γ, η, β) is continuous and has
full rank at Λ× Γ× E ×B. By Assumption 3 (iii), the mapping (λ, γ, η, β)→ Rτ(λ, γ, η, β)
is a homeomorphism between (Λ× Γ× E × B) and its image Rτ(Λ, Γ, E ,B). Thus,

(
λ(τ),

γ(τ), η0, β(τ)
)

is the unique solution of Rτ(λ, γ, η, β) = 0. According to Chernozhukov and
Hansen [36],

(
λ∗(τ), γ∗(τ), η∗(τ), β∗(τ)

)
is also the unique solution of Rτ(λ, γ, η, β) = 0.

Therefore, λ∗(τ) = λ(τ), γ∗(τ) = γ(τ), η∗(τ) = η0 and β∗(τ) = β(τ).

Lemma A2. Under Assumptions 1–7, we have

sup
π∈Π

1
NT

∣∣∣∑
i

∑
t

{
ρτ

(
ε̂it(τ))− ρτ

(
ε∗it(τ)

)
− E

[
ρτ

(
ε̂it(τ)− ρτ

(
ε∗it(τ)

)]}∣∣∣ = op(1). (A1)

Proof of Lemma A2. Let π = (λ, γ, η, β, δ) be an arbitrary value in parameter space Π =
Λ× Γ× E × B ×D and ε̃it(τ) = yit − λȳit − γyi,t−1 − η′ei − β′xit − δ′zit. Define

d =


dη

dλ

dγ

dβ

dδ

 =



√
T
(
η− η∗(τ)

)
√

NT
(
λ− λ∗(τ)

)
√

NT
(
γ− γ∗(τ)

)
√

NT
(

β− β∗(τ)
)

√
NT
(
δ− δ∗(τ)

)

.

The relationship between ε̃it(τ) and ε∗it(τ) can be expressed as

ε̃it(τ) = ε∗it(τ)−
dλȳit√

NT
−

dγyi,t−1√
NT

−
d′ηei√

T
−

d′βxit
√

NT
−

d′δzit√
NT

= ε∗it(τ)−
d′ηei√

T
−

d′
β̃

x̃it
√

NT
,

where dβ̃ = (dλ, dγ, d′β, d′δ)
′ and x̃it = (ȳit, yi,t−1, x′it, z′it)

′.
We adopt the idea of Galvao [35] to prove this lemma, with the major difference lying

in the appearance of spatial dependence in our model. Consider partitioning the parameter
space Π into finite disjoint subsets Π1, · · · , ΠKN such that the diameter of each subset does
not exceed rNT = εNa

4KNCT , where C is a constant. Let πj = (π′j,η, π′
j,β̃
)′ be the fixed points in

Πj, j = 1, · · · , KN . Then, the left-hand side of (A1) does not exceed U1 + U2, where

U1 = max
1≤j≤KN

sup
π∈Πj

1
NT

∣∣∣∣∑
i

∑
t

{
ρτ

(
ε̂it(τ)

)
− ρτ

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)
−E
[
ρτ

(
ε̂it(τ)

)
− ρτ

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)]∣∣∣∣},

and

U2 = max
1≤j≤KN

1
NT

∣∣∣∣∑
i

∑
t

{
ρτ

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)
− ρτ

(
ε∗it(τ)

)
−E
[
ρτ

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)
− ρτ

(
ε∗it(τ)

)]∣∣∣∣}.
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It is suffices to show that both U1 and U2 are op(1). Note that ‖π −π′j‖ ≤ rNT for any
π ∈ Πj and |ρτ(u + v)− ρτ(v)| ≤ 2|u|. According to Assumptions 6 and 7, we have

U1 ≤ max
1≤j≤KN

sup
π∈Πj

1
NT ∑

i
∑

t

{
2
∣∣∣ε̂it(τ)−

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)∣∣∣
+E
[

2
∣∣∣ε̂it(τ)−

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)∣∣∣]}
≤ 2

NT ∑
i

∑
t

{
rNT

(‖ei‖√
T

+
‖x̃it‖√

NT

)
+ E

[
rNT

(‖ei‖√
T

+
‖x̃it‖√

NT

)]}
≤ 2(rNT + E[rNT ]) ≤ ε.

