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Abstract: The aim of this work is to build novel analytical wave solutions of the nonlinear space-time
fractional (2+1)-dimensional breaking soliton equations, with regards to the modified Riemann–
Liouville derivative, by employing mathematical schemes, namely, the improved simple equation
and modified F-expansion methods. We used the fractional complex transformation of the concern
fractional differential equation to convert it for the solvable integer order differential equation. After
the successful implementation of the presented methods, a comprehensive class of novel and broad-
ranging exact and solitary travelling wave solutions were discovered, in terms of trigonometric,
rational and hyperbolic functions. Hence, the present methods are reliable and efficient for solving
nonlinear fractional problems in mathematics physics.

Keywords: space-time fractional (2+1)-dimensional breaking soliton equation; modified mathematical
method; fractional derivatives

1. Introduction

The fractional order of nonlinear partial differential equations (NPDEs) arise in numer-
ous grounds like the theoretical physics, dynamical system, fluid dynamics, elasticity, gas
dynamics, plasma physics, solid state physics, MHD and many others. The construction
of the exact solutions is one of the dominant leitmotifs in applied mathematics and theo-
retical physics. Moreover, the fractional order in calculus is one the developing fields of
applied mathematics and physics and whose idea was first instigated with the possibility
of fractional derivatives by Leibniz in 1695 [1]. Liouville laid the basic rules of this subject
in (1832) and Riemann discovered the fractional derivative of a power function Riemann in
(1847) [2]. The plethora of attention has been received to determine the incipient and closed
form exact solutions of FPDEs by many researchers. The potential symbolic computer pro-
gramming implements have been utilized to investigate opportune solutions to NFPDEs,
namely, first integral method [3–5], modified simple equation schemes [6,7], dirct agebric
methods and auxiliary equation techniques [8–10], fractional equation scheme [11–14],
(G′/G) -expansion scheme [15–17], Lie-symmetry technique[18], Seadawy and Exp func-
tion methods [19–22], tanh-coth scheme [23], generalized Kudryashov scheme [24–29] and
many more [30–38].
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Let the time fractional breaking soliton model be stated as in [39]:

∂αU
∂tα

+ a
∂3αU

∂x2αyα
+ 4aU

∂αV
∂xα

+ 4a
∂αU
∂xα

V = 0,

∂αU
∂yα
− ∂αV

∂xα
= 0, 0 < α ≤ 1. (1)

Currently different schemes to find solutions of Equation (1) have been presented. Yildirim
and Yasar discussed a wave solution of the (2+1)-dimensional breaking soliton model in [40].
In [41], the author derived multi-soliton solutions to Equation (1) by the variable coefficients
method. Negative-order breaking soliton equations and breaking soliton equations of
typical and higher orders have been assessed in [42]. Yildiz and Daghan [43], by using two
different methods, investigated exact solutions of Equation (1). Wang in [44] and Chen
and Ma in [45] suggested the analytical multi-soliton solutions and exact solutions to the
(2+1)-dimensional breaking soliton equation respectively. New multi-soliton solutions
and Symmetries solutions of Equation (1) have been established in [46,47]. Furthermore, a
technologically advanced scheme in [48] utilized the three wave method to obtain some
exact solutions for Equation (1). To the best of our understanding, Equation (1) has not
been studied with our implemented mathematical methods, see details in [49–51].

The rest of manuscript is arranged as follows: in Section 2 the definition and rudimen-
tal properties of the modified Riemann-Liouville fractional order derivative are provided.
In Section 3, we illustrate the sequence of the amended simple equation and modified
F-expansion methods. In Section 4, we Implement these techniques to find incipient exact
solitary wave solutions of Equation (1). Results, discussion and conclusion are mentioned
in Sections 5 and 6, respectively.

