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Abstract: In 2011, Dekel et al. developed highly geometric Hardy spaces Hp(Θ), for the full range
0 < p ≤ 1, which were constructed by continuous multi-level ellipsoid covers Θ of Rn with high
anisotropy in the sense that the ellipsoids can rapidly change shape from point to point and from
level to level. In this article, when the ellipsoids in Θ rapidly change shape from level to level,
the authors further obtain some real-variable characterizations of Hp(Θ) in terms of the radial, the
non-tangential, and the tangential maximal functions, which generalize the known results on the
anisotropic Hardy spaces of Bownik.
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1. Introduction

As a generalization of the classical isotropic Hardy spaces Hp(Rn) [1], anisotropic
Hardy spaces Hp

A(R
n) were introduced and investigated by Bownik [2] in 2003. These

spaces were defined on Rn, associated with a fixed expansive matrix, which acts on
an ellipsoid instead of Euclidean balls. In [3–8], many authors also studied Bownik’s
anisotropic Hardy spaces. In 2011, Dekel et al. [9] further generalized Bownik’s spaces
by constructing Hardy spaces with pointwise variable anisotropy Hp(Θ), 0 < p ≤ 1,
associated with an ellipsoid cover Θ. The anisotropy in Bownik’s Hardy spaces is the same
one at each point in Rn, while the anisotropy in Hp(Θ) can change rapidly from point to
point and from level to level. Moreover, the ellipsoid cover Θ is a very general setting that
includes the classical isotropic setting, non-isotropic setting of Calderón and Torchinsky
[10], and the anisotropic setting of Bownik [2] as special cases; see more details in ([2],
pp. 2–3) and ([11], p. 157).

On the other hand, maximal function characterizations are very fundamental charac-
terizations of Hardy spaces, and they are crucial to conveniently apply the real-variable
theory of Hardy spaces Hp(Rn) with p ∈ (0, 1]. Maximal function characterizations were
first shown for the classical isotropic Hardy spaces Hp(Rn) by Fefferman and Stein in their
fundamental work [1], ([12], Chapter III). Analogous results were shown by Calderón and
Torchinsky [10,13] for parabolic Hp spaces and Uchiyama [14] for Hp on a homogeneous-
type space. In 2003, Bownik ([2], p. 42) obtained the maximal function characterizations
of the anisotropic Hardy space Hp

A(R
n). This was further extended to anisotropic Hardy

spaces of the Musielak–Orlicz type in [15], to anisotropic Hardy–Lorentz spaces in [16],
to variable anisotropic Hardy spaces in [17], and to anisotropic mixed-norm Hardy spaces
in [18].

Motivated by the abovementioned facts, a natural question arises: Do the maximal
function characterizations still hold for Hardy spaces Hp(Θ) with variable anisotropy?
In this article, we answer this question affirmatively in the sense that the ellipsoids in Θ
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can change shape rapidly from level to level, which is a variable anisotropic extension of
Bownik’s [2].

This article is organized as follows.
In Section 2, we recall some notation and definitions concerning anisotropic continuous

ellipsoid cover Θ, several maximal functions, and anisotropic Hardy spaces Hp(Θ) defined
via the grand radial maximal function. We also give some propositions about Hp(Θ),
several classes of variable anisotropic maximal functions, and Schwartz functions since
they provide tools for further work. In Section 3, we first state the main result: if the
ellipsoids in Θ can rapidly change shape from level to level (see Definition 1), denoted as
Θt, we may obtain some real-variable characterizations of Hp(Θt) in terms of the radial, the
non-tangential, and the tangential maximal functions (see Theorem 1). Then, we present
several lemmas that are isotropic extensions in the setting of variable anisotropy, and finally,
we show the proof for the main result.

In the process of proving the main result, we used the methods from Stein [1] and
Bownik [2]. However, it is worth pointing out that these ellipsoids of Bownik were images
of the unit ball by powers of a fixed expansive matrix, whereas in our case, the ellipsoids of
Dekel are images of the unit ball by powers of a group of matrices satisfying some “shape
condition”. This makes the proof complicated and needs many subtle estimates such as
Propositions 5 and 6, and Lemma 1.

However, this article left an open question: if the maximal function characterizations
of Hp(Θ) still hold true in the sense that the ellipsoids of Θ change rapidly from level to
level and from point to point?

Finally, we note some conventions on notation. Let N0 := {0, 1, 2, . . .} and dte be the
smallest integer no less than t. For any α := (α1, . . . , αn) ∈ Nn

0 , |α| := α1 + · · ·+ αn and
∂α := ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn . Throughout the whole paper, we denote by C a positive constant

that is independent on the main parameters but may vary from line to line. For any sets
E, F ⊂ Rn, we use E{ to denote the set Rn \ E. If there are no special instructions, any space
X (Rn) is denoted simply by X . Denote by S the space of all Schwartz functions and S ′
the space of all tempered distributions.

2. Preliminary and Some Basic Propositions

In this section, we first recall the notion of continuous ellipsoid covers Θ and we
introduce the pointwise continuity for Θ. An ellipsoid ξ in Rn is an image of the Euclidean
unit ball Bn := {x ∈ Rn : |x| < 1} under an affine transform, i.e.,

ξ := Mξ(Bn) + cξ ,

where Mξ is a non-singular matrix and cξ ∈ Rn is the center.
Let us begin with the definition of continuous ellipsoid covers, which was introduced

in ([11], Definition 2.4).

Definition 1. We say that
Θ := {θ(x, t) : x ∈ Rn, t ∈ R}

is a continuous ellipsoid cover of Rn or, in short, an ellipsoid cover if there exist positive constants
p(Θ) := {a1, . . . , a6} such that

(i) For every x ∈ Rn and t ∈ R, there exists an ellipsoid θ(x, t) := Mx, t(Bn) + x satisfying

a12−t ≤ |θ(x, t)| ≤ a22−t. (1)

(ii) Intersecting ellipsoids from Θ satisfy a “shape condition”, i.e., for any x, y ∈ Rn, t ∈ R and
s ≥ 0, if θ(x, t) ∩ θ(y, t + s) 6= ∅, then

a32−a4s ≤ 1
‖(My, t+s)−1Mx, t‖

≤ ‖(Mx, t)
−1My, t+s‖ ≤ a52−a6s. (2)
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where ‖ · ‖ is the matrix norm given by ‖M‖ := max|x|=1 |Mx| for an n× n real matrix M.
Particularly, for any θ(x, t) ∈ Θ, when the related matrix function Mx,t of x ∈ Rn and t ∈ R

is reduced to the matrix function Mt of t ∈ R, we call a cover Θ a t-continuous ellipsoid cover,
denoted as Θt.

The word continuous refers to the fact that ellipsoids θx, t are defined for all values of x ∈ Rn

and t ∈ R, and we say that a continuous ellipsoid cover Θ is pointwise continuous if, for every
t ∈ R, the matrix valued function x 7→ Mx,t is continuous:

‖Mx′ ,t −Mx,t‖ → 0 as x′ → x. (3)

Remark 1. By ([19], Theorem 2.2), we know that the pointwise continuous assumption is not
necessary since it is always possible to construct an equivalent ellipsoid cover

Ξ := {ζx, t : x ∈ Rn, t ∈ R}

such that Ξ is pointwise continuous and Ξ is equivalent to Θ. Here, we say that two ellipsoid covers
Θ and Ξ are equivalent if there exists a constant C > 0 such that, for any x ∈ Rn and t ∈ R,
we have

1
C

ζx, t ⊂ θx, t ⊂ Cζx, t.

Taking My, t+s = Mx, t in (2), we have

a3 ≤ 1 and a5 ≥ 1. (4)

For more properties about ellipsoid covers, see [9,11].
For any N, Ñ ∈ N0 with N ≤ Ñ, let

SN, Ñ :=

{
ψ ∈ S : ‖ψ‖SN, Ñ

:= max
α∈Nn

0 , |α|≤N
sup
y∈Rn

(1 + |y|)Ñ |∂αψ(y)| ≤ 1

}
.

For any ϕ ∈ S , x ∈ Rn, t ∈ R and θ(x, t) = Mx, t(Bn) + x, denote

ϕx, t(y) :=
∣∣∣det(M−1

x,t )
∣∣∣ϕ(M−1

x, ty), y ∈ Rn.

Particularly, when the matrix Mx, t is reduced to Mt, ϕx, t(y) is simply denoted as
ϕt(y).

Now, we give the notions of anisotropic variants of the non-tangential, the grand
non-tangential, the radial, the grand radial, and the tangential maximal functions.

Definition 2. Let f ∈ S ′, ϕ ∈ S and N, Ñ ∈ N0 with N ≤ Ñ. We define the non-tangential,
the grand non-tangential, the radial, the rand radial, and the tangential maximal functions, respec-
tively as

Mϕ f (x) := sup
t∈R

sup
y∈θ(x, t)

| f ∗ ϕx, t(y)|, x ∈ Rn,

MN, Ñ f (x) := sup
ϕ∈SN, Ñ

Mϕ f (x), x ∈ Rn,

M0
ϕ f (x) := sup

t∈R
| f ∗ ϕx, t(x)|, x ∈ Rn,

M0
N, Ñ

f (x) := sup
ϕ∈SN, Ñ

M◦ϕ f (x), x ∈ Rn,

TN
ϕ f (x) := sup

t∈R
sup
y∈Rn

| f ∗ ϕx, t(y)|
(

1 +
∣∣∣M−1

x, t(x− y)
∣∣∣)−N

, x ∈ Rn.
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Here and hereafter, the symbol "∗" always represents a convolution.

Remark 2. We immediately have the following pointwise estimate among the radial, the non-
tangential, and the tangential maximal functions:

M0
ϕ f (x) ≤ Mϕ f (x) ≤ 2N TN

ϕ f (x), x ∈ Rn.

Next, we recall the definition of Hardy spaces with pointwise variable anisotropy ([9],
Definition 3.6) via the grand radial maximal function.

Let Θ be an ellipsoid cover of Rn with parameters p(Θ) = {a1, · · · , a6} and 0 < p ≤ 1.
We define Np(Θ) as the minimal integer satisfying

Np := Np(Θ) >
max(1, a4)n + 1

a6 p
, (5)

and then Ñp(Θ) as the minimal integer satisfying

Ñp := Ñp(Θ) >
a4Np(Θ) + 1

a6
. (6)

Definition 3. Let Θ be a continuous ellipsoid cover and 0 < p ≤ 1. Define M0 := M0
Np ,Ñp

, and

the anisotropic Hardy space is defined as

Hp
Np , Ñp

(Θ) := { f ∈ S ′ : M0 f ∈ Lp}

with the (quasi-)norm ‖ f ‖Hp(Θ) := ‖M0 f ‖Lp .

Remark 3. By Remark 1, we know that, for every continuous ellipsoid cover Θ, there exists
an equivalent pointwise continuous ellipsoid cover Ξ. This implies that their corresponding
(quasi-)norms ρΘ(·, ·) and ρΞ(·, ·) are also equivalent, and hence, the corresponding Hardy spaces
Hp(Θ) = Hp(Ξ)(0 < p ≤ 1) with equivalent (quasi-)norms (see ([9], Theorem 5.8)). Therefore,
here and hereafter, we always consider Θ of Hp(Θ) to be a pointwise continuous ellipsoid cover.

Proposition 1. Let Θ be an ellipsoid cover, 0 < p ≤ 1 ≤ q ≤ ∞, p < q and l ≥ Np with Np as
in (5). If N ≥ Np and Ñ ≥ (a4N + 1)/a6, then

Hp
Np , Ñp

(Θ) = Hp
q, l(Θ) = Hp

N, Ñ
(Θ)

with equivalent (quasi-)norms, where Hp
q, l(Θ) denotes the atomic Hardy space with pointwise

variable anisotropy; see ([9], Definition 4.2).

Proof. This proposition is a corollary of ([9], Theorems 4.4 and 4.19). Indeed, by Definition 3,
we obtain that, for any N ≥ Np and Ñ ≥ (a4N + 1)/a6,

Hp
Np , Ñp

(Θ) ⊆ Hp
N, Ñ

(Θ).

Combining this and Hp
q, l(Θ) ⊆ Hp

Np , Ñp
(Θ) (see ([9], Theorem 4.4)), we obtain

Hp
q, l(Θ) ⊆ Hp

N, Ñ
(Θ). (7)

By checking the definition of anisotropic (p, q, l)-atom (see ([9], Definition 4.1)), we know
that every (p, ∞, l)-atom is also a (p, q, l)-atom and hence

Hp
∞, l(Θ) ⊆ Hp

q, l(Θ).



Mathematics 2021, 9, 3246 5 of 19

Let l′ ≥ max(l, N). By a similar argument to the proof of ([9], Theorem 4.19), we obtain

Hp
N, Ñ

(Θ) ⊆ Hp
∞, l′(Θ),

where N ≥ Np and Ñ ≥ (a4N + 1)/a6. Thus,

Hp
N, Ñ

(Θ) ⊆ Hp
∞, l′(Θ) ⊆ Hp

∞, l(Θ) ⊆ Hp
q, l(Θ). (8)

Combining (7) and (8), we conclude that

Hp
Np , Ñp

(Θ) = Hp
q, l(Θ) = Hp

N, Ñ
(Θ)

with equivalent (quasi-)norms.

Remark 4. From Proposition 1, we deduce that, for any integers N ≥ Np and Ñ ≥ (a4N + 1)/a6,
the definition of Hp

N, Ñ
(Θ) is independent of N and Ñ. Therefore, from now on, we denote Hp

N, Ñ
(Θ)

with N ≥ Np and Ñ ≥ (a4N + 1)/a6 simply by Hp(Θ).

Proposition 2 ([9], Lemma 2.3). Let Θ be an ellipsoid cover. Then, there exists a constant
J := J(p(Θ)) ≥ 1 such that, for any x ∈ Rn and t ∈ R,

2Mx, t(B) + x ⊂ θ(x, t− J).

Here and hereafter, let J always be as in Proposition 2.

Definition 4 ([9], Definition 3.1). Let Θ be an ellipsoid cover. For any locally integrable function
f , the maximal function of the Hardy–Littlewood type of f is defined by

MΘ f (x) := sup
t∈R

1
|θ(x, t)|

∫
θ(x,t)

| f (y)| dy, x ∈ Rn.