This implies U1 = op(1).
It remains to show that U2 = op(1). If we denote

Vj = ρτ

(
ε∗it(τ)−

d′j,ηei
√

T
−

d′
j,β̃

x̃it
√

NT

)
− ρτ

(
ε∗it(τ)

)
,

then we need to show (NT)−1
∣∣∑i ∑t(Vj − EVj)

∣∣ = op(1) for each j ∈ {1, · · · , KN}. By
construction E

[
(NT)−1 ∑i ∑t(Vj − EVj)

]
= 0, it suffices to show that Var[(NT)−1 ∑i ∑t Vj]

= o(1). Using the following formula (Koenker [34])

ρτ(u− v)− ρτ(u) = −vψτ(u) +
∫ v

0

[
1(u ≤ s)− 1(u ≤ 0)

]
ds,

it is easy to decompose Vj as Vj = V(1)
j + V(2)

j , where

V(1)
j = −

(d′j,ηei
√

T
+

d′
j,β̃

x̃it
√

NT

)
ψτ

(
ε∗it(τ)

)
,

V(2)
j =

1√
NT

∫ √Nd′j,ηei+d′
j,β̃

x̃it

0

[
1(ε∗it(τ) ≤

s√
NT

)− 1(ε∗it(τ) ≤ 0)
]
ds.

Let Ψ∗(τ) = diag
(
ψτ

(
ε∗it(τ)

))
and note that E

[
Ψ∗(τ)lNTl′NTΨ∗(τ)

]
= τ(1− τ)INT .

Assumptions 4 and 6 imply a Lindeberg condition, and we have

− 1√
NT

(
√

NΨ∗(τ)Mdj,η + Ψ∗(τ)X̃dj,β̃) −Ddj,

where D is a Gaussian vector with mean zero and covariance matrix ΩD. It is easy to see
that ∑i ∑t V(1)

j is asymptotically Gaussian. Thus,

Var
[
(NT)−1 ∑

i
∑

t
V(1)

j
]
= O

(
(NT)−1) = o(1). (A2)

Next, we discuss the variance of (NT)−1 ∑i ∑t V(2)
j . Let H1 = W H−1(λ(τ), γ(τ)

)
and H2 = LH−1(λ(τ), γ(τ)

)
, and we have Wy = H1

[
Mη0 + Xβ(τ)

]
+ H1ε and Ly =

H2
[
Mη0 + Xβ(τ)

]
+ H2ε. Use h(1)r,s and h(2)r,s to represent the (r, s)th element of H1 and H2

respectively, where r = N(t− 1) + i, s = N(l − 1) + j, i, j = 1, · · · , N; t, l = 1, · · · , T. A
simple calculation yields ε∗it(τ) = brεit − ar.

Let F be the σ−field formed by ε including εit and ε jl . By Assumption 1, for all r 6= s,
the joint density of εit and ε jl conditional on F is given by fr(εit) fs(ε jl). Denote h̃r,s =
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(
λ∗(τ)− λ(τ)

)
h(1)r,s +

(
γ∗(τ)− γ(τ)

)
h(2)r,s . Let ς1 = brεit − h̃r,sε jl and ς2 = bsε jl − h̃s,rεit. It

is easy to obtain that the joint density of (ς1, ς2) conditional on F is given by

1
|Br,s|

fit
( bsς1 + h̃r,sς2

Br,s

)
f jl
( brς2 + h̃s,rς1

Br,s

)
,

where Br,s = brbs − h̃r,s h̃s,r. Obviously, Br,s 6= 0 which is satisfied for sufficiently large N
because according to Assumption 2 (ii) and two evident facts of Kelejian and Prucha [40],
h̃r,s h̃s,r = O(l−2

N ) = o(1) and brbs → 1. In addition, the marginal density of ς1 is given by

1
|br|

∫
fit
( ς1 + h̃r,sς2

br

)
f jl(ς2)dς2.

For notational simplicity, we denote ∑i ∑t V(2)
j = ∑r mr, r = 1, · · · , NT. Then,

(NT)−2Var
(
∑

r
mr
)
= (NT)−2[∑

r
Var(mr) + ∑

r
∑
s 6=r

Cov(mr, ms)
]

≤ (NT)−2
{

∑
r

E(m2
r ) + ∑

r
∑
s 6=r

[
E(mrms)− E(mr)E(ms)

]}
.

