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Abstract: In 2011, Dekel et al. developed highly geometric Hardy spaces H? (®), for the full range
0 < p <1, which were constructed by continuous multi-level ellipsoid covers ® of R” with high
anisotropy in the sense that the ellipsoids can rapidly change shape from point to point and from
level to level. In this article, when the ellipsoids in ® rapidly change shape from level to level,
the authors further obtain some real-variable characterizations of H? (®) in terms of the radial, the
non-tangential, and the tangential maximal functions, which generalize the known results on the
anisotropic Hardy spaces of Bownik.

Keywords: anisotropy; Hardy space; continuous ellipsoid cover; maximal function

1. Introduction

As a generalization of the classical isotropic Hardy spaces H? (R") [1], anisotropic
Hardy spaces H Z (R™) were introduced and investigated by Bownik [2] in 2003. These
spaces were defined on R", associated with a fixed expansive matrix, which acts on
an ellipsoid instead of Euclidean balls. In [3-8], many authors also studied Bownik’s
anisotropic Hardy spaces. In 2011, Dekel et al. [9] further generalized Bownik’s spaces
by constructing Hardy spaces with pointwise variable anisotropy H(®),0 < p < 1,
associated with an ellipsoid cover ®. The anisotropy in Bownik’s Hardy spaces is the same
one at each point in R”, while the anisotropy in H? (®) can change rapidly from point to
point and from level to level. Moreover, the ellipsoid cover @ is a very general setting that
includes the classical isotropic setting, non-isotropic setting of Calderén and Torchinsky
[10], and the anisotropic setting of Bownik [2] as special cases; see more details in ([2],
pp- 2-3) and ([11], p. 157).

On the other hand, maximal function characterizations are very fundamental charac-
terizations of Hardy spaces, and they are crucial to conveniently apply the real-variable
theory of Hardy spaces H? (R") with p € (0, 1]. Maximal function characterizations were
first shown for the classical isotropic Hardy spaces H” (R") by Fefferman and Stein in their
fundamental work [1], ([12], Chapter III). Analogous results were shown by Calderén and
Torchinsky [10,13] for parabolic H? spaces and Uchiyama [14] for H” on a homogeneous-
type space. In 2003, Bownik ([2], p. 42) obtained the maximal function characterizations
of the anisotropic Hardy space HZ(R”). This was further extended to anisotropic Hardy
spaces of the Musielak—Orlicz type in [15], to anisotropic Hardy—Lorentz spaces in [16],
to variable anisotropic Hardy spaces in [17], and to anisotropic mixed-norm Hardy spaces
in [18].

Motivated by the abovementioned facts, a natural question arises: Do the maximal
function characterizations still hold for Hardy spaces H? (©) with variable anisotropy?
In this article, we answer this question affirmatively in the sense that the ellipsoids in @
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can change shape rapidly from level to level, which is a variable anisotropic extension of
Bownik’s [2].

This article is organized as follows.

In Section 2, we recall some notation and definitions concerning anisotropic continuous
ellipsoid cover O, several maximal functions, and anisotropic Hardy spaces H (®) defined
via the grand radial maximal function. We also give some propositions about H (®),
several classes of variable anisotropic maximal functions, and Schwartz functions since
they provide tools for further work. In Section 3, we first state the main result: if the
ellipsoids in ® can rapidly change shape from level to level (see Definition 1), denoted as
©;, we may obtain some real-variable characterizations of H? (©;) in terms of the radial, the
non-tangential, and the tangential maximal functions (see Theorem 1). Then, we present
several lemmas that are isotropic extensions in the setting of variable anisotropy, and finally,
we show the proof for the main result.

In the process of proving the main result, we used the methods from Stein [1] and
Bownik [2]. However, it is worth pointing out that these ellipsoids of Bownik were images
of the unit ball by powers of a fixed expansive matrix, whereas in our case, the ellipsoids of
Dekel are images of the unit ball by powers of a group of matrices satisfying some “shape
condition”. This makes the proof complicated and needs many subtle estimates such as
Propositions 5 and 6, and Lemma 1.

However, this article left an open question: if the maximal function characterizations
of H? (@) still hold true in the sense that the ellipsoids of ® change rapidly from level to
level and from point to point?

Finally, we note some conventions on notation. Let Ny := {0, 1, 2, ...} and [¢] be the

smallest integer no less than t. For any « := (ay,...,a,) € N§, [a] := ay 4+ --- + &, and
0" = (8871)"‘1 e (%ﬂ)"‘". Throughout the whole paper, we denote by C a positive constant

that is independent on the main parameters but may vary from line to line. For any sets
E, F C R", we use EC to denote the set R” \ E. If there are no special instructions, any space
X (R") is denoted simply by X'. Denote by S the space of all Schwartz functions and S’
the space of all tempered distributions.