2. Preliminaries and Basic Definitions

Definition 1. Let the Jumarie’s modified Riemann-Liouville derivative of order α with the continu-
ous function F:R→R,∼x→F(x) be stated as in [52]:

Dα
x =

1
Γ(−α)

∫ x

0
(F(η)− F(0))(x− η)−α−1dη, α < 0,

1
Γ(−α)

∫ x

0
(F(η)− F(0))(x− η)−α−1dη, 0 < α < 1,

((Fn(x))α−n), n ≤ α ≤ n + 1, n ≥ 1 (2)

Γ is defined as

Γ(α) = log
n→∞

n!nα

(α(α + 1)(α + 2)...)(α + n)
(3)

Γ (x)=
∫ ∞

0
dxe−ttx−1 (4)

Definition 2. The Mittag-Leffler function via two parameters is explained in [53]:

ex
α,β1

=
∞

∑
i=0

xi

Γ(αi + β1)
, R() ≥ 0,∼ β1 ∼∼ xεC (5)

This function is used for utilization to scrutinize the fractional PDEs as the exponen-
tial function with integer order. For the fractional derivative, some postulates are as follows:
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First Postulate:

Dα
x xr =

Γ(1 + r)
Γ(1 + r− α)

xr−α, r > 0 (6)

where r ia a real number.
Second Postulate:

Dα
x(C1F(x)) = C1Dα

x(F(x)), C1 = constant. (7)

Third Postulate:

Dα
x(AF(x) + BG(x)) = ADα

x(F(x)) + BDα
x(G(x)) (8)

Fourth Postulate:

Dα
x F(η) =

dF
dη

Dα
x(η) (9)

where η = G(x).

3. Description of the Proposed Methods

Let the NFPDEs be

F(U, Dα
t U, Dα

xU, Dα
t Dα

t U, Dα
x Dα

xU, .....) = 0. (10)

Let
U = U(ξ), ξ =

kxα

Γ(α + 1)
+

δtα

Γ(α + 1)
(11)

Substitute Equation (11) into Equation (10),

G
(
U, U′, U′′, U′′′, ...

)
= 0, (12)

3.1. Improved Simple Equation Method

Let the solution of (12) be

U(ξ) =
N

∑
i=−N

AiΨ
i(ξ) (13)

Let Ψ satisfy
Ψ′(ξ) = c0 + c1Ψ + c2Ψ2 + c3Ψ3 (14)

Put Equation (13) with Equation (12) into Equation (14).

3.2. Modified F-Expansion Method

Let (12) have the following solution:

U = a0 +
N

∑
i=1

aiFi(ξ) +
N

∑
i=1

biF−i(ξ) (15)

F′ = A + BF + CF2. (16)

Put Equation (15) with Equation (16) in Equation (12), solve the obtained algebraic
system of equations for investigating the solution of Equation (10).
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4. Applications

The space-time fractional breaking soliton equation:
Put Equation (11) into Equation (1) (Figures 1–6), we have the following ODE form:

−δU′ + ak2ωU′′′ + 4akUV′ + 4akU′V = 0,

ωU′ − kV′ = 0. (17)

Now we integrate the second equation, Equation (17), by taking the constant of
integration as equal to zero,

ωU = kV (18)

Putting Equation (18) into the first equation of (17), yields

−δU + ak2ωU′′ + 4aU2ω = 0, (19)

4.1. Applications of Improved Simple Equation Method

Let Equation (19) have the following solution;

U = A2ψ2 + A1ψ +
A−2

ψ2 +
A−1

ψ
+ A0 (20)

Put (20) with (14) in (19),

CASE 1: c3 = 0,

Family-I

A−2 = 0, A−1 = 0, A2 =
1
2
(−3)c2

2k2 , A1 =
1
2
(−3)c1c2k2,

A0 = −

√
a2
(
c2

1 − 4c0c2
)2k4 + a

(
c2

1 + 8c0c2
)
k2

8a
, δ = −ω

√
a2
(
c2

1 − 4c0c2
)2k4 (21)

Put (21) in (20),

U1 =−

√
a2
(
c2

1 − 4c0c2
)

2k4 + a
(
c2

1 + 8c0c2
)
k2

8a
−

3c1c2k2
(
−
(

c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)))

2(2c2)

− 3
2

c2
2k2

− c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)

2c2


2

, 4c0c2 > c2
1. (22)

V1 =−ω

√
a2
(
c2

1 − 4c0c2
)2k4 + a

(
c2

1 + 8c0c2
)
k2

8ka
−

3ωc1c2k2
(
−
(

c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)))