Proposition 3 ([9], Theorem 3.3). Let Θ be an ellipsoid cover. Then,

(i) There exists a constant C depending only on p(Θ) and n such that for all f ∈ L1 and α > 0,

|{x : MΘ f (x) > α}| ≤ Cα−1‖ f ‖L1 ; (9)

(ii) For 1 < p < ∞, there exists a constant Cp depending only on C and p such that, for all
f ∈ Lp,

‖MΘ f ‖Lp ≤ Cp‖ f ‖Lp . (10)

We give some useful results about variable anisotropic maximal functions with differ-
ent apertures. They also play important roles in obtaining the maximal function characteri-
zations of Hp(Θ). For any given x ∈ Rn, suppose that F : Rn ×R→ (0, ∞) is a Lebesgue
measurable function. Let Θ be an ellipsoid cover. For fixed l ∈ Z and t0 < 0, define the
maximal function of F with aperture l as

F∗ t0
l (x) := sup

t≥t0

sup
y∈θ(x, t−l J)

F(y, t). (11)

Proposition 4. For any l ∈ Z and t0 < 0, let F∗ t0
l be as in (11). If the ellipsoid cover Θ is

pointwise continuous, then F∗ t0
l : Rn → (0, ∞] is lower semi-continuous, i.e.,

{x ∈ Rn : F∗ t0
l (x) > λ} is open for any λ > 0.
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Proof. If F∗ t0
l (x) > λ for some x ∈ Rn, then there exist t ≥ t0 and y ∈ θ(x, t− l J) such

that F(y, t) > λ. Since θ(x, t) is continuous for variable x (see Remark 1), there exists δ1 > 0
such that, for any x′ ∈ U(x, δ) := {z ∈ Rn : |z − x| < δ}, y ∈ θ(x′, t − l J) and hence
F∗ t0

l (x′) > λ.

By Proposition 4, we obtain that {x ∈ Rn : F∗ t0
l (x) > λ} is Lebesgue measurable.

Based on this and inspired by ([2], Lemma 7.2), the following Proposition 5 shows some
estimates for maximal function F∗ t0

l .

Proposition 5. Let Θ be an ellipsoid cover, F∗ t0
l and F∗ t0

l′ as in (11) with integers l > l′ and
t0 < 0. Then, there exists a constant C > 0 that depends on parameters p(Θ) such that, for any
functions F∗ t0

l , F∗ t0
l′ and λ > 0, we have∣∣∣{x ∈ Rn : F∗ t0

l (x) > λ
}∣∣∣ ≤ C2(l−l′)J

∣∣∣{x ∈ Rn : F∗ t0
l′ (x) > λ

}∣∣∣ (12)

and ∫
Rn

F∗ t0
l (x) dx ≤ C2(l−l′)J

∫
Rn

F∗ t0
l′ (x) dx. (13)

Proof. Let Ω := {x ∈ Rn : F∗ t0
l′ (x) > λ}. We claim that{

x ∈ Rn : F∗ t0
l (x) > λ

}
⊂
{

x ∈ Rn : MΘ(χΩ)(x) ≥ C12(l
′−l)J

}
, (14)

where C1 is a positive constant to be fixed later. Assuming that the claim holds for the
moment, from this and a weak type (1,1) of MΘ (see (9)), we deduce∣∣∣{x ∈ Rn : F∗ t0

l (x) > λ
}∣∣∣ ≤ ∣∣∣{x ∈ Rn : MΘ(χΩ)(x) ≥ C12(l

′−l)J
}∣∣∣

≤ C−1
1 2(l−l′)J‖χΩ‖L1 ≤ C2(l−l′)J |Ω|

and hence (12) holds true, where C := 1/C1. Furthermore, integrating (12) on (0, ∞) with
respect to λ yields (13). Therefore, (14) remains to be shown.

Suppose F∗ t0
l (x) > λ for some x ∈ Rn. Then, there exist t with t ≥ t0 and y ∈

θ(x, t − l J) such that F(y, t) > λ. For any l, l′ ∈ Z and l ≥ l′, we first prove that the
following holds true:

a5
−1 θ(y, t− l′ J) ⊆ θ(x, t− (l + 1)J) ∩Ω. (15)

For any z ∈ a5
−1 θ(y, t− l′ J), by (4), we have z ∈ θ(y, t− l′ J) and hence

θ(z, t− l′ J) ∩ θ(y, t− l′ J) 6= ∅.

Thus, by (2), we have ∥∥∥M−1
z, t−l′ J My, t−l′ J

∥∥∥ ≤ a5.

From this, it follows that

a5
−1M−1

z, t−l′ J My, t−l′ J(Bn) ⊆ Bn

and hence

a5
−1 My, t−l′ J(Bn) ⊆ Mz, t−l′ J(Bn).
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By this and y ∈ a−1
5 My, t−l′ J(Bn) + z, we obtain y ∈ θ(z, t − l′ J). From this and

F(y, t) > λ with t ≥ t0, we deduce that F∗ t0
l′ (z) > λ, and hence, z ∈ Ω, which implies

a−1
5 θ(y, t− l′ J) ⊆ Ω. (16)

Moreover, by y ∈ θ(x, t− l J), (2), and l ≥ l′, we have∥∥∥M−1
x, t−l J My, t−l′ J

∥∥∥ ≤ a52−a6(l−l′)J ≤ a5.

From this, it follows that

a5
−1M−1

x, t−l J My, t−l′ J(Bn) ⊆ Bn

and hence

a5
−1 My, t−l′ J(Bn) ⊆ Mx, t−l J(Bn).

By this, (4), y ∈ θ(x, t− l J), and Proposition 2, we obtain

a5
−1My, t−l′ J(Bn) + y ⊆ 2Mx, t−l J(Bn) + x ⊆ θ(x, t− (l + 1)J).

From this and (16), we deduce that (15) holds true.
Next, let us prove (14). By (15) and (1), we obtain

|θ(x, t− (l + 1)J) ∩Ω| ≥ (a5)
−n|θ(y, t− l′ J)| (17)

≥ a1

(a5)n 2l′ J−t.

Taking b0 := t− (l + 1)J, by (1) and (17), we have

1
|θ(x, b0)|

∫
θ(x, b0)

|χΩ(y)|dy ≥ a2
−12b0 |θ(x, b0) ∩Ω| ≥ a1

(a5)na2
2(l
′−l−1)J ,

which implies MΘ(χΩ)(x) ≥ C12(l
′−l)J and hence (14) holds true, where C1 := 2−J a1/[(a5)

n

a2].

The following result enables us to pass from one function in S to the sum of dilates
of another function in S with nonzero mean, which is a variable anisotropic extension of
([12], p. 93, Lemma 2) of Stein and ([2], Lemma 7.3) of Bownik.

Proposition 6. Let Θ be an ellipsoid cover of Rn and ϕ ∈ S , with
∫
Rn ϕ(x) dx 6= 0. Then, for

any ψ ∈ S , x ∈ Rn, and t ∈ R, there exists a sequence {ηk}∞
k=0 and ηk ∈ S , such that

ψ =
∞

∑
k=0

ηk ∗ ϕk (18)

converges in S , where

ϕk := |det(M−1
x, t+kJ Mx,t)|ϕ(M−1

x, t+kJ Mx,t·), k > 0,

where J > 0 is as in Proposition 2.
Furthermore, for any positive integers N, Ñ and L, there exists a constant C > 0 depending

on ϕ, L, N, Ñ, and p(Θ) but not ψ, such that

‖ηk‖SN, Ñ
≤ C2−kL‖ψ‖SN+n+1+dL/(a6 J)e, Ñ+n+1

. (19)
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Proof. The following simplified proof is accomplished by Dekel. By scaling ϕ, we can
assume that

∫
Rn ϕ(x)dx = 1 and |ϕ̂(ξ)| ≥ 1/2, for |ξ| ≤ 2. This assumption only impacts

the constant in (19). Let ζ ∈ S such that 0 ≤ ζ ≤ 1 on Bn and supp (ζ) ⊂ 2Bn. We fix
x ∈ Rn and t ∈ R, denote Mk := Mx, t+kJ , and define the sequence of functions {ζk}∞

k=0,
where ζ0 := ζ, and

ζk := ζ

((
M−1

x, t Mk

)T
·
)
− ζ

((
M−1

x, t Mk−1

)T
·
)

, k ≥ 1,

where MT denotes the transpose of a matrix M. We claim that

supp(ζk) ⊂
{

ξ ∈ Rn : a−1
5 2−a6 J2a6kJ ≤ |ξ| ≤ 2a−1

3 2a4kJ
}

. (20)

Indeed, by the properties of ζ, Proposition 2 and (2),

ξ ∈ supp(ζk)⇒
(

M−1
x, t Mk

)T
(ξ) ∈ 2Bn ∨

(
M−1

x, t Mk−1

)T
(ξ) ∈ 2Bn

⇒ ξ ∈ 2
(

M−1
k Mx, t

)T
(Bn) ∨ ξ ∈ 2

(
M−1

k−1Mx, t

)T
(Bn)

⇒ ξ ∈ 2a−1
3 2a4kJBn.

In the other direction, Proposition 2 and the properties of ζ yield

ξ ∈
(

M−1
k−1Mx, t

)T
(Bn)⇒

(
M−1

x, t Mk

)T
(ξ) ∈ Bn,

(
M−1

x, t Mk−1

)T
(ξ) ∈ Bn

⇒ ζk(ξ) = 0.

Applying (2), we have

ξ /∈
(

M−1
k−1Mx, t

)T
(Bn)⇒ |ξ| ≥ 2a−1

5 2a6(k−1)J .

This proves (20). Additionally, by (2), for any ξ ∈ Rn,∣∣∣∣(M−1
x, t Mk

)T
ξ

∣∣∣∣ ≤ ∥∥∥M−1
x, t Mk

∥∥∥|ξ| ≤ a52−a6kJ |ξ| → 0, k→ ∞.

From this, we deduce that, for any ξ ∈ Rn, for a large enough k, (M−1
x, t Mk)

Tξ ∈ Bn. This
implies that

∞

∑
k=0

ζk(ξ) = 1, ∀ξ ∈ Rn.

Thus, formally, a Fourier transform of (18) is given by

ψ̂ =
∞

∑
k=0

η̂k ϕ̂

((
M−1

x, t Mk

)T
·
)

, η̂k :=
ζk

ϕ̂

((
M−1

x, t Mk

)T
·
) ψ̂.

Observe that ηk is well defined and in S . Indeed, η̂k is well defined with 0/0 := 0, since by
our assumption on ϕ,

ξ ∈ supp(ζk)⇒ ξ ∈ 2
(

M−1
k Mx, t

)T
(Bn)

⇒
∣∣∣∣(M−1

x, t Mk

)T
ξ

∣∣∣∣ ≤ 2

⇒ ϕ̂

((
M−1

x, t Mk

)T
ξ

)
≥ 1

2
.
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From this, it is obvious that η̂k ∈ S , and therefore, ηk ∈ S . We now proceed to prove (19).
First, observe that, for any η ∈ S , N, Ñ ∈ N,

‖η‖SN, Ñ
≤ C(N, Ñ, n)‖η̂‖SÑ, N+n+1

. (21)

Next, we claim that, for any K ∈ N,

max
|α|≤K

∥∥∥∥∂α

(
ζk/ϕ̂

((
M−1

k Mx, t

)T
·
))∥∥∥∥

∞
≤ C(K, n, ϕ). (22)

Indeed, on its support, any partial derivative of ζk/ϕ̂((M−1
x, t Mk)

T ·) has a denominator
with its absolute value bounded from below and a numerator that is a superposition
of compositions of partial derivatives of η and ϕ with contractive matrices of the type
(M−1

x, t Mk)
T . Using (20)–(22), we obtain∥∥∥ηk

∥∥∥
SN, Ñ

≤ C
∥∥∥η̂k
∥∥∥
SÑ, N+n+1

≤ C sup
|ξ|≥a−1

5 2−a6 J2a6kJ
max
|α|≤Ñ

∣∣∣∂αη̂k(ξ)
∣∣∣(1 + |ξ|)N+n+1

≤ C sup
|ξ|≥a−1

5 2−a6 J2a6kJ
max
|α|≤Ñ

∣∣∂αψ̂(ξ)
∣∣(1 + |ξ|)N+n+1

≤ C sup
|ξ|≥a−1

5 2−a6 J2a6kJ
max
|α|≤Ñ

∣∣∂αψ̂(ξ)
∣∣(1 + |ξ|)N+n+1+dL/(a6 J)e

× (1 + |ξ|)−dL/(a6 J)e

≤ C2−kL∥∥ψ̂
∥∥
SÑ, N+n+1+dL/(a6 J)e

≤ C2−kL‖ψ‖SN+n+1+dL/(a6 J)e, Ñ+n+1
.

3. Maximal Function Characterizations of H p(Θt)

In this section, we show the maximal function characterizations of Hp(Θt) using the
radial, the non-tangential, and the tangential maximal functions of a single test function
ϕ ∈ S .

Theorem 1. Let Θt be a t-continuous ellipsoid cover, 0 < p ≤ 1, and ϕ ∈ S satisfy
∫
Rn ϕ(x) dx 6=

0. Then, for any f ∈ S ′, the following are mutually equivalent:

f ∈ Hp(Θt); (23)

Mϕ f ∈ Lp; (24)

M0
ϕ f ∈ Lp; (25)

TN
ϕ f ∈ Lp, N >

1
a6 p

. (26)

In this case,

‖ f ‖Hp(Θt) =
∥∥∥M0 f

∥∥∥
Lp
≤ C1

∥∥∥TN
ϕ f
∥∥∥

Lp
≤ C2

∥∥Mϕ f
∥∥

Lp ≤ C3

∥∥∥M0
ϕ f
∥∥∥

Lp
≤ C4‖ f ‖Hp(Θt),

where the positive constants C1, C2, C3 and C4 are independent of f .
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The framework to prove Theorem 1 is motivated by Fefferman and Stein [1], ([12],
Chapter III), and Bownik ([2], p. 42, Theorem 7.1).