2. Preliminary and Some Basic Propositions

In this section, we first recall the notion of continuous ellipsoid covers ® and we
introduce the pointwise continuity for ®. An ellipsoid § in R" is an image of the Euclidean
unit ball B" := {x € R" : |x| < 1} under an affine transform, i.e.,

¢ = Mg(Bn) +cg,

where M is a non-singular matrix and ¢z € R" is the center.
Let us begin with the definition of continuous ellipsoid covers, which was introduced
in ([11], Definition 2.4).

Definition 1. We say that
©:={0(x, t):x € R", t € R}

is a continuous ellipsoid cover of R" or, in short, an ellipsoid cover if there exist positive constants
p(®) :={ay,...,a¢} such that

(i) Forevery x € R" and t € R, there exists an ellipsoid 6(x, t) := My ¢(B") + x satisfying
27 < 0(x, 1) < a2t 1)

(ii)  Intersecting ellipsoids from © satisfy a “shape condition”, i.e., for any x, y € R", t € Rand
s>0,if0(x, t)NO(y, t+s) # D, then

a327a4s S
|(My, t45) 1My, ¢

< [(My, 1) " My, s || < a527%". 2)
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where || - || is the matrix norm given by || M|| := max,—y |Mx| for an n x n real matrix M.
Particularly, for any 6(x, t) € ©, when the related matrix function My of x € R" and t € R
is reduced to the matrix function My of t € R, we call a cover ® a t-continuous ellipsoid cover,
denoted as ©;.
The word continuous refers to the fact that ellipsoids 6x, t are defined for all values of x € R"
and t € R, and we say that a continuous ellipsoid cover ® is pointwise continuous if, for every
t € R, the matrix valued function x — My is continuous:

Myt — Mys|| = 0 as x' — x. 3)

Remark 1. By ([19], Theorem 2.2), we know that the pointwise continuous assumption is not
necessary since it is always possible to construct an equivalent ellipsoid cover

E:={lxt:xeR", t R}

such that & is pointwise continuous and = is equivalent to ®. Here, we say that two ellipsoid covers
O and E are equivalent if there exists a constant C > 0 such that, for any x € R" and t € R,
we have

%@x,t C Ox,t C Clx,t.

Taking My, t+s = My, in (2), we have
a3 <1 and a5 > 1. 4)

For more properties about ellipsoid covers, see [9,11].
Forany N, N € Ny with N < N, let

SN,N:{weS:nwnSM:: max sup<1+y|>ﬁ|a“¢<y>|s1}.

aeNg,MSNyeRn

Forany ¢ € S, x € R",t € Rand 0(x, t) = M, (B") + x, denote

Pu,i(y) = |det(ML]) | @(My 1), v € R".

Particularly, when the matrix M, ; is reduced to M;, ¢y (y) is simply denoted as
Pt (y)-

Now, we give the notions of anisotropic variants of the non-tangential, the grand
non-tangential, the radial, the grand radial, and the tangential maximal functions.

Definition 2. Let f € §', 9 € Sand N, N € Ny with N < N. We define the non-tangential,
the grand non-tangential, the radial, the rand radial, and the tangential maximal functions, respec-
tively as

Mpf(x) :=sup sup |f+@ui(y)], x€RY,
teR yeb(x,t)

My xf(x) = sup Myf(x), x€R",

4)€SN/ N

Mgf(x) = suﬂg |f * ¢xt(x)], x€R",
te

M?\j,ﬁf(x) = sup Mgf(x), xeR",

[ GSN, N

N -1 -N n
T)'f(x) = sup sup [f + gre(n)|(1+ [ M} (x—p)|) , xeRr"
teR yeR"
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", on

Here and hereafter, the symbol "x” always represents a convolution.

Remark 2. We immediately have the following pointwise estimate among the radial, the non-
tangential, and the tangential maximal functions:

Mgf(x) < Myf(x) < 2NT$’f(x), x € R™.

Next, we recall the definition of Hardy spaces with pointwise variable anisotropy ([9],
Definition 3.6) via the grand radial maximal function.

Let © be an ellipsoid cover of R" with parameters p(©) = {ay, -+ ,a46} and 0 < p < 1.
We define N, (®) as the minimal integer satisfying

1, 1
S max(1,a4)n +

N, := N,
p = Np(©) 2o / ®)
and then N, (®) as the minimal integer satisfying
~ ~ a4N (@) + 1
N, := N,(®) > VT (6)

Definition 3. Let © be a continuous ellipsoid cover and 0 < p < 1. Define M° := MON N and
pretp
the anisotropic Hardy space is defined as

sz,,,ﬁp@) ={feS: M%cLr}

with the (quasi-)norm || f || gr (@) = | MOf]|Lp.

Remark 3. By Remark 1, we know that, for every continuous ellipsoid cover ®, there exists
an equivalent pointwise continuous ellipsoid cover E. This implies that their corresponding
(quasi-)norms pg (-, -) and pz(-, -) are also equivalent, and hence, the corresponding Hardy spaces
H?(®) = HP(E)(0 < p < 1) with equivalent (quasi-)norms (see ([9], Theorem 5.8)). Therefore,
here and hereafter, we always consider ® of H? (©) to be a pointwise continuous ellipsoid cover.