2(2kc2)

− 3ω

2
c2

2k

− c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)

2c2


2

, 4c0c2 > c2
1. (23)
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Family-II

A−2 =
1
2
(−3)c2

0k2, A−1 =
1
2
(−3)c0c1k2, A2 = 0, A1 = 0,

A0 =

√
a2
(
c2

1 − 4c0c2
)2k4 − a

(
c2

1 + 8c0c2
)
k2

8a
, ω

√
a2
(
c2

1 − 4c0c2
)

2k4 = δ (24)

put (24), in (20),

U2 =

√
a2
(
c2

1 − 4c0c2
)2k4 − a

(
c2

1 + 8c0c2
)
k2

8a
− 3c0c1(2c2)k2

2
(
−
(

c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)))

1
2
(−3)c2

0k2

− 2c2

c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)


2

, 4c0c2 > c2
1 (25)

V2 =


√

a2
(
c2

1 − 4c0c2
)

2k4 − a
(
c2

1 + 8c0c2
)
k2

8a
− 3c0c1(2c2)k2

2
(
−
(

c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)))


(ω

k

)
− 1

2ω
(3)c2

0k

− 2c2

c1 −
√

4c2c0 − c2
1 tan

(
1
2

√
4c2c0 − c2

1(ξ + ξ0)
)


2

, 4c0c2 > c2
1 (26)

CASE 2: c0 = 0, c3 = 0,

A0 = 0, A−2 = 0, A−1 = 0, A2 =
1
2
(−3)c2

2k2, A1 =
1
2
(−3)c1c2k2, δ = ac2

1k2ω (27)

Put (27) in (20),

U3 = −1
2

3c2
2k2
(

c1 exp(c1(ξ + ξ0))

1− c2 exp(c1(ξ + ξ0))

)2
− 3c1c2k2(c1 exp(c1(ξ + ξ0)))

2(1− c2 exp(c1(ξ + ξ0)))
, c1 > 0, (28)

V3 =

(
−1

2
3c2

2k2
(

c1 exp(c1(ξ + ξ0))

1− c2 exp(c1(ξ + ξ0))

)2
− 3c1c2k2(c1 exp(c1(ξ + ξ0)))

2(1− c2 exp(c1(ξ + ξ0)))

)
ω

k
, c1 > 0, (29)

U4 = −1
2

3c2
2k2
(
− c1 exp(c1(ξ + ξ0))

c2 exp(c1(ξ + ξ0)) + 1

)2
− 3c1c2k2(−c1 exp(c1(ξ + ξ0)))

2(c2 exp(c1(ξ + ξ0)) + 1)
, c1 < 0. (30)

V4 =

(
−1

2
3c2

2k2
(
− c1 exp(c1(ξ + ξ0))

c2 exp(c1(ξ + ξ0)) + 1

)2
− 3c1c2k2(−c1 exp(c1(ξ + ξ0)))

2(c2 exp(c1(ξ + ξ0)) + 1)

)
ω

k
, c1 < 0. (31)

CASE 3: c1 = 0, c3 = 0,
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Figure 1. The profile of solutions U2 (a,b) and V2 (c,d) with α = 1, c0 = 2, c2 = 1, c1 = 2, k = −0.2, a = 2.01, ω = 0.5,
ξ0 = 10.5 and α = 1, c0 = 2, c2 = 1, c1 = 2, k = 0.4, a = 2.01, ω = 1.05, ξ0 = 0.5 respectively.

Family-I

A0 = − δ

8aω
, A−2 = 0, A−1 = 0, A2 = − 3c2δ

8ac0ω
, A1 = 0, k =

√
δ

2
√

a
√

c0
√

c2
√

ω
(32)

Put (32) in (20),

U5 = −
(3δc2)

(√
c2c0 tan(

√
c2c0(ξ+ξ0))

c2

)
2

8ac0ω
− δ

8aω
, c0c2 > 0, (33)

V5 =

− (3δc2)

(√
c2c0 tan(

√
c2c0(ξ+ξ0))

c2

)
2

8ac0ω
− δ

8aω

(ω

k

)
, c0c2 > 0, (34)
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U6 = −
(3c2δ)

(
−
√
−c2c0 tanh(

√
−c2c0(ξ+ξ0))

c2

)2

8ac0ω
− δ

8aω
, c0c2 < 0. (35)

V6 =

− (3c2δ)
(
−
√
−c2c0 tanh(

√
−c2c0(ξ+ξ0))

c2

)2

8ac0ω
− δ

8aω

(ω

k

)
, c0c2 < 0. (36)

Family-II

A0 = − δ

8aω
, A−2 = − 3c0δ

8ac2ω
, A−1 = A2 = A1 = 0, k =

√
δ

2
√

a
√

c0
√

c2
√

ω
(37)

Put (37) in (20),

U7 = −
(3δc0)

(
1√c2c0 tan(
√c2c0(ξ+ξ0))
c2

)2

8ac2ω
− c

8aω
, c0c2 > 0, (38)

V7 =

−
(3δc0)

(
1√c2c0 tan(
√c2c0(ξ+ξ0))
c2

)2

8ac2ω
− c

8aω


(ω

k

)
, c0c2 > 0, (39)

U8 = −
(3cc0)

(
− 1√

−c2c0 tanh(
√
−c2c0(ξ+ξ0))

c2

)2

8ac2ω
− c

8aω
, c0c2 < 0. (40)

V8 =

−
(3cc0)

(
− 1√

−c2c0 tanh(
√
−c2c0(ξ+ξ0))

c2

)2

8ac2ω
− c

8aω


(ω

k

)
, c0c2 < 0. (41)
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Figure 2. The profile of solutions U5 (a,b) and V5 (c,d) with α = 1, c0 = 0.2, c2 = 1, c1 = 2, δ = −0.2, a = 0.01, ω = 0.5,
ξ0 = 0.5 and α = 1, c0 = 2, c2 = 1, c1 = 2, δ = 0.2, a = 0.01, ω = 0.05, ξ0 = 0.5 respectively.

Family-III

A0 =
δ

16aω
, A−2 = − 3c0δ

32ac2ω
, A−1 = 0, A2 = − 3c2δ

32ac0ω
, A1 = 0, k =

√
δ

4
√

a
√

c0
√

c2
√

ω
(42)

Put (42) in (20),

U9 = −
(3c2δ)

(√
c2c0 tan(

√
c2c0(ξ+ξ0))

c2

)
2

32ac0ω
−

(3c0δ)

(
1

√c2c0 tan(√c2c0(ξ+ξ0))
c2

)2

32ac2ω
+

δ

16aω
, c0c2 > 0, (43)
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V9 =

−
(3c2δ)

(√
c2c0 tan(

√
c2c0(ξ+ξ0))

c2

)2

32ac0ω
−

(3c0δ)

(
1

√c2c0 tan(√c2c0(ξ+ξ0))
c2

)2

32ac2ω
+

δ

16aω


(ω

k

)
, c0c2 > 0, (44)

U10 =−
(3c2δ)

(
−
√
−c2c0 tanh(

√
−c2c0(ξ+ξ0))

c2

)
2

32ac0ω
−

(3c0δ)

(
− 1√

−c2c0 tanh(
√
−c2c0(ξ+ξ0))

c2

)
2

32ac2ω

+
δ

16aω
, c0c2 < 0. (45)

V10 =

−
(3c2δ)

(
−
√
−c2c0 tanh(

√
−c2c0(ξ+ξ0))

c2

)
2

32ac0ω
−

(3c0δ)

(
− 1√

−c2c0 tanh(
√
−c2c0(ξ+ξ0))

c2

)2

32ac2ω


(ω

k

)

+
δ

16aω

(ω

k

)
, c0c2 < 0. (46)

4.2. Applications of Modified F-Expansion Method

Let solution of Equation (19) is

U = a2F2 + a1F + a0 +
b2

F2 +
b1

F
(47)

Put (47) in (19) with (16),

For A = 0, B = 1, C= −1

a0 = 0, a2 = − 3δ

2aω
, a1 =

3δ

2aω
, b1 = 0, b2 = 0, k =

√
δ√

a
√

ω
(48)