Inspired by Fefferman and Stein ([12], p. 97), and Bownik ([2], p. 47), we now start
with maximal functions obtained from truncation with an additional extra decay term.
Namely, for t0 < 0 representing the truncation level and real number L ≥ 0 representing
the decay level, we define the radial, the non-tangential, the tangential, the grand radial, and
the grand non-tangential maximal functions, respectively, as

M0 (t0, L)
ϕ f (x) := sup

t≥t0

|( f ∗ ϕx, t)(x)|
(

1 +
∣∣∣M−1

x, t0
x
∣∣∣)−L(

1 + 2t+t0
)−L,

M(t0, L)
ϕ f (x) := sup

t≥t0

sup
y∈θ(x, t)

|( f ∗ ϕx, t)(y)|
(

1 +
∣∣∣M−1

x, t0
y
∣∣∣)−L(

1 + 2t+t0
)−L,

TN (t0, L)
ϕ f (x) := sup

t≥t0

sup
y∈Rn

|( f ∗ ϕx, t)(y)|[
1 +

∣∣∣M−1
x, t (x− y)

∣∣∣]N
1

(1 + 2t+t0)L
(

1 +
∣∣∣M−1

x, t0
y
∣∣∣)L ,

M0 (t0, L)
N, Ñ

f (x) := sup
ϕ∈SN, Ñ

M0 (t0, L)
ϕ f (x)

and

M(t0, L)
N, Ñ

f (x) := sup
ϕ∈SN, Ñ

M(t0, L)
ϕ f (x).

The following Lemma 1 guarantees control of the tangential by the non-tangential
maximal function in Lp(Rn) independent of t0 and L.

Lemma 1. Let Θt be a t-continuous ellipsoid cover. Suppose p > 0, N > 1/(a6 p), and ϕ ∈ S .
Then, there exists a positive constant C such that, for any t0 < 0, L ≥ 0 and f ∈ S ′,∥∥∥TN (t0, L)

ϕ f
∥∥∥

Lp
≤ C

∥∥∥M(t0, L)
ϕ f

∥∥∥
Lp

.

Proof. Consider the function F : Rn ×R −→ [0, ∞) given by

F(y, t) := |( f ∗ ϕt)(y)|p
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−pL

(1 + 2t+t0)−pL.

Let F∗ t0
l be as in (11) with l = 0. When y ∈ θ(x, t), we have M−1

t (x− y) ∈ Bn and hence
|M−1

t (x− y)| < 1. If t ≥ t0, then

F(y, t)
[
1 +

∣∣∣M−1
t (x− y)

∣∣∣]−pN
≤ F∗ t0

0 (x).

When y ∈ θ(x, t− kJ)\θ(x, t− (k− 1)J) for some k ≥ 1, we have

M−1
t (x− y) /∈ M−1

t Mt−(k−1)J (Bn). (27)

By (2), we obtain ∥∥∥M−1
t−(k−1)J Mt

∥∥∥ ≤ a52−a6(k−1)J

and hence,
M−1

t−(k−1)J Mt(Bn) ⊆ a52−a6(k−1)JBn,

which implies
(2a6(k−1)J/a5)Bn ⊆ M−1

t Mt−(k−1)J(Bn).
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From this and (27), it follows that |M−1
t (x − y)| ≥ 2a6(k−1)J/a5. Thus, for any t ≥ t0,

we have
F(y, t)

[
1 +

∣∣∣M−1
t (x− y)

∣∣∣]−pN
≤ a5

pN2−pNa6(k−1)J F∗ t0
k (x).

By taking the supremum over all y ∈ Rn and t ≥ t0, we know that[
TN (t0, L)

ϕ f (x)
]p
≤ a5

pN
∞

∑
k=0

2−pNa6(k−1)J F∗ t0
k (x).

Therefore, using this and Proposition 5, we obtain∥∥∥TN (t0, L)
ϕ f

∥∥∥p

Lp(Rn)
≤ a5

pN
∞

∑
k=0

2−pNa6(k−1)J
∫
Rn

F∗ t0
k (x)dx

≤ Ca5
pN

∞

∑
k=0

2−pNa6(k−1)J2kJ
∫
Rn

F∗ t0
0 (x)dx

= C′
∥∥∥M(t0, L)

ϕ f
∥∥∥p

Lp(Rn)
,

where C′ := Ca5
pN2pNa6 J ∑∞

k=0 2(1−pNa6)kJ = Ca5
pN2J/(1− 2(1−pNa6)J).

The following Lemma 2 gives the pointwise majorization of the grand radial maximal
function by the tangential one, which is a variable anisotropic extension of ([2], Lemma 7.5).

Lemma 2. Let Θ be an ellipsoid cover of Rn, ϕ ∈ S ,
∫
Rn ϕ(x) dx 6= 0, and f ∈ S ′. For any given

positive integers N and L, there exist integers 0 < U ≤ Ũ, U ≥ Np, and Ũ ≥ Ñp that are large
enough and constant C > 0 such that, for any t0 < 0,

M0 (t0, L)
U, Ũ

f (x) ≤ CTN (t0, L)
ϕ f (x), ∀x ∈ Rn.

Proof. The simplified proof of this final version is from Dekel (Lemma 6.20). By Proposition 6,
for any ψ ∈ S , x ∈ Rn, t ∈ R, there exists a sequence {ηk}∞

k=0, ηk ∈ S that satisfies

ψ =
∞

∑
k=0

ηk ∗ ϕk

converging in S , where

ϕk := |det(M−1
x, t+kJ Mx,t)|ϕ(M−1

x, t+kJ Mx,t·), k ≥ 0.

Furthermore, for any positive integers U, Ũ and V,

‖ηk‖SU, Ũ
≤ C2−kV‖ψ‖SU+n+1+dV/(a6 J)e, Ũ+n+1

. (28)

where the constant depends on ϕ, U, Ũ, V, p(Θ) but not ψ. Denoting Mk := Mx,t+kJ ,
for t ≥ t0, implies



Mathematics 2021, 9, 3246 12 of 19

|( f ∗ ψx, t)(x)| =
∣∣∣∣∣
[

f ∗
∞

∑
k=0

(
ηk ∗ ϕk

)
x, t

]
(x)

∣∣∣∣∣
≤ C

∣∣∣∣∣
[

f ∗
∞

∑
k=0

∣∣∣det
(

M−1
k

)∣∣∣ ∫
Rn

ηk(y) ϕ
(

M−1
k (· −Mx,ty)

)
dy

]
(x)

∣∣∣∣∣
= C

∣∣∣∣∣
[

f ∗
∞

∑
k=0

∣∣∣det
(

M−1
k M−1

x,t

)∣∣∣ ∫
Rn

ηk
(

M−1
x,t y

)
ϕ
(

M−1
k (· − y)

)
dy

]
(x)

∣∣∣∣∣
≤ C

∞

∑
k=0

∣∣∣∣[ f ∗
(

ηk
)

x, t
∗ ϕx, t+kJ

]
(x)
∣∣∣∣

≤ C
∞

∑
k=0

∫
Rn

∣∣ f ∗ ϕx, t+kJ(x− y)
∣∣∣∣∣∣(ηk

)
x, t

(y)
∣∣∣∣dy

≤ CTN (t0, L)
ϕ f (x)

∞

∑
k=0

∫
Rn

(
1 +

∣∣∣M−1
k y

∣∣∣)N

×
(

1 +
∣∣∣M−1

x, t0
(x− y)

∣∣∣)L(
1 + 2t+t0+kJ

)L
∣∣∣∣(ηk

)
x, t

(y)
∣∣∣∣dy.

Therefore,

M0 (t0, L)
ψ f (x) ≤ TN (t0, L)

ϕ f (x) sup
t≥t0

∞

∑
k=0

∫
Rn

(
1 +

∣∣∣M−1
k y

∣∣∣)N
(29)

×

(
1 +

∣∣∣M−1
x, t0

(x− y)
∣∣∣)L(

1 + 2t+t0+kJ
)L

(
1 +

∣∣∣M−1
x, t0

x
∣∣∣)L

(1 + 2t+t0)L

∣∣∣∣(ηk
)

x, t
(y)
∣∣∣∣dy

=: TN (t0, L)
ϕ f (x) sup

t≥t0

∞

∑
k=0

It, k.

Let us now estimate It, k for t ≥ t0, k ≥ 0. We begin with the simple observations that

1 + 2t+t0+kJ

1 + 2t+t0
=

2kJ(2−kJ + 2t+t0)

1 + 2t+t0
≤ C2kJ

and

1 + |x + y| ≤ 1 + |x|+ |y| ≤ (1 + |x|)(1 + |y|), x, y ∈ Rn. (30)

Therefore, we may obtain

It, k ≤ C2t+kJL
∫
Rn

(
1 +

∣∣∣M−1
k y

∣∣∣)N(
1 +

∣∣∣M−1
x, t0

y
∣∣∣)L∣∣∣ηk

(
M−1

x, ty
)∣∣∣dy

≤ C2kJL
∫
Rn

(
1 +

∥∥∥M−1
k Mx, t

∥∥∥ |y|)N(
1 +

∥∥∥M−1
x, t0

Mx, t

∥∥∥ |y|)L∣∣∣ηk(y)
∣∣∣dy,

which, together with

‖M−1
k Mx, t‖ ≤ a32a4kJ and ‖M−1

x, t0
Mx, t‖ ≤ a52−a6(t−t0) ≤ a5 (by t ≥ t0 and (2)),
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further implies that

It, k ≤ C2kJ(L+a4 N)
∫
Rn
(1 + |y|)N+L

∣∣∣ηk(y)
∣∣∣dy (31)

≤ C2kJ(L+a4 N)
∥∥∥ηk
∥∥∥
S0, Ñ+n+L

.

We now apply (28) with V := dJ(L + a4N)e+ 1 , which gives

It, k ≤ C2−kV‖ψ‖Sn+1+dV/(a6 J)e, N+L+2n+2
. (32)

This yields for any ψ ∈ SU, Ũ , U := max(Np, n + 1 + dV/(a6 J)e), Ũ := max(Ñp, N + L +

2n + 2)

M0 (t0, L)
U,Ũ

f (x) = sup
ψ∈SU,Ũ

M0 (t0, L)
ψ f (x) ≤ C TN (t0, L)

ϕ f (x).

This finishes the proof of Lemma 2.

The following Lemma 3 shows that the radial and the grand non-tangential maxi-
mal functions are pointwise equivalent, which is a variable anisotropic extension of ([2],
Proposition 3.10).

Lemma 3 ([19], Theorem 3.4). For any N, Ñ ∈ N with N ≤ Ñ, there exists a positive constant
C := C(Ñ) such that, for any f ∈ S ′,

M0
N,Ñ

f (x) ≤ MN,Ñ f (x) ≤ CM0
N,Ñ

f (x), x ∈ Rn.

The following Lemma 4 is a variable anisotropic extension of ([2], p. 46, Lemma 7.6).

Lemma 4. Let Θt be a t-continuous ellipsoid cover, ϕ ∈ S , and f ∈ S ′. Then, for every M > 0
and t0 < 0, there exist L > 0 and N′ > 0 large enough such that

M(t0, L)
ϕ f (x) ≤ C2−t0(2a4 N′+2L+a4L)(1 + |x|)−M, x ∈ Rn, (33)

where C is a positive constant dependent on p(Θ), N′, f , and ϕ.

Proof. For any ϕ ∈ S , there exist an integer N > 0 and positive constant C := C(ϕ) such
that, for any N′ ≥ N and y ∈ Rn,

| f ∗ ϕ(y)| ≤ C‖ϕ‖SN, N′
(1 + |y|)N′ . (34)

Therefore, for any t0 < 0, t ≥ t0 and x ∈ Rn, by (34), we have

|( f ∗ ϕt)(y)|
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L(

1 + 2t+t0
)−L (35)

≤ C2−L(t+t0)‖ϕt‖SN, N′
(1 + |y|)N′

(
1 +

∣∣∣M−1
t0

y
∣∣∣)−L

.
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Let us first estimate ‖ϕt‖SN, N′
. By the chain rule and (1), we have

‖ϕt‖SN, N′
= |detM−1

t | sup
z∈Rn

sup
|α|≤N

(1 + |z|)N′
∣∣∣∂α
(

ϕ
(

M−1
t ·
))

(z)
∣∣∣

≤ C2t sup
z∈Rn

sup
|α|≤N

(1 + |z|)N′
∥∥∥M−1

t

∥∥∥|α|∣∣∣(∂α ϕ)
(

M−1
t z
)∣∣∣

≤ C2t sup
z∈Rn

sup
|α|≤N

(1 + |Mtz|)N′
∥∥∥M−1

t

∥∥∥|α||∂α ϕ(z)|. (36)

Now, let us further estimate (36) in the following two cases.
Case 1: t ≥ 0. By (2), we have∥∥∥M−1

t

∥∥∥ =
∥∥∥M−1

t M0M−1
0

∥∥∥ ≤ ∥∥∥M−1
t M0

∥∥∥∥∥∥M−1
0

∥∥∥ ≤ ∥∥∥M−1
0

∥∥∥a−1
3 2a4t = C2a4t

and

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a52−a6t|z| ≤ C|z|.

Inserting the above two estimates into (36) with t ≥ 0, we know that

‖ϕt‖SN, N′
≤ C2t sup

z∈Rn
sup
|α|≤N

(1 + |Mtz|)N′
∥∥∥M−1

t

∥∥∥|α||∂α ϕ(z)| (37)

≤ C2t2a4tN‖ϕ‖SN, N′
.

Case 2: t0 ≤ t < 0. By (2), we have∥∥∥M−1
t

∥∥∥ =
∥∥∥M−1

t M0M−1
0

∥∥∥ ≤ ∥∥∥M−1
t M0

∥∥∥∥∥∥M−1
0

∥∥∥ ≤ ∥∥∥M−1
0

∥∥∥a52a6t ≤ C

and

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a−1

3 2−a4t|z| = C2−a4t0 |z|.

Inserting the above two estimates into (36) with t0 ≤ t < 0, we know that

‖ϕt‖SN, N′
≤ C2t sup

z∈Rn
sup
|α|≤N

(1 + |Mtz|)N′
∥∥∥M−1

t

∥∥∥|α||∂α ϕ(z)| (38)

≤ C2−a4t0 N′‖ϕ‖SN, N′
.

For any M > 0, let L := M + N′. For any t0 < 0, t ≥ t0 and taking some integer
N′ > 0 large enough, by (37) and (38), we obtain

2−L(t+t0)‖ϕt‖SN, N′
≤ C2−t0(a4 N′+2L)‖ϕ‖SN, N′

. (39)

Inserting (39) into (35), we further obtain

|( f ∗ ϕt)(y)|
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L(

1 + 2t+t0
)−L (40)

≤ C2−t0(a4 N′+2L)‖ϕ‖SN, N′
(1 + |y|)N′

(
1 +

∣∣∣M−1
t0

y
∣∣∣)−L

.
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For any y ∈ θ(x, t), there exists z ∈ Bn such that y = x + Mtz. By (30), we have

1 + |y| = 1 + |x + Mtz| ≤ (1 + |x|)(1 + |Mtz|). (41)

If t ≥ 0, by (2), then

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a52−a6t|z| ≤ C.

If t0 ≤ t < 0, by (2), then

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a−1

3 2−a4t|z| = C2−a4t0 .

Therefore, for any t ≥ t0, by using the above two estimates, we have

|Mtz| ≤ C2−a4t0 .

From this and (41), it follows that

(1 + |y|) ≤ C2−a4t0(1 + |x|). (42)

Moreover, for any t0 < 0, by (2), we have

1 + |x| ≤ 1 + ‖M0‖
∥∥∥M−1

0 Mt0

∥∥∥∣∣∣M−1
t0

x
∣∣∣ ≤ C2−a4t0

(
1 +

∣∣∣M−1
t0

x
∣∣∣).

Furthermore, for any y ∈ θ(x, t), we have x ∈ Mt(Bn) + y. Thus, there exists z ∈ Bn such
that x = Mtz + y. Hence, for any t ≥ t0, by (30) and (2), we obtain(

1 +
∣∣∣M−1

t0
x
∣∣∣) =

(
1 +

∣∣∣M−1
t0

(y + Mtz)
∣∣∣) ≤ (1 +

∣∣∣M−1
t0

y
∣∣∣)(1 +

∥∥∥M−1
t0

Mt

∥∥∥|z|)
≤
(

1 +
∣∣∣M−1

t0
y
∣∣∣)(1 + a52−a6(t−t0)|z|

)
≤ C

(
1 +

∣∣∣M−1
t0

y
∣∣∣).

Combining with the above two inequalities, we have

(1 + |M−1
t0

y|) ≥ C2a4t0(1 + |x|). (43)

Thus, for any t ≥ t0 and y ∈ θ(x, t), inserting (42) and (43) into (40) with L = M + N′,
we obtain

|( f ∗ ϕt)(y)|
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L(

1 + 2t+t0
)−L ≤ C2−t0(2a4 N′+2L+a4L)(1 + |x|)−M,

which implies that (33) holds true and hence completes the proof of Lemma 4.

Note that the above argument gives the same estimate for the truncated grand maximal
function M0 (t0, L)

N, Ñ
f (x). As a consequence of Lemma 4, we obtain that, for any choice of

t0 < 0 and any f ∈ S ′, we can find an appropriate L > 0 so that the maximal function,
say M(t0, L)

ϕ f , is bounded and belongs to Lp(Rn). This becomes crucial in the proof of
Theorem 1, where we work with truncated maximal functions, The complexity of the
preceding argument stems from the fact that, a priori, we do not know whether M0

ϕ f ∈ Lp

implies Mϕ f ∈ Lp. Instead, we must work with variants of maximal functions for which
this is satisfied.
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Proof of Theorem 1. Suppose that Θt is a t-continuous ellipsoid cover and ϕ ∈ S satis-
fying

∫
Rn ϕ(x) dx 6= 0. From Remark 2 and the definition of the grand radial maximal

function, it follows that
(26)⇒ (24)⇒ (25)

and
(23)⇒ (25).

By Lemma 1 applied for L = 0, we have∥∥∥TN(t0, 0)
ϕ f

∥∥∥
Lp
≤ C

∥∥∥M(t0, 0)
ϕ f

∥∥∥
Lp

for any f ∈ S ′ and t0 < 0.

As t0 → −∞, by the monotone convergence theorem, we obtain∥∥∥TN
ϕ f
∥∥∥

Lp
≤ C

∥∥Mϕ f
∥∥

Lp ,

which shows (24)⇒ (26).
Combining Lemma 2 applied for N > 1/(a6 p) and L = 0 and Lemma 1 applied for

L = 0, we conclude that there exist integers 0 < U ≤ Ũ, U > Np, Ũ ≥ Ñp that are large
enough and a positive constant C such that∥∥∥M0(t0, 0)

U, Ũ
f
∥∥∥

Lp
≤ C

∥∥∥M(t0, 0)
ϕ f

∥∥∥
Lp

for any f ∈ S ′ and t0 < 0.

As t0 → −∞, by the monotone convergence theorem, we obtain∥∥∥M0
U, Ũ

f
∥∥∥

Lp
≤ C

∥∥Mϕ f
∥∥

Lp .

From this and Proposition 1, we deduce that

‖ f ‖Hp(Θt) =

∥∥∥∥M0
Np , Ñp

f
∥∥∥∥

Lp
≤ C

∥∥∥M0
U, Ũ

f
∥∥∥

Lp
≤ C

∥∥Mϕ f
∥∥

Lp

and hence (24)⇒ (23). (25)⇒ (24) remain to be shown.
Suppose now M◦ϕ f ∈ Lp. By Lemma 4, we can find a L > 0 large enough such that

(33) holds true, which implies M(t0, L)
ϕ f ∈ Lp for all t0 < 0. Combining Lemmas 1 and 2,

we obtain that there exist 0 < U ≤ Ũ, U > Np, and Ũ ≥ Ñp large enough such that∥∥∥M0(t0, L)
U, Ũ

f
∥∥∥

p
≤ C1

∥∥∥M(t0, L)
ϕ f

∥∥∥
p
, (44)

where constant C1 is independent of t0 < 0. For a given t0 < 0, let

Ωt0 :=
{

x ∈ Rn : M0 (t0, L)
U, Ũ

f (x) ≤ C2M(t0, L)
ϕ f (x)

}
, (45)

where C2 := 21/pC1. We claim that∫
Rn

[
M(t0, L)

ϕ f (x)
]p

dx ≤ 2
∫

Ωt0

[
M(t0, L)

ϕ f (x)
]p

dx. (46)

Indeed, this follows from (44), M(t0, L)
ϕ f ∈ Lp and∫

Ωc
t0

[
M(t0, L)

ϕ f (x)
]p

dx ≤ C−p
2

∫
Ωc

t0

[
M0 (t0, L)

U, Ũ
f (x)

]p
dx ≤ (C1/C2)

p
∫
Rn

[
M(t0, L)

ϕ f (x)
]p

dx,

where (C1/C2)
p = 1/2.
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We also claim that, for 0 < q < p, there exists a constant C3 > 0 such that, for any
t0 < 0,

M(t0, L)
ϕ f (x) ≤ C3

[
MΘ

(
M0 (t0, L)

ϕ f
)q

(x)
]1/q

, (47)

where MΘ is as in Definition 4. Indeed, let t ≥ t0, y ∈ θ(x, t) and

F(y, t) := |( f ∗ ϕt)(y)| (1 + |M−1
t0

y|)−L(1 + 2t+t0)−L.