Let vit =
√

Nd′j,ηei + d′
j,β̃

x̃it, and we have

mr =
1√
NT

∫ vit

0

[
1(0 ≤ ε∗it(τ) ≤

s√
NT

)
]
ds =

1√
NT

∫ vit

0

[
1(a∆

it ≤ ς1 ≤ a∆
it +

s√
NT

)
]
ds,

where a∆
it = ar − h̃r,sε jl . By Assumption 6, it is easy to see that

E
(
m2

r
)
= E

[
E(m2

r |F )
]
= E

{ ∫ a∆
it+

vit√
NT

a∆
it

v2
it

NT
1
|br|

∫
fit
( ς1 + h̃r,sς2

br

)
f jl(ς2)dς2dς1

}
≤

c f

|br|
E
[( vit√

NT

)3]
= O(1),

where c f = supi,t fit(·). Now, we can apply the Taylor expansion to obtain

E(mr) = E
{ ∫ a∆

it+
vit√
NT

a∆
it

vit√
NT

1
|br|

∫
fit
( ς1 + h̃r,sς2

br

)
f jl(ς2)dς2dς1

}
= E

{ vit√
NT|br|

∫ a∆
it+

vit√
NT

a∆
it

∫
fit
( ς1

br

)
f jl(ς2)dς2dς1

}
+E
{ vit√

NT|br|

∫ a∆
it+

vit√
NT

a∆
it

∫
f (1)it
( ς1 + h∗ς2

br

) h̃r,sς2

br
f jl(ς2)dς2dς1

}
= E

{ vit√
NT

br

|br|

[
Fit
( a∆

it + vit/
√

NT
br

)
− Fit

( a∆
it

br

)]}
+ O(l−1

N )

=
1
|br|

E
[( vit√

NT

)2 fit
( a∆

it
br

)]
+ o(1),

where h∗ lies between 0 and h̃r,sς2 and f (1)it (·) is the first derivative of fit(·). Similarly,
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E(mrms) = E
[
E(mrms|F )

]
= E

[ 1
|Br,s|

∫ a∆
it+

vit√
NT

a∆
it

∫ a∆
jl+

vjl√
NT

a∆
jl

vit√
NT

vjl√
NT

fit
( bsς1 + h̃r,sς2

Br,s

)
f jl
( brς2 + h̃s,rς1

Br,s

)
dς2dς1

]
= E

[ vitvjl

NT|Br,s|

∫ a∆
it+

vit√
NT

a∆
it

∫ a∆
jl+

vjl√
NT

a∆
jl

fit
( ς1

br
+ O(h̃r,s)

)
f jl
( ς2

bs
+ O(h̃s,r)

)
dς2dς1

]
= E

{ vitvjl

NT|Br,s|

∫ a∆
it+

vit√
NT

a∆
it

∫ a∆
jl+

vjl√
NT

a∆
jl

[
fit
( ς1

br

)
f jl
( ς2

bs

)
+ o(1)

]
dς2dς1

}
= E

{vitvjl

NT

[
Fit
( a∆

it + vit/
√

NT
br

)
− Fit

( a∆
it/
√

NT
br

)]
×
[

Fjl
( a∆

jl + vjl/
√

NT

bs

)
− Fjl

( a∆
jl /
√

NT

bs

)]}
+ o(1)

=
1

|br||bs|
E
[(vitvjl

NT
)2 fit

( a∆
it

br

)
f jl
( a∆

jl

bs

)]
+ o(1).

Hence, Cov(mrms) = E(mrms)− E(mr)E(ms) = o(1). Then, we have

Var
[
(NT)−1 ∑

i
∑

t
V(2)

j
]
= (NT)−2Var

(
∑

r
mr
)
≤ (NT)−1O(1) +

NT − 1
NT

o(1) = o(1).(A3)

Noting that Var(u + v) ≤ 2
(
Var(u) + Var(v)

)
. It follows from (A2) and (A3) that

Var[(NT)−1 ∑i ∑t Vj] = o(1). Consequently, U2 = op(1). This completes the proof.

Proof of Theorem 1. The first part follows from Lemma A1. Next, we show that
(
λ̂(τ), γ̂(τ),

β̂(τ)
) P−→

(
λ(τ), γ(τ), β(τ)

)
under Assumptions 1–7. Let

P : (λ, γ, η, β, δ)→ ρτ

(
y− λWy− γy−1 −Mη− Xβ− Zδ

)
,

where P is a continuous map. According to the uniform convergence in Lemma A2,
sup
π∈Π
‖DNT − EDNT‖ = op(1), where DNT = 1

NT ∑i ∑t
[
ρτ(ε̂it(τ)) − ρτ(ε∗it(τ))

]
. Thus,∥∥α̂(λ, γ, τ) − α∗(λ, γ, τ)

∥∥ P−→ 0, it leads to
∥∥δ̂(λ, γ, τ)

∥∥ − ∥∥δ∗(λ, γ, τ)
∥∥ = op(1). By

Â = A + op(1), we have that ‖δ̂(λ, γ, τ)‖Â − ‖δ∗(λ, γ, τ)‖A = op(1), with implies that∥∥‖δ̂(λ, γ, τ)‖Â − ‖δ∗(λ, γ, τ)‖A
∥∥ P−→ 0. According to Corollary 3.2.3 in van der Vaart

and Wellner [47], we know that
∥∥λ̂(τ)− λ∗(τ)

∥∥ P−→ 0 and
∥∥γ̂(τ)− γ∗(τ)

∥∥ P−→ 0. Then,∥∥β̂
(
λ̂(τ), γ̂(τ), τ

)
− β∗

(
λ(τ), γ(τ), τ

)∥∥ P−→ 0 and
∥∥δ̂
(
λ̂(τ), γ̂(τ), τ

)
− 0
∥∥ P−→ 0. Thus,(

λ̂(τ), γ̂(τ), β̂(τ)
) P−→

(
λ(τ), γ(τ), β(τ)

)
.

Proof of Theorem 2. Consider a set of closed balls Bn
(
λ(τ), γ(τ)

)
with radius rn centered

on
(
λ∗(τ), γ∗(τ)

)
, where rn → 0 slowly enough. Define

dn =


dnη

dnλ

dnγ

dnβ

dnδ

 =



√
T
(
η̂n(τ)− η∗(τ)

)
√

NT
(
λ̂n(τ)− λ∗(τ)

)
√

NT
(
γ̂n(τ)− γ∗(τ)

)
√

NT
(

β̂n(τ)− β∗(τ)
)

√
NT
(
δ̂n(τ)− δ∗(τ)

)

.
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Let dnβ̃ = (dnλ, dnγ, d′nβ, d′nδ)
′. For any λ̂n(τ)

P−→ λ∗(τ) (dnλ
P−→ 0) and γ̂n(τ)

P−→ γ∗(τ)

(dnγ
P−→ 0), the objective function can be written as

Q̃NTτ(dn) = ∑
i

∑
t

vτρτ

(
ε∗it(τ)−

d′nηei√
T
−

d′
nβ̃

x̃it
√

NT

)
,

where x̃it = (ȳit, yi,t−1, x′it, z′it) as defined in Lemma A2.
For a fixed dnβ̃, we first consider the behavior of d′nηei for each i. Define

hi(dnη, dnβ̃) = −
1√
T

∑
t

vτψτ

(
ε∗it(τ)−

d′ηei√
T
−

d′
β̃

x̃it
√

NT

)
.

For a fixed dnβ and dnδ,
∥∥λ̂n(τ)− λ∗(τ)

∥∥ P−→ 0,
∥∥γ̂n(τ)− γ∗(τ)

∥∥ P−→ 0 and K > 0,
we have

sup
‖dn‖<K

∥∥hi(dnη, dnβ̃)− hi(0, 0)− E
[
hi(dnη, dnβ̃)− hi(0, 0)

]∥∥ = op(1),

where hi(0, 0) = − 1√
T ∑t vτψτ

(
ε∗it(τ)

)
. Consider the expected part of the above equation;

it is easy to know that

E
[
hi(dnη, dnβ̃)− hi(0, 0)

]
=

1√
T

∑
t

vτ

[
Fit
( 1

br
[ar +

d′nηei√
T

+
d′

nβ̃
x̃it

√
NT

]
)
− Fit

( ar

br

)]
=

1√
T

∑
t

vτ fit
( ar

br

)[ 1
br

(d′nηei√
T

+
d′

nβ̃
x̃it

√
NT

)]
+ uit,

where uit denotes the remainder for each i. The optimality of d̂′nηei implies that hi(dnη, dnβ̃) =

o(T−1). Thus, E
[
hi(dnη, dnβ̃)− hi(0, 0)

]
= −hi(0, 0). Let h̄i =

1
T ∑

t

vτ
br

fit
( ar

br

)
, and we obtain

that

d̂′nηei = −h̄−1
i

[ 1√
T

∑
t

vτ

br
fit
( ar

br

)(dnλȳit√
NT

+
dnγyi,t−1√

NT
+

d′nβxit
√

NT
+

d′nδzit√
NT

)
− 1√

T
∑

t
vτψτ

(
ε∗it(τ)

)]
+ uit.

Next, for a fixed dnλ and dnγ, we consider the behavior of dnϑ = (d′nβ, d′nδ)
′. Denote

H(dnλ, dnγ, dnϑ) = −
1√
NT

∑
i

∑
t

vτ ξ̃ itψτ

(
ε∗it(τ)−

d̂′nηei√
T
− dnλȳit√

NT
−

dnγyi,t−1√
NT

−
d′nϑ ξ̃ it√

NT

)
,

where ξ̃ it = (x′it, z′it)
′. By the proof of Theorem 2 in Galvao [35], it is easy to obtain that

sup
‖dn‖<K

∥∥H(dnλ, dnγ, dnϑ)− H(0, 0, 0)− E
[
H(dnλ, dnγ, dnϑ)− H(0, 0, 0)

]∥∥ = op(1),
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where H(0, 0, 0) = − 1√
NT ∑i ∑t vτ ξ̃ itψτ

(
ε∗it(τ)

)
. Consider the expected part of this equa-

tion, and we have

E
[
H(dnλ, dnγ, dnϑ)− H(0, 0, 0)

]
=

1√
NT

∑
i

∑
t

vτ ξ̃ it
[
Fit
( 1

br

[
ar +

d̂′nηei√
T

+
d′

nβ̃
x̃it

√
NT

])
− Fit

( ar

br

)]
+ op(1)

=
1√
NT

∑
i

∑
t

vτ

br
ξ̃ it fit

( ar

br

)( d̂′nηei√
T

+
dnλȳit√

NT
+

dnγyi,t−1√
NT

+
d′nϑ ξ̃ it√

NT

)
+ op(1)

=
1√
NT

∑
i

∑
t

vτ

br
ξ̃ it fit

( ar

br

)( 1√
T

{
− h̄−1

i
[ 1√

T
∑

t

vτ

br
fit
( ar

br

)[dnλȳit√
NT

+
dnγyi,t−1√

NT

+
d′nϑ ξ̃ it√

NT

]
− 1√

T
∑

t
vτψτ

(
ε∗it(τ)

)]
+ uit

}
+

dnλȳit√
NT

+
dnγyi,t−1√

NT
+

d′nϑ ξ̃ it√
NT

)
+ op(1)

=
1

NT ∑
i

∑
t

vτ

br
ξ̃ it fit

( ar

br

)[
1− h̄−1

i T−1 ∑
t

vτ

br
fit
( ar

br

)]
(dnλȳit + dnγyi,t−1 + d′nϑ ξ̃ it)

+
1√
NT

∑
i

∑
t

vτ

br
ξ̃ it fit

( ar

br

)
h̄−1

i T−1 ∑
t

vτψτ

(
ε∗it(τ)

)
+

1√
NT

∑
i

∑
t

vτ

br
ξ̃ it fit

( ar

br

)
T−1/2uit + op(1).

The optimality of d̂nλ, d̂nγ and d̂nϑ implies that H(d̂nλ, d̂nγ, d̂nϑ) = o
(
(NT)−1), and

then, E
[
H(dnλ, dnγ, dnϑ)− H(0, 0, 0)

]
= −H(0, 0, 0). It is obvious that

1
NT ∑

i
∑

t

vτ

br
ξ̃ it fit

( ar

br

)[
1− h̄−1

i T−1 ∑
t

vτ

br
fit
( ar

br

)]
(dnλȳit + dnγyi,t−1 + d′nϑ ξ̃ it)

=
1√
NT

∑
i

∑
t

vτ ξ̃ itψτ

(
ε∗it(τ)

)
− 1√

NT
∑

i
∑

t

vτ

br
ξ̃ it fit

( ar

br

)
h̄−1

i T−1 ∑
t

vτψτ

(
ε∗it(τ)

)
−UNT , (A4)

where UNT = 1√
NT ∑

i
∑
t

vτ
br

ξ̃ it fit
( ar

br

)
T−1/2uit + op(1).