Put (48) in (47),

U11 =
3δ

4aω
( tanh

(
ξ

2

)
+ 1)− 3δ

8aω

(
tanh

(
ξ

2

)
+ 1
)2

(49)

V11 =
(ω

k

)( 3δ

4aω
( tanh

(
ξ

2

)
+ 1)− 3δ

8aω

(
tanh

(
ξ

2

)
+ 1
)2
)

(50)

For A = 0, B = −1, C = 1

a0 = 0, a2 = − 3δ

2aω
, a1 =

3δ

2aω
, b1 = 0, b2 = 0, k =

√
δ√

a
√

ω
(51)

Substitute (51) into (47),

U12 =
3δ

4aω
(1− coth

(
ξ

2

)
)− 3δ

8aω

(
1− coth

(
ξ

2

))2
(52)
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V12 =
(ω

k

)( 3δ

4aω
(1− coth

(
ξ

2

)
)− 3δ

8aω

(
1− coth

(
ξ

2

))2
)

(53)

Figure 3. The profile of solutions U9 (a,b) and V9 (c,d) with c2 = 1, c0 = 3.2, α = 1, δ = 0.2, a = −1, ω = −0.5, ξ0 = 0.5 and
α = 1, c2 = −1, c0 = −0.2, δ = −2.2, λ = 0.11, ω = −0.5, ξ0 = −0.5 respectively.

A = 1/2, B = 0, C = −1/2
Family-I

a0 =
3δ

8aω
, a2 = − 3δ

8aω
, a1 = 0, b1 = 0, b2 = 0, k =

√
δ√

a
√

ω
(54)

Put (54) in (47),

U131 =
3δ

8aω
− 3δ

8aω

(
(coth(ξ) + csch(ξ))2 (55)

V131 =
(ω

k

)( 3δ

8aω
− 3δ

8aω

(
(coth(ξ) + csch(ξ))2

)
(56)
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Family-II

a0 =
3δ

8aω
, a2 = 0, a1 = 0, b1 = 0, b2 = − 3δ

8aω
, k = −

√
δ√

a
√

ω
(57)

Put (57) in (47),

U132 =
3δ

8aω
− 3δ

8aω
l
(

1
( coth(ξ) + csch(ξ)

)2
(58)

V132 =
(ω

k

)( 3δ

8aω
− 3δ

8aω

(
1

( coth(ξ) + csch(ξ)

)2
)

(59)

Family-III

a0 =
3δ

16aω
, a2 = − 3δ

32aω
, a1 = 0, b1 = 0, b2 = − 3δ

32aω
, k = −

√
δ

2
√

a
√

ω
(60)

Put (60) in (47),

U133 =
3δ

16aω
− 3δ

32aω

((
(coth(ξ) + csch(ξ))2 +

(
1

( coth(ξ) + csch(ξ)

)2
(61)

V133 =
(ω

k

)( 3δ

16aω
− 3δ

32aω

((
(coth(ξ) + csch(ξ))2 +

(
1

( coth(ξ) + csch(ξ)

)2
)

(62)

C = −1, B = 0, A = 1

Family-I

a0 =
3δ

8aω
, a2 = − 3δ

8aω
, a1 = 0, b1 = 0, b2 = 0, k =

√
δ

2
√

a
√

ω
(63)

Put (63) in (47),

U141 =
3δ

8aω
− 3δ

8aω
tanh2(ξ) (64)

V141 =
(ω

k

)( 3δ

8aω
− 3δ

8aω
tanh2(ξ)

)
(65)

Family-II

a0 =
3δ

8aω
, a2 = 0, a1 = 0, b1 = 0, b2 = − 3δ

8aω
, k = −

√
δ

2
√

a
√

ω
(66)

Put (66) in (47),

U142 =
3δ

8aω
− 3δ

8aω

(
1

tanh(ξ)

)2
(67)
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V142 =
(ω

k

)( 3δ

8aω
− 3δ

8aω

(
1

tanh(ξ)

)2
)

(68)

Family-III

a0 =
3δ

16aω
, a2 = − 3δ

32aω
, a1 = 0, b1 = 0, b2 = − 3δ

32aω
, k =

√
δ

4
√

a
√

ω
(69)

Put (69) in (47),

U143 =
3δ

16aω
− 3δ

32aω
(Tanh[ξ])2 − 3δ

32aω

(
1

Tanh[ξ]

)2
(70)

V143 =
(ω

k

)( 3δ

16aω
− 3δ

32aω
(Tanh[ξ])2 − 3δ

32aω

(
1

Tanh[ξ]

)2
)

(71)

C = A = 1/2, B = 0.