Suppose that x ∈ Ωt0 and let F∗ t0
l (x) be as in (11) with l = 0. Then, there exist t′ ∈ R with

t′ ≥ t0 and y′ ∈ θ(x, t′) such that

F(y′, t′) ≥ F∗ t0
0 (x)/2 = M(t0, L)

ϕ f (x)/2. (48)

Consider x′ ∈ y′ + Mt′+l J(Bn) for some integer l ≥ 1 to be specified later. Let Φ(z) :=

ϕ
(

z + M−1
t′ (x′ − y′)

)
− ϕ(z). Obviously, we have

f ∗ ϕt′(x′)− f ∗ ϕt′(y
′) = f ∗Φt′(y

′). (49)

Let us first estimate ‖Φ‖SU, Ũ
. From x′ ∈ y′ + Mt′+l J(Bn), we deduce that

M−1
t′ (x′ − y′) ∈ M−1

t′ Mt′+l J(Bn).

By this and the mean value theorem, we obtain

‖Φ‖SU, Ũ
≤ sup

h∈M−1
t′ Mt′+l J(Bn)

‖ϕ(·+ h)− ϕ(·)‖SU, Ũ
(50)

= sup
h∈M−1

t′ Mt′+l J(Bn)

sup
z∈Rn

sup
|α|≤U

(1 + |z|)Ũ |(∂α ϕ)(z + h)− ∂α ϕ(z)|

≤ C sup
h∈M−1

t′ Mt′+l J(Bn)

sup
z∈Rn

sup
|α|≤U+1

(1 + |z|)Ũ |(∂α ϕ)(z + h)|

× sup
h∈M−1

t′ Mt′+l J(Bn)

|h|.

From (2), we deduce
‖M−1

t′ Mt′+l J‖ ≤ a52−a6l J ,

which implies
M−1

t′ Mt′+l J(Bn) ⊂ a52−a6l JBn.

By this and h ∈ M−1
t′ Mt′+l J(Bn), we have |h| ≤ a52−a6l J . From this and (30), we deduce

that

1 + |z| ≤ (1 + |z + h|)(1 + |h|) ≤ C(1 + |z + h|), z ∈ Rn.

Applying this and |h| ≤ a52−a6l J in (50), we obtain

‖Φ‖SU, Ũ
≤ C sup

h∈M−1
t′ Mt′+l J(Bn)

sup
z∈Rn

sup
|α|≤U+1

(1 + |z + h|)Ũ |(∂α ϕ)(z + h)| (51)

× sup
h∈M−1

t′ Mt′+l J(Bn)

|h| ≤ C‖ϕ‖SU+1, Ũ
a52−a6l J ≤ C42−a6l J ,

where a positive constant C4 does not depend on L.
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Moreover, notice that, for any x′ ∈ Mt′+l J(Bn) + y′, there exists z ∈ Bn such that
x′ = Mt′+l Jz + y′. By (30), (2), and t′ ≥ t0, we have(

1 +
∣∣∣M−1

t0
x′
∣∣∣) ≤ (1 +

∣∣∣M−1
t0

y′
∣∣∣)(1 +

∥∥∥M−1
t0

Mt′+l J

∥∥∥|z|) (52)

≤
(

1 +
∣∣∣M−1

t0
y′
∣∣∣)(1 + a52−a6(t′−t0+l J)|z|

)
≤ 2a5

(
1 +

∣∣∣M−1
t0

y′
∣∣∣).

Thus, for any x ∈ Ωt0 , from (49), (52), (48), (51), Lemma 3, and (45), it follows that

2LaL
5 F(x′, t′) = 2LaL

5

[
|( f ∗ ϕt′)(x′)| (1 + |M−1

t0
x′|)−L(1 + 2t′+t0)−L

]
≥ [| f ∗ ϕt′(y

′)| − | f ∗Φt′(y
′)|]
(

1 +
∣∣∣M−1

t0
y′
∣∣∣)−L(

1 + 2t′+t0
)−L

≥ F(y′, t′)−M(t0, L)
U, Ũ

f (x)‖Φ‖SU, Ũ

≥ M(t0, L)
ϕ f (x)/2− C42−a6l JCM0 (t0, L)

U, Ũ
f (x)

≥ M(t0, L)
ϕ f (x)/2− C4C2C2−a6l J M(t0, L)

ϕ f (x).

We choose an integer l ≥ 1 large enough such that C4C2C2−a6l J ≤ 1/4. Therefore, for any
x ∈ Ωt0 and x′ ∈ Mt′+l J(Bn) + y′, we further have

2LaL
5 F(x′, t′) ≥ M(t0, L)

ϕ f (x)/2− C4C2C2−a6l J M(t0, L)
ϕ f (x) ≥ M(t0, L)

ϕ f (x)/4. (53)

Moreover, by y′ ∈ θ(x, t′) and Proposition 2, we have

Mt′+l J(Bn) + y′ ⊆ Mt′+l J(Bn) + Mt′(Bn) + x (54)

⊆ 2Mt′(Bn) + x ⊆ θ(x, t′ − J).

Thus, for any x ∈ Ωt0 and t ≥ t0, by (53) and (54), we obtain

[
M(t0, L)

ϕ f (x)
]q
≤

4q2LqaLq
5

|Mt′+l J(Bn)|

∫
y′+Mt′+l J(Bn)

[F(z, t′)]qdz

≤ C4q2LqaLq
5

2(l+1)J

|θ(x, t′ − J)|

∫
θ(x, t′−J)

[
M0 (t0, L)

ϕ f (z)
]q

dz

≤ C3MΘ

((
M0 (t0, L)

ϕ f
)q)

(x),

which shows the above claim (47).
Consequently, by (46), (47), and Proposition 3 with p/q > 1, we have∫

Rn

[
M(t0, L)

ϕ f (x)
]p

dx ≤ 2
∫

Ωt0

[
M(t0, L)

ϕ f (x)
]p

dx (55)

≤ 2C3
p
∫

Ωt0

[
MΘ

((
M0(t0, L)

ϕ f
)q)

(x)
]p/q

dx

≤ C5

∫
Rn

[
M0(t0, L)

ϕ f (x)
]p

dx,

where the constant C5 depends on p/q > 1, L ≥ 0 and p(Θ) but is independent of t0 < 0.
This inequality is crucial as it gives a bound of the non-tangential by the radial maximal
function in Lp. The rest of the proof is immediate.
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For any x ∈ Rn, y ∈ Rn and t < 0, by (2), we obtain∣∣∣M−1
t y

∣∣∣ = ∣∣∣M−1
t M0M−1

0 y
∣∣∣ ≤ ∥∥∥M−1

t M0

∥∥∥∥∥∥M−1
0

∥∥∥|y|
≤ a52a6t

∥∥∥M−1
0

∥∥∥|y| → 0 as t→ −∞.

Hence, we obtain that M(t0, L)
ϕ f (x) converges pointwise and monotonically to Mϕ f (x)

for all x ∈ Rn as t0 → −∞, which together with (55) and the monotone convergence
theorem, further implies that Mϕ f ∈ Lp. Therefore, we can now choose L = 0, and
again, by (55) and the monotone convergence theorem, we have ‖Mϕ f ‖p

p ≤ C5‖M0
ϕ f ‖p

p,
where C5 corresponds to L = 0 and is independent of f ∈ S ′. This finishes the proof of
Theorem 1.
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