Proposition 1. Let © be an ellipsoid cover,0 < p <1 < g < oo, p < qandl > N, with Ny as
in (5). If N > Ny and N > (agN + 1)/ ag, then

14 _ gP _ P
HY, o (©) = H} (0) = H}, (@)

with equivalent (quasi-)norms, where H; 1(®) denotes the atomic Hardy space with pointwise
variable anisotropy; see ([9], Definition 4.2).

Proof. This proposition is a corollary of ([9], Theorems 4.4 and 4.19). Indeed, by Definition 3,
we obtain that, forany N > Ny and N > (a4N +1)/ag,

Combining this and H 5 (©) CH I’z] N (@) (see ([9], Theorem 4.4)), we obtain
’ pNp

H! (©) C H} (©). )

By checking the definition of anisotropic (p, g,1)-atom (see ([9], Definition 4.1)), we know
that every (p, oo, I)-atom is also a (p, g, I)-atom and hence

H! (©) C H;l(®).

’
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Let !’ > max(l, N). By a similar argument to the proof of ([9], Theorem 4.19), we obtain

4 P
HN,N(G)) g Hoo,l’ (G))/

where N > Nj, and N > (agN +1)/a¢. Thus,

HZ,N(G)) - Hf;,l/(@) - Hfo,l(®) C Hg,l(®)' ®)

Combining (7) and (8), we conclude that

HY, ,(©)=H! (0) = H], ((©)

with equivalent (quasi-)norms. O

Remark 4. From Proposition 1, we deduce that, for any integers N > Ny, and N > (agN +1)/ag,
the definition of Hi{ N(®) is independent of N and N. Therefore, from now on, we denote HI’Z] N(®)

with N > Ny and N > (a4N + 1)/ ag simply by H? (©).

Proposition 2 ([9], Lemma 2.3). Let ® be an ellipsoid cover. Then, there exists a constant
] :=J(p(®)) > 1such that, forany x € R" and t € R,

2My ¢ (B) +x C O(x,t— ).
Here and hereafter, let | always be as in Proposition 2.

Definition 4 ([9], Definition 3.1). Let ® be an ellipsoid cover. For any locally integrable function
f, the maximal function of the Hardy—Littlewood type of f is defined by

1
Mgf(x) := _ dy, x € R".
0f () 1= sup e [ 1)l dy

Proposition 3 ([9], Theorem 3.3). Let ® be an ellipsoid cover. Then,
(i)  There exists a constant C depending only on p(®) and n such that forall f € L' and o > 0,

[{x: Mof(x) > a}| < Ca”Y|fll; ©)

(i)  For1 < p < oo, there exists a constant Cp depending only on C and p such that, for all
felb

[Mofllrr < Cpllfllee- (10)

We give some useful results about variable anisotropic maximal functions with differ-
ent apertures. They also play important roles in obtaining the maximal function characteri-
zations of H?(®). For any given x € R", suppose that F : R” x R — (0, o) is a Lebesgue
measurable function. Let © be an ellipsoid cover. For fixed | € Z and ty < 0, define the
maximal function of F with aperture [ as

Ff “(x):=sup sup F(y,t). (11)
£k ye(x, t—1])

Proposition 4. For any | € Z and ty < 0, let F/ " be as in (11). If the ellipsoid cover © is
pointwise continuous, then Fl* fo. g (0, o0] is lower semi-continuous, i.e.,

{x € R" : F'"(x) > A} is open forany A > 0.
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Proof. If F/ "(x) > A for some x € R", then there exist t > ty and y € 0(x, t — I]) such
that F(y,t) > A. Since 6(x, t) is continuous for variable x (see Remark 1), there exists 6; > 0
such that, for any ¥’ € U(x,6) := {z € R" : |z—x| < 8}, y € 6(x/, t —1]) and hence
Fo(x)y > A O

By Proposition 4, we obtain that {x € R" : F] '(x) > A} is Lebesgue measurable.
Based on this and inspired by ([2], Lemma 7.2), the following Proposition 5 shows some
estimates for maximal function F; fo,

Proposition 5. Let ® be an ellipsoid cover, F,* o and Plf o 45 in (11) with integers | > 1" and
to < 0. Then, there exists a constant C > 0 that depends on parameters p(®) such that, for any
functions F"°, F;' and A > 0, we have

Hx eR":Fh(x) > /\}‘ < czﬂ—l’)f‘{x ER": Fih(x) > AH (12)
and
/ R 0(x)dx < 201 /R R (x) dx. (13)
Proof. Let ) := {x € R": *to( x) > A}. We claim that
{x eR":Fh(x) > A} C {x € R": Mo(xa)(x) > clzﬂ/—’)f}, (14)

where C; is a positive constant to be fixed later. Assuming that the claim holds for the
moment, from this and a weak type (1,1) of Mg (see (9)), we deduce

[{x e E ) > A} < |{x e R": Mo(x0) (x) = 2~}
< ¢ "2 xallp < 20l

and hence (12) holds true, where C := 1/C;. Furthermore, integrating (12) on (0, o0) with
respect to A yields (13). Therefore, (14) remains to be shown.

Suppose F/ (x) > A for some x € R". Then, there exist t with t > t; and y €
O(x, t —1I]) such that F(y, t) > A. Forany I,I'’ € Z and | > I’, we first prove that the
following holds true:

Yoy, t—1']) Co(x, t—(1+1))NQ. (15)
Foranyz € as~16(y, t —I']), by (4), we have z € 0(y, t — I']) and hence
0(z, t=1'])N0O(y, t=1']) # D.

Thus, by (2), we have

H zt vy My,e-ry|| < as.

From this, it follows that

_1M_

21—y My, (B") € B

and hence

as~! My, (B") C M, sy (B").
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By this and y € ag! M, ;_pj(B") 4z, we obtain y € 6(z, t —I']). From this and
F(y,t) > A with t > ty, we deduce that E, . to( ) > A, and hence, z € Q, which implies

Loy, t—1']) C Q. (16)
Moreover, by y € 0(x, t —1]), (2),and [ > I', we have

My My, ]| < as2 760707 < s,

From this, it follows that

_1M_

x, t—1] My,tfl’](Bn) c B"

and hence
a5~ My, _pj(B") C My, iy (B").
By this, (4), y € 6(x, t — I]), and Proposition 2, we obtain
a5 My, ¢y (B") +y © 2My oy (B") +x C 0(x, £ — (1+1))).

From this and (16), we deduce that (15) holds true.
Next, let us prove (14). By (15) and (1), we obtain

0(x, t = (I+ 1)) N Q| > (as) "|0(y, t = 1I'])]| (17)
> Lzl']*l“

~ (as)"
Taking by :=t — (I +1)], by (1) and (17), we have

1 a /
1 By > 4y 1250(0(x, bp) QY > —H_o'~1-1)]
5, 50 /m,bo) xa(y)ldy > e271210(x, bo) N O] > 5

which implies Mg (xq ) (x) > C12('~] and hence (14) holds true, where C; := 2~ /a; /[(as5)"
112]. O]

The following result enables us to pass from one function in S to the sum of dilates
of another function in § with nonzero mean, which is a variable anisotropic extension of
([12], p. 93, Lemma 2) of Stein and ([2], Lemma 7.3) of Bownik.

Proposition 6. Let © be an ellipsoid cover of R" and ¢ € S, with fR" x)dx # 0. Then, for
anyp € S, x € R", and t € R, there exists a sequence {qk}kzo and y* € S such that

p=3 nfxg (18)
k=0

converges in S, where

= |det( Mxt |(P Mxt) k>0,

X, t+k] X, t+k]

where | > 0 is as in Proposition 2. N
Furthermore, for any positive integers N, N and L, there exists a constant C > 0 depending
on ¢, L, N, N, and p(®) but not , such that

17 ls, 5 < C27* l1ylls (19)

N+n+1+[L/(ag])], N+n+1"
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Proof. The following simplified proof is accomplished by Dekel. By scaling ¢, we can
assume that [, ¢(x)dx = 1and |¢(¢)| > 1/2, for |¢| < 2. This assumption only impacts
the constant in (19). Let { € S such that 0 < ¢ < 1 on B" and supp () C 2B". We fix
x € R"and t € R, denote My := M, ; 4, and define the sequence of functions {{i}>,
where {( := {, and

T T
do=o( (o)) e (M) ), Kz,
where M denotes the transpose of a matrix M. We claim that
supp((r) € {& € R" : a5 127%6/20H < g < 2a712%H (20)
Indeed, by the properties of {, Proposition 2 and (2),
-1 T n -1 T n
¢ € supp(Ci) = (M IMy) (2) € 2B" v (MM 1) (2) € 2B
-1 T n -1 T n
=& €2(M"Myi) (B')VE € 2(MMyt) (B)
= ¢ € 2a; 124N
In the other direction, Proposition 2 and the properties of { yield
-1 T n -1 T n -1 T n
g€ (M Myi) (B") = (M IMy) (&) € B, (M }Mx 1) (8) € B
= Ck(§) = 0.
Applying (2), we have
T
ér ¢ (Mlzlex,t) (Bn) = |C| > Zaglzﬂ()(kfl)].

This proves (20). Additionally, by (2), for any ¢ € R",
T
' (M5 1my) é" < | MM g] < as2= T jg] — 0, k — .

From this, we deduce that, for any ¢ € R", for a large enough k, (M; 1Mk)Tfj € B". This
implies that

Y (@) =1 VieR"
k=0
Thus, formally, a Fourier transform of (18) is given by

PO, _ T %o Ck -
) by

Observe that ;¥ is well defined and in S. Indeed, iﬁf is well defined with 0/0 := 0, since by
our assumption on ¢,

¢ e supp(@) = ¢ € 2(M; M) (B)
< Gy

= a( (Mx,lth)Ta:) =

<2
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From this, it is obvious that 1?‘ € S, and therefore, nk € S. We now proceed to prove (19).
First, observe that, forany 7 € S, N, N € N,

Inls, 5 < CN, K, m)llllsg ... @1
Next, we claim that, for any K € N,
max || (gk/cﬁ((MlMx t)T.>> H < C(K, n, ). 22)
la <K S o

Indeed, on its support, any partial derivative of {x/@((M, IM;)T) has a denominator
with its absolute value bounded from below and a numerator that is a superposition
of compositions of partial derivatives of # and ¢ with contractive matrices of the type
(M, iM)T . Using (20)-(22), we obtain

k k
I, , =<l
Sy N S

N,N+n+1

<C sup max
‘§|Zu5—12—a6]206k] la|<N

<C  sup max[9(8)|(1+[gH)N T

‘élzag12—a6]2u6kl la| <N

<C sup ma§|a“¢(§>|(l 4 |€|)N+n+1+u/(a6])]
|¢|>a5 127 %/ 2%6K] la|<N

X (1+ |])~ L/ (@]
< 27l

N, N+n+14[L/(ag])]

()| (1 + leN

<2yl

N+n+1+[L/ (ag))], N+n+1"

O

3. Maximal Function Characterizations of H” (O;)

In this section, we show the maximal function characterizations of H? (®;) using the
radial, the non-tangential, and the tangential maximal functions of a single test function

peS.

Theorem 1. Let ©; be a t-continuous ellipsoid cover,0 < p < 1,and ¢ € S satisfy [p, ¢(x)dx #
0. Then, for any f € S’, the following are mutually equivalent:

f € HP(©y); (23)
M,f € LF; (24)
Mof € LF; (25)

T, fel?, N> a:p. (26)

In this case,

Il = |[MOF|,, < Cil|T0'F|, < CallMofllo < G| M3f]| , < Cull e

where the positive constants C1, Cy, C3 and Cy4 are independent of f.
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The framework to prove Theorem 1 is motivated by Fefferman and Stein [1], ([12],
Chapter III), and Bownik ([2], p. 42, Theorem 7.1).

Inspired by Fefferman and Stein ([12], p. 97), and Bownik ([2], p. 47), we now start
with maximal functions obtained from truncation with an additional extra decay term.
Namely, for ty < 0 representing the truncation level and real number L > 0 representing
the decay level, we define the radial, the non-tangential, the tangential, the grand radial, and
the grand non-tangential maximal functions, respectively, as

My () 1= sup (7 ) ()] (1 (ML 2]) (1 2)

>ty

MY f() = sup sup [(F e )] (14| My y]) @2
t>to yeb(x, t)

N (to, L) _ [(f * 9x,6) (v)] 1
T, f(x) = fg};;:]gl [1+‘M y)HN(1+2t+t0)L(1+‘M;1oyDLl

MO f(x) = sup My f(x)
(PESN,N

and

(to, L) . (to, L)
MNON f(x):= sup My" ™ f(x).
<p€S

The following Lemma 1 guarantees control of the tangential by the non-tangential
maximal function in L? (R") independent of ¢ty and L.

Lemma 1. Let Oy be a t-continuous ellipsoid cover. Suppose p > 0, N > 1/(ag p), and ¢ € S.
Then, there exists a positive constant C such that, forany tg <0, L > Oand f € S,

7201, < el

Proof. Consider the function F : R x R — [0, c0) given by

Fly )= 1(F > o))l (1] ]) " a2ty

Let F " be asin (11) with | = 0. When y € 6(x, t), we have M; ! (x —y) € B" and hence
IM; ! (x —y)| < 1.Tf t > to, then

Fly D1+ M )| 7 < E).

Wheny € 6(x, t —kJ)\O(x, t — (k —1)]) for some k > 1, we have

Mt (x —y) & My My 1) (B"). (27)
By (2), we obtain
2 <
and hence,
M:(kfl)] Mt (Bn) g a52*ﬂ6(k*1)]B7’l,

which implies
(2% /a5)B" C My My i1y (B").
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From this and (27), it follows that |[M; ! (x — y)| > 2%(*-1J /a5, Thus, for any t > t,
we have N
-r

F(y, t) [1 + ‘M;l (x — y)H < QSPNZ*PNﬂﬁ(kfl)IF; to (x).

By taking the supremum over all y € R" and t > 3, we know that

(130 ()] < asPN Y 2Nl DIE o),
k=0

Therefore, using this and Proposition 5, we obtain

HT (to, L fH )_ 5pN Zz pNag(k—1)] F*to( Ydx

LP(R" R~

< CasPN 22 pNag(k=DJok] [ Fxfo(x)dx

k:() Rl‘l

— || Mot fH

LP( R"
where C’ := CasPN2PNe] y-2 0(1=pNae)k] — Cq5PN2J /(1 — 2(1-PNas)]y [

The following Lemma 2 gives the pointwise majorization of the grand radial maximal
function by the tangential one, which is a variable anisotropic extension of ([2], Lemma 7.5).

Lemma 2. Let © be an ellipsoid cover of R", ¢ € S, [ ¢(x) dx # 0, and f € §'. For any given

positive integers N and L, there exist integers 0 < U < u, U > Np, and u> Np that are large
enough and constant C > 0 such that, for any ty < 0,

0 (to, L N (to, L
Mufgl 'f(x) < Ty 0P f(x), vx e R
Proof. The simplified proof of this final version is from Dekel (Lemma 6.20). By Proposition 6,
forany i € S, x € R", t € R, there exists a sequence {7°}¢> ., #¥ € S that satisfies

p=3 71" *¢"
k=0
converging in S, where

|det( Mxt |q0 Mxt ) k20

X, t+k] X, t+k]

Furthermore, for any positive integers U, U and V,

Il 5 < €27 lIglls (28)

Sutn+1+ [V/(ag))], Utn+1

where the constant depends on ¢, U, U, V, p(®) but not ¢. Denoting My := My g/,
fort > ty, implies
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<CTy ““'L)f(x)lio fo (1 o)

x (14| M} (e =) DL (1421104 L’ (7). W ’dy-

Therefore,

500 <0 s £ [ (14 i) @

t>ty k=0
(1 + ‘M;jo (x —v) D g (1 + 2f+f0+k1) t

L
) (1 2ttt

= ‘ () W) ‘dy

X, to

(1+

Let us now estimate I; x for t > tg, k > 0. We begin with the simple observations that

1 +2t+t0+k] 2k](27k] +2t+t0)

kJ
1 -+ 2t+to - 1+ 2t+to <C2

and
T |x+yl <1+ |x[+ [yl < A+ [x)(A+y]), xyeR™ (30)
Therefore, we may obtain
i (Mzty) |4
n xtY)|9Y

\yI)L’nk(y)]dy,

s 29 [ (1 Mgt y]) (1 Mgy
) (14

< oML /R (1+ || M1, Myt

which, together with

M My ]| < 2329 and |M;} My ]| < as27%%) < a5 (by t > tgand (2)),

x, tg
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further implies that

L < C2IEEN) [ (1 )N () dy (1)

< kI (L+asN) an

0,N+71+L

We now apply (28) with V := [J(L+a4N)]| 4+ 1, which gives

L < C27|ylls

n+1+[V/(ag))], N+L+2n+2"

(32)

This yields for any ¢ € S;; g, U := max(Ny, n+1+ [V/(a])1), U := max(N,, N+ L+
2n +2)

MU f(x) = sup My“H f(x) <1y P f(x).
! l/)ESuu

This finishes the proof of Lemma 2. [

The following Lemma 3 shows that the radial and the grand non-tangential maxi-
mal functions are pointwise equivalent, which is a variable anisotropic extension of ([2],
Proposition 3.10).

Lemma 3 ([19], Theorem 3.4). For any N, N € Nwith N < N, there exists a positive constant
C := C(N) such that, forany f € S’,

MY, o f(x) < My gf(x) < CMQ o f(x), x € R".
The following Lemma 4 is a variable anisotropic extension of ([2], p. 46, Lemma 7.6).

Lemma 4. Let ©; be a t-continuous ellipsoid cover, ¢ € S, and f € S'. Then, for every M > 0
and ty < 0, there exist L > 0 and N’ > 0 large enough such that

Mguto,L)f(x) < C27t0(2a4N/+2L+u4L)(1 + |X|)7M, xe Rn, (33)
where C is a positive constant dependent on p(®), N, f, and ¢.

Proof. For any ¢ € S, there exist an integer N > 0 and positive constant C := C(¢) such
that, forany N’ > Nand y € R",

F o) < Cllglls, w1+ DN (34)
Therefore, for any tp < 0,t > ty and x € R", by (34), we have

—L

(@)l (14 Myl y]) (14 240)7 (35)

<C2 L(t+to) ||(Pt||5NN/(1+|y|) (1—|—‘M;01y’)—L
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Let us first estimate || ¢¢||s By the chain rule and (1), we have

(o))

") (m712)|

N,N’"

lgtllsy, v = IdetM; | sup sup (1+ |z))Y
ZER" |a|<N

< C2' sup sup (1+ |z|)N/’
z€R" |a|<N

M|
< C2' sup sup (1+ |Mtz|)N’HM;1H‘“'|a“(p(z)|. (36)
z€R™ |a|<N

Now, let us further estimate (36) in the following two cases.
Casel:t > 0. By (2), we have

] = o] < o ] < gz = e
and

|Miz| = ‘MOMalMtZ‘ < ||M0||‘M51Mfz‘ < HMOHHMalMt”'Z|

< ||Mpllas2"%!|z| < Cz|.

Inserting the above two estimates into (36) with t > 0, we know that

/ 11l
pills,, o < C2' sup sup (1+ M)V | Mt o (2)| (37)
’ z€R" |a| <N

< 212%™ g|ls

N,N’*
Case2: tg <t < 0. By (2), we have
] = o ] < ] o) < o<
and

[Miz| = [MoMg " Myz

< || Moll| My Miz| < (| Mol || Mg My |2
< [[Mollay 127! |z] = C27M0 2.
Inserting the above two estimates into (36) with ¢ty < t < 0, we know that

/ el
I ptlls,, o < €2 sup sup (1+[Mez))™||M |7 19%0(2) (39)
’ z€R" |a|<N

< 270N ||g] 5

N,N’"°

Forany M > 0,let L := M+ N'. For any tp < 0, t > f( and taking some integer
N’ > 0 large enough, by (37) and (38), we obtain

2L g, o < C2TRENF g6 (39)
Inserting (39) into (35), we further obtain
_ -L -L
(Frod)] (14 |Mily])  (1+270) (40)

! 4 - _L
< coheN 2 gl (1 )Y (14 [Mty])
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For any y € 6(x, t), there exists z € B" such that y = x + M;z. By (30), we have
T+ [yl =1+ |x+ Miz| < (1+ |x|) (1 + [Miz]). (41)
If t > 0, by (2), then
[Miz] = |MoMg " Miz| < || Moll| My ' Miz| < ||Moll| Mg M |21
< [ Myllas2~"|z| < C.
Ifto <t <0,by (2), then
[Miz| = [MoMg " Miz| < || Moll| Mg Miz| < [ Moll|| M My |21
< || Mo||ag t27%4!|z| = C27“4to,
Therefore, for any t > t(, by using the above two estimates, we have
|Myz| < C2-%bo,
From this and (41), it follows that
(14 |y]) < C27%0(1 + |x|). (42)

Moreover, for any ty < 0, by (2), we have

1+ [x| < 1+ | Moll | Mg M,

Mtglx’ < 2t (1 T ’Mglx’).

Furthermore, for any y € 6(x, t), we have x € M;(B") + y. Thus, there exists z € B" such
that x = Mz + y. Hence, for any ¢ > ty, by (30) and (2), we obtain

(1 M 1x]) = (14 M+ Miz) ) < (1 |ty ]) (1 || 2
< (1+ ’M[OlyD (1+as27 =)z} < c(1+ ‘M;)WD.
Combining with the above two inequalities, we have
(1+ My ly[) > C20(1 + [x|). 43)

Thus, for any t > tgand y € 6(x,t), inserting (42) and (43) into (40) with L = M+ N,
we obtain

_L B ,
|(f* (Pt)(y)| (1 + ’Mtgly’> (1 +2t+t0) L < C27t0(2u4N +2L+a4L)(1 + ‘x‘)fMl

which implies that (33) holds true and hence completes the proof of Lemma 4. [

Note that the above argument gives the same estimate for the truncated grand maximal
function M?\](tl%’ b f(x). As a consequence of Lemma 4, we obtain that, for any choice of

ty < 0and any f € S’, we can find an appropriate L > 0 so that the maximal function,
say Mg,,to'L) f, is bounded and belongs to LP(R"). This becomes crucial in the proof of
Theorem 1, where we work with truncated maximal functions, The complexity of the
preceding argument stems from the fact that, a priori, we do not know whether Mg felLp
implies M, f € LF. Instead, we must work with variants of maximal functions for which

this is satisfied.
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Proof of Theorem 1. Suppose that Oy is a t-continuous ellipsoid cover and ¢ € S satis-
fying [eu ¢(x)dx # 0. From Remark 2 and the definition of the grand radial maximal
function, it follows that

(26) = (24) = (25)

and
(23) = (25).

By Lemma 1 applied for L = 0, we have
HT(I,?](tO’O)fHLp <C HMgO’O)fHLP forany f € S8’ and ty < 0.

As ty — —oo, by the monotone convergence theorem, we obtain

|71], = CIMoS .
which shows (24) = (26).
Combining Lemma 2 applied for N > 1/(a6 p) and L = 0 and Lemma 1 applied for

L = 0, we conclude that there exist integers 0 < U < U, U > Np, u> Np that are large
enough and a positive constant C such that

H e fH CHMEJO'O)fHLP forany f € S’ and to <O0.

As tg — —oo, by the monotone convergence theorem, we obtain

|5, af]l,, < ClIMofll,se

From this and Proposition 1, we deduce that

Ifllewe) = HM?\’P'N f v = CHM‘ZLngM = CHM(”f”L’”

P

and hence (24) = (23). (25) = (24) remain to be shown.