Family-I

a0 = − δ

8aω
, a2 = − 3δ

8aω
, a1 = 0, b1 = 0, b2 = 0, k = −

√
δ√

a
√

ω
(72)

Put (72) in (47),

U151 = − δ

8aω
− 3δ

8aω
(tan(ξ) + sec(ξ))2 (73)

V151 =
(ω

k

)(
− δ

8aω
− 3δ

8aω
(tan(ξ) + sec(ξ))2

)
(74)

Family-II

a0 = − δ

8aω
, a2 = 0, a1 = 0, b1 = 0, b2 = − 3δ

8aω
, k =

√
δ√

a
√

ω
(75)

Put (75) in (47),

U152 = − δ

8aω
− 3δ

8aω

(
1

tan(ξ) + sec(ξ)

)2
(76)

V152 =
(ω

k

)(
− δ

8aω
− 3δ

8aω

(
1

tan(ξ) + sec(ξ)

)2
)

(77)

Family-III

a0 =
δ

16aω
, a2 = − 3δ

32aω
, a1 = 0, b1 = 0, b2 = − 3δ

32aω
, k =

√
δ

2
√

a
√

ω
(78)
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Put (78) in (47),

U153 =
δ

16aω
− 3δ

32aω
( (Sec[ξ]+Tan[ξ] )+

(
1

tan(ξ) + sec(ξ)

)2
(79)

V153 =
(ω

k

)( δ

16aω
− 3δ

32aω
( (Sec[ξ]+Tan[ξ] )+

(
1

tan(ξ) + sec(ξ)

)2
)

(80)

Figure 4. The profile of solutions U143 (a,b) and V143 (c,d) with α = 1, δ = 0.002, a = 0.1, ω = 0.5 and α = 1, δ = −0.3,
a = 0.01, ω = 0.3 respectively.

C = A = −1/2, B = 0,
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Family-I

a0 = − δ

8aω
, a2 = − 3δ

8aω
, a1 = 0, b1 = 0, b2 = 0, k =

√
δ√

a
√

ω
(81)

Put (81) in (47),

U161 = − δ

8aω
− 3δ

8aω
(sec(ξ)− tan(ξ))2 (82)

V161 =
(ω

k

)(
− δ

8aω
− 3δ

8aω
(sec(ξ)− tan(ξ))2

)
(83)

Family-II

a0 = − δ

8aω
, a2 = 0, a1 = 0, b1 = 0, b2 = − 3δ

8aω
, k = −

√
δ√

a
√

ω
(84)

Put (84) in (47),

U162 = − δ

8aω
− 3δ

8aω

(
1

sec(ξ)− tan(ξ)

)2
(85)

V162 =
(ω

k

)(
− δ

8aω
− 3δ

8aω

(
1

sec(ξ)− tan(ξ)

)2
)

(86)

Family-III

a0 =
δ

16aω
, a2 = − 3δ

32aω
, a1 = 0, b1 = 0, b2 = − 3δ

32aω
, k =

√
δ

2
√

a
√

ω
(87)

Put (87) in (47),

U163 =
δ

16aω
− 3δ

32aω
((sec(ξ)− tan(ξ))2 +

(
1

sec(ξ)− tan(ξ)

)2
(88)

V163 =
(ω

k

)( δ

16aω
− 3δ

32aω
((sec(ξ)− tan(ξ))2 +

(
1

sec(ξ)− tan(ξ)

)2
)

(89)

C =A = −1, B = 0.
Family-I

a0 = − δ

8aω
, a2 = − 3δ

8aω
, a1 = 0, b1 = 0, b2 = 0, k =

√
δ

2
√

a
√

ω
(90)

Put (90) in (47),

U171 = − δ

8aω
− 3δ

8aω

(
cot2(ξ)

)
(91)

V171 =
(ω

k

)(
− δ

8aω
− 3δ

8aω

(
cot2(ξ)

))
(92)
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Figure 5. The profile of solutions U163 (a,b) and V163 (c,d) with α = 1, δ = 0.002, a = 2.1, ω = 0.5 and (α = 1, δ = 2,
a = 2.1, ω = 0.5 respectively.