Let Φ(τ) = diag
( 1

br
fit(

ar
br
)
)
, Ψ(τ) be an NT-vector composed of ψτ

(
ε∗it(τ)

)
and ξ̃ =

(X, Z) be an NT× (p + q) matrix in which the rows are composed of a transposition of ξ̃ it.
Then, (A4) can be rewritten as

(vτ ξ̃′S′MΦ(τ)SMWy/NT)dnλ + (vτ ξ̃′S′MΦ(τ)SM Ly/NT)dnγ + (vτ ξ̃′S′MΦ(τ)SM ξ̃/NT)dnϑ

= vτ ξ̃′Ψ(τ)/
√

NT − vτ ξ̃′PMΨ(τ)/
√

NT −UNT

= vτ ξ̃′SMΨ(τ)/
√

NT −UNT ,

where SM = INT−PM , PM = M(M ′Φ(τ)M)−1M ′Φ(τ). Using more convenient notations,
we have

Jλdnλ + Jγdnγ + Jϑdnϑ = GNT −UNT ,

d̂nϑ = J−1
ϑ (GNT −UNT − Jλdnλ − Jγdnγ).

where GNT = vτ ξ̃′S′MΨ(τ)/
√

NT; UNT is a negligible term (Galvao, 2011 [35]); and Jλ, Jγ,
and Jϑ are as in Assumption 4.

Let J−1
ϑ = ( J̄′β, J̄′δ)

′; then,

d̂nβ = J̄β(GNT − Jλdnλ − Jγdnγ), (A5)

d̂nδ = J̄δ(GNT − Jλdnλ − Jγdnγ). (A6)
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Third, we consider the behavior of (dnλ, dnγ). By consistency, wp→ 1

(d̂nλ, d̂nγ) = arg min
Bn(λ(τ),γ(τ))

d̂′nδ(dnλ, dnγ)Ad̂nδ(dnλ, dnγ),

assuming that d̂′nδ Ad̂nδ is continuous in (dnλ, dnγ). Let

φλλ = J′λ J̄′δ AJ̄δ Jλ, φλγ = J′λ J̄′δ AJ̄δ Jγ, φλ = J′λ J̄′δ AJ̄δ,

φγγ = J′γ J̄′δ AJ̄δ Jγ, φγλ = J′γ J̄′δ AJ̄δ Jλ, φγ = J′γ J̄′δ AJ̄δ.

It is not hard to derive that

d̂nλ = (φλλ −φλγφ−1
γγ φγλ)

−1(φλ −φλγφ−1
γγ φγ)GNT = KλGNT , (A7)

d̂nγ = (φγγ −φγλφ−1
λλ φλγ)

−1(φγ −φγλφ−1
λλ φλ)GNT = KγGNT . (A8)

Substituting (d̂nλ, d̂nγ) into (A5) and (A6), we have

d̂nβ = J̄β(Ip+q − JλKλ − JγKγ)GNT = KβGNT , (A9)

d̂nδ = J̄δ(Ip+q − JλKλ − JγKγ)GNT . (A10)

For d̂nδ, using the facts that J̄δ Jλ and J̄δ Jγ are invertible (see Assumption 4), we know
that d̂nδ = 0 + Op(1) + Op(1) + op(1).

According to the definitions of θ(τ) and θ̂(τ), and Equations (A7)–(A9), we find that
√

NT
(
θ̂(τ)− θ(τ)

)
= Ω(A)GNT + op(1),

where Ω(A) = (K′λ, K′γ, K′β)
′. By the Liapounov central limit theorem, we have GNT

d−→
N(0, Ω0). Therefore,

√
NT
(
θ̂(τ)− θ(τ)

) d−→ N(0, Ω),

where Ω = Ω(A)Ω0(τ)Ω
′(A), Ω0(τ) = τ(1− τ)E(VV ′), V = vτ ξ̃′S′M , ξ̃ = (X, Z), SM =

INT − PM , PM = M
(

M ′Φ(τ)M
)−1M ′Φ(τ), Ω(A) = (K′λ, K′γ, K′β)

′, Kλ = (φλλ − φλγ

φ−1
γγ φγλ)

−1(φλ − φλγφ−1
γγ φγ), Kγ = (φγγ − φγλφ−1

λλ φλγ)
−1(φγ − φγλφ−1

λλ φλ), Kβ =
J̄β(Ip+q − JλKλ − JγKγ).
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