Suppose now Mg, f € LP. By Lemma 4, we can find a L > 0 large enough such that
(33) holds true, which implies M(Pt0 f € L? for all ty < 0. Combining Lemmas 1 and 2,
we obtain that there exist 0 < U < U, U > Np, and u> I\Nl,[J large enough such that

, (44)

iz, <

where constant C; is independent of ty < 0. For a given fy < 0, let

QO = {x eR": M(L)I%’L)f(x) < CzM((PtO’L)f(x)}, (45)

where C, := 21/PC;. We claim that

/ MY ] <2 [ MG ()], (46)

Q)

Indeed, this follows from (44), M((pto’ L) f € LPand

/C [Mgo’”f(x)rdx <c,? [M(L]IEtL%’L)f(x)rde (C1/Ca)P /Rn [Mgoto,L)f(x)rdx,

c
Qt()

where (C1/C)? =1/2.
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We also claim that, for 0 < g < p, there exists a constant C3 > 0 such that, for any
to <0,

MY £(x) < s [ Mo (MY Vf) ()] @7)

where Mg is as in Definition 4. Indeed, let t > ty, y € 6(x, ) and
F(y, t) == [(f* @) ()| (1 + |M y[)~H (1 +2"F10)~E,

Suppose that x € () and let F/ "(x) be as in (11) with [ = 0. Then, there exist #' € R with
t' > tpand y' € 0(x, t') such that

F(y, #) > Fy'(x)/2 = MUY f(x) /2. (48)

Consider x" € y' + My _;;(B") for some integer [ > 1 to be specified later. Let ®(z) :=
go(z + M (2~ y’)) — ¢(z). Obviously, we have

frop(d) = frouy) = fxPp(y). (49)

Let us first estimate ||®|s,, - From x" € y' + My ;;(B"), we deduce that

MY (x' =) € M "My (B").

By this and the mean value theorem, we obtain

I@ls,, < swp leC+h)—e0)ls,, (50)
' heM, "My, (B") ’

= swp sup sup (14 )Y@ )z + 1) = 9(2)]
heMy' My, (B7) 2ER" [a|<U

<C sup sup sup (1+ \z|)ﬁ|(a“<p)(z +h)|
heMy "My, (B) ZER" [a[ <U+1

X sup |h|.
heM, "My, (B")
From (2), we deduce

M, My || < as27%!,

which implies
M, My 15 (B") C as2 %'TB".

By this and & € M;lMt/HI(]B”), we have || < a527%!/. From this and (30), we deduce
that

1+)z| <A+ |z+h)1+|h]) <C(1+|z+h|), z€R"
Applying this and |1| < as27%!/ in (50), we obtain

[®lls, ; =C sup sup sup (1+|z+h)Y[(8%)(z+ )| (51)
' heMy My, (Br) 2€R” |a| <U+1
x  sup  |B[ < Cllgls,,, 452 < C27Y,
heM; "My (B") '

where a positive constant C4 does not depend on L.
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Moreover, notice that, for any x’ € My ;;(B") + v/, there exists z € B" such that
x' = My,z+y'. By (30), (2), and t' > to, we have

) <1+‘M y

< (H—‘Mto Y

(1 + ‘M[le’

1+ || M, Mt’-H] 4 (52)
)(1+] )
) (1 + a52 % _t0+l])|z\) < 2as (1 + ‘Mt_oly’ )

Thus, for any x € (), from (49), (52), (48), (51), Lemma 3, and (45), it follows that

LabF(x', ¢') = 2Rk [|(f = 9u) (<) (1 + M ') 7H (1 427 0) 7L
—L , —L
> [If = g0y = If + @u ()] (14 M1y |) (1+270)
> F(y, t) = M f () ls,,

> M((Pto,L)f(x)/Z — C427a61]CM(L)I€tgL)f(x)

> MY f(x) /2 — CuCrC2 % MUV £ (x).

We choose an integer | > 1 large enough such that C;C,C27!/ < 1/4. Therefore, for any
x € Oy and x' € My ;(B") +y', we further have

2LalF(x, t') > MUY f(x) /2 — CuCC2 MU Y £ (x) > MU P F(x) /4. (53)
Moreover, by i’ € 6(x, t') and Proposition 2, we have

My (B") +y' € My (B") + My (B") + x (54)
C2My(B") +x C 0(x, t' — ).

Thus, for any x € Oy, and t > tg, by (53) and (54), we obtain

Lq
(to, L) q 4‘12an5 / ’
M ) < — F(z,t)]1dz
M) < s MMW)H )
l+1
< C472My éq‘g |/ )f(z)]qdz
x, t—

§CkM@(Ow$“”fY)@L

which shows the above claim (47).
Consequently, by (46), (47), and Proposition 3 with p/q > 1, we have

/"pﬂ dx<2/ CRCIE (55)
< |, [l (1))

0

<G [ [My P ()] e,

where the constant Cs depends on p/q > 1, L > 0 and p(®) but is independent of ¢y, < 0.
This inequality is crucial as it gives a bound of the non-tangential by the radial maximal
function in L. The rest of the proof is immediate.
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Forany x € R",y € R" and t < 0, by (2), we obtain
M| = M Mona5 | < |t

S a52”6t

Mal"\y| — 0 as t — —oo.

Hence, we obtain that M((Pto’ b f(x) converges pointwise and monotonically to M, f(x)
for all x € R" as tp — —oo, which together with (55) and the monotone convergence
theorem, further implies that M,f € L?. Therefore, we can now choose L = 0, and
again, by (55) and the monotone convergence theorem, we have ||Myf||h < Cs M9 f 15,
where Cs corresponds to L = 0 and is independent of f € S’. This finishes the proof of
Theorem 1. O
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