Family-II

a0 = − δ

8aω
, a2 = 0, a1 = 0, b1 = 0, b2 = − 3δ

8aω
, k = −

√
δ

2
√

a
√

ω
(93)

Put (93) in (47),

U172 = − δ

8aω
− 3δ

8aω
(

(
1

cot(ξ)

)2
(94)

V172 =
(ω

k

)(
− δ

8aω
− 3δ

8aω
(

(
1

cot(ξ)

)2
)

)
(95)

Family-III

a0 =
δ

16aω
, a2 = − 3δ

32aω
, a1 = 0, b1 = 0, b2 = − 3δ

32aω
, k =

√
δ

4
√

a
√

ω
(96)

Put (96) in (47),

U173 =
δ

16aω
+

3δ

32aω
(cot2(ξ)−

(
1

cot(ξ)

)2
(97)
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V173 =
(ω

k

)( δ

16aω
+

3δ

32aω
(cot2(ξ)−

(
1

cot(ξ)

)2
)

(98)

For C = 0

a0 = 0, a2 = 0, a1 = 0, b1 =
1
2
(−3)ABk2, b2 =

1
2
(−3)A2k2, ω =

δ

aB2k2 (99)

Put (99) in (47),

U18 =
1
2
(−3)ABk2(

1
exp(Bξ)−A

B

)-
1
2
(−3)A2k2

(
1

exp(Bξ)−A
B

)2

(100)

V18 =
(ω

k

)1
2
(−3)ABk2(

1
exp(Bξ)−A

B

)-
1
2
(−3)A2k2

(
1

exp(Bξ)−A
B

)2
 (101)

Figure 6. The profile of solutions U173 (a,b) and V173 (c,d) with α = 1, δ = 0.002, a = 2.1, ω = 0.5 and α = 1, δ = 0.1,
a = 0.1, ω = 0.5 respectively.

5. Results and Discussion

The mathematical methods emphasize the wave solutions of Equation (1). In the
derived solutions, parameters A1, A−1, A2 and A−2 received various specific values due
to these exact solutions being converted into different solitary wave solutions in different



Mathematics 2021, 9, 3253 17 of 19

forms, such as hyperbolic, trigonometric and rational functions (Figures 1–6). Currently
several methods have been utilized to solve Equation (1) throughout the research litera-
ture [40–48]. Moreover, our investigated solutions are likely similar to other solutions in
different research articles. Our solutions U6 and V6 in (35) and (36) are likely similar to the
solutions U41 in Equation (82) and U42 in Equation (83), respectively, in [50]. Furthermore,
our solutions U141 and V141 in (64) and (65) are similar in form to the solutions u2 and v2 in
Equation (4.39), respectively, in [54]. Our solutions U8 and V9 in (41) and (42) are similar
in form to the solutions u23(η) and u214(η) in Equation (50) and Equation (51), respectively,
in [55]. The remainder of our derived solutions are novel and have not yet been reported
in any research literature. Hence, our employed schemes are simple and useful for solving
many other nonlinear problems in applied sciences.

6. Conclusions

In this study, we have proposed two novel techniques, namely, an improved form of
simple equation and a modified form of F-expansion are utilized to construct exact solutions
of the nonlinear fractional time space (2+1)-dimensional breaking soliton equation, via
the properties of the modified Riemann-Liouville derivative. Multifarious transformation
has been operated to renovate the fractional order differential equations. The constructed
results have extensive potential to comprehend the interior configurations of the usual
manifestations that arise in physics, mathematics and in other different fields. Hence, it is
worth declaring that the execution of our techniques is extremely steady and well-organized
for fractional differential equations.
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