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Abstract: In the present paper, the generalization of the optical theorem to the case of a penetrable
particle deposited near a transparent substrate that is excited by a multipole of an arbitrary order
and polarization has been derived. In the derivation we employ classic Maxwell’s theory, Gauss’s
theorem, and use a special representation for the multipole excitation. It has been shown that the
extinction cross-section can be evaluated by the calculation of some specific derivatives from the
scattered field at the position of the multipole location, in addition to some finite integrals which
account for the multipole polarization and the presence of the substrate. Finally, the present paper
considers some specific examples for the excitation of a particle by an electric quadrupole.

Keywords: optical theorem; arbitrary order of multipole; Maxwell’s theory; Gauss’s theorem;
transparent substrate; extinction cross-section

1. Introduction

The objective of the introduction is to trace the path of generalization of the optical
theorem, starting from the classical result obtained initially for a scatterer located in free
space that is excited by a plane wave; subsequently moving to the case of a scatterer in
the presence of a transparent substrate; then focusing on the excitation by dipoles and
multipoles in free space; and, finally, considering the generalized result we obtained for
a penetrable obstacle located near a transparent substrate, that is excited by an electric
multipole of an arbitrary order. The optical theorem introduces the fundamental concept
of the extinction cross-section, which shows how much energy the scatterer takes from
external excitation, regardless of whether it is a plane wave or a local source.

The optical theorem (OT) is one of the famous theoretical results in the plane wave
scattering theory of electromagnetic waves [1]. It states that the sum of the scattering
and absorption cross-sections (that is the extinction cross-section) is proportional to the
scattered field amplitude in the propagation direction of the exciting plane wave. Similar
results can be found in acoustics [2], seismics [3], and quantum mechanics [4]. Over the
years, many generalizations and implementations of the OT were suggested [5–7]. In
computational electromagnetics, this theorem is employed for the checking or verification
of light scattering computer models, since, for a lossless particle, the total scattering cross-
section must be equal to the imaginary part of the forward scattering amplitude [8]. The
authors themselves have repeatedly used this method to test newly developed codes.

The results based on the optical theorem were analyzed and generalized by numerous
researchers, in particular, for problems of plane wave scattering by an obstacle located
near a plane transparent prism [9], and electromagnetic wave propagation in anisotropic
and bianisotropic media [10,11]. A generalization of the optical theorem to the excita-
tion of an obstacle in free space by a point source and an electric dipole was given by
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Athanasiadis et al. [12]. Eremin and Sveshnikov [13] extended the OT to the case of excita-
tion of a scatterer by a point source in the presence of a transparent prism. The excitation
of an obstacle by a multipole source occurs in numerous modern applications. These are
problems that occur with the excitation by quantum dots [14], the analysis of luminescence
processes and Raman spectroscopy [15], and the design of various optical antenna based
on plasmon effects [16].

Eremin and Wriedt [17] extended the OT to the case of a local obstacle excitation by
an arbitrary order electric multipole. However, in this paper, a special polarization of the
multipole was considered. The present paper considers a generalization of the OT to the
case of excitation of a local obstacle located near a lossless prism by an electric multipole
of arbitrary order and polarization. We used integral transforms for the wave fields to
show that the extinction cross-section can be found in clear analytical forms, by applying
some differential operators to the scattering field in a single point. This permits the testing
of computer models for the case of lossless scatterers by comparing the extinction cross-
section with the scattering cross-section. Furthermore, the result enables the absorption
cross-section to be computed for local obstacles deposited near a transparent substrate,
which is especially important when analyzing plasmonic particles, because they generate a
large number of evanescent field components [18].

The paper is organized as follows: in the subsequent section, we consider the mathe-
matical statement of the boundary value scattering problem for an electric multipole of
arbitrary order and, then, repeat the basic notations and results obtained for the case of a
particle located in free space [17]. Following this section, we will proceed to the generaliza-
tion of the OT to the case of a penetrable particle deposited near a transparent substrate. In
the subsequent section, we formulate the main result in the form of Theorem 1. In the final
section, we consider the main formula for some specific multipole excitations.

2. Problem Statement and Methods
2.1. Boundary Value Problem Statement

Consider the excitation of a bounded isotropic penetrable particle Di with a smooth
surface ∂Di by an electric multipole source of arbitrary order having a momentum p. A
scheme of the considered scattering problem can be found in Figure 1.

Figure 1. Scheme of the scattering problem.

Let the multipole be deposited at a point M0, which is located outside of the particle
Di. The entire space R3 consists of two half-spaces, D0 (z > 0) and D1 (z < 0), separated
by the plane interface Ξ (z = 0). Assume that all media are nonmagnetic. Let the particle
Di be located inside the upper half-space, Di ⊂ D0 and M0 ∈ D0, too. Subsequently, the
mathematical statement of the scattering problem can be written in the following form,
including the time-harmonic Maxwell equations;

∇×H0 = jkε0E0 + J(M, M0); ∇× E0 = −jkH0 in D0;
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∇×Hl = jkε lEl ; ∇× El = −jkHl in Dl , l = 1, i;

the transmission conditions at the particle surface and plane interface;

nq × (Ei(q)− E0(q)) = 0,
nq × (Hi(q)−H0(q)) = 0,

q ∈ ∂Di,
ez × (E1(Q)− E0(Q)) = 0,
ez × (H1(Q)−H0(Q)) = 0,

Q ∈ Ξ (1)

the Silver–Muller radiation conditions for all directions r/r, z 6= 0;

lim
r→∞

r ·
(

Hl ×
r
r
−√ε lEl

)
= 0, r = |M| → ∞, l = 0, 1, z 6= 0;

and the additional infinity conditions along the interface Ξ (z = 0) [19]

max(|Hl |, |El |) = O(ρ−
1
2 ), ρ =

√
x2 + y2, ρ→ ∞, z = ±0.

where the {El , Hl}—electric and magnetic fields in the corresponding domains Dl ,
l = 0, 1, i, k = ω/c, J = J(M, M0)p, nq—unit external normal at ∂Di, ez—basic vec-
tor of the Cartesian coordinate system (x, y, z), axis OZ is orthogonal to Ξ. Assume that
∂Di ⊂ C(2,α) (Hölder space), the relative permittivity and permeability εi are continuous
complex valued functions inside Di and Imεi ≤ 0, Imε0,1 = 0. The time dependence was
chosen as exp{j ω t}. The corresponding radiation conditions were selected in such a form
to provide uniqueness of the solution of the scattering problem (1).

Let us specify the J(M, M0) function. Choose the origin O of a Cartesian coordinate
system and direct its Oz axis so that it passes through the point M0 = (0, 0, z0) correspond-
ing to the multipole position. Consider the multipole which, in a spherical coordinate
system (r, θ, ϕ), accepts the following form:

wm
n (M, M0) := h(2)n (k0r)Pm

n (cos θ)e−jmϕ; n = 0, 1, . . . ; m = 0,±1, . . . ; |m| ≤ n. (2)

For the multipole (2), the following fundamental representation is valid [20]:

h(2)n (k0RMM0)Pm
n (cos θ)e−jmϕ = (−1)m jn

[
j

k0

(
∂

∂x
− j

∂

∂y

)]m
P(m)

n

(
j

k0

∂

∂z

)
h(2)0 (k0RMM0),

here, k0 = k
√

ε0, h(2)n (x) is a spherical Hankel function, RMM0 = |M−M0|, P(m)
n (cos θ) is

an associated Legendre polynomial [21]. Introduce the following differential operator:

Dm
n = (−1)m jn−1

[
j

k0
e−jϕ ∂

∂ρ

]m
P(m)

n

(
j

k0

∂

∂z

)
. (3)

taking into account the fundamental solution to the Helmholtz equation Ψ(M, M0) :
∆Ψ + k2

0Ψ = −δ(M−M0), which has the following form:

Ψ(M, M0) =
e
−jk0RMM0
4πRMM0

= −j k0
4π h(2)0 (k0RMM0), then

∆wm
n + k2

0wm
n =

(
∆ + k2

0
)

Dm
n

{
jh(2)0 (k0RMM0)

}
= 4π

k0
Dm

n δ(M−M0),
where δ—Dirac delta function. Subsequently, set up the J(M, M0) function in (1) as

J(M, M0) =
4π

k0
Dm

n δ(M−M0). (4)

In this case, the scattering problem (1) has a unique solution [22]. In this case the elec-
tric field corresponding to the exciting multipole located at M0 accepts the following form:

E0
0(M) = − j

k0
∇×∇× {wm

n (M, M0)p}. (5)

Now we are ready to proceed to the generalization of the optical theorem.
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2.2. Generalization of the Optical Theorem

Choose a sphere DR of R—radius, centered at the plane Ξ and enclosing both Di
and point M0, and its boundary will be referred to as ΣR. The plane Ξ divides DR into
two half-spheres D±R , deposited in D0,1, and let Σ±R be parts of ΣR belonging to D±R ,
respectively. The application of the Gauss divergence theorem [22] to the solution of the
problem (1) of the total electric E0 and the complex conjugate magnetic H∗0 fields in the
domain D+

R /Di allows us to obtain the following formula:∫
D+

R /Di

∇ · [E0 ×H∗0 ]dτ =
∫

D+
R /Di

{H∗0 · ∇ × E0 − E0 · ∇ ×H∗0}dτ =

=
∫

D+
R /Di

{
jk
(
−|H∗0 |

2 + |E0|2
)
− (E0 · J∗)

}
dτ =

∫
Σ+

R∪ΞR∪∂Di

[E0 ×H∗0 ] · ds,
(6)

where ΞR := {M ∈ Ξ : |M| ≤ R} is a part of the plane Ξ. Taking the real parts from both
sides of (6) and rewriting the integrals in the right part we obtain the following formula:

Re
∫

∂Di

[E0 ×H∗0 ] · dσ+ Re
∫

Σ+
R

[E0 ×H∗0 ] · r
r dσ− Re

∫
ΞR

[E0 ×H∗0 ] · ezdσ =

−Re
∫

D+
R /Di

(E0 · J∗)dτ,
(7)

A similar application of Gauss’s theorem inside Di leads to the following:

Re
∫

∂Di

[Ei ×Hi
∗] · dσ = k

∫
Di

{
|Imεi||Ei|2

}
dτ. (8)

The right part of (8) will be referred to as the absorption cross-section Cabs and,
subsequently, (7) accepts the following form:

Cabs + Re
∫

Σ+
R

[E0 ×H∗0 ] ·
r
r

dσ− Re
∫

ΞR

[E0 ×H∗0 ] · ezdσ = −Re
∫

D+
R /Di

(E0 · J∗)dτ. (9)

Using Gauss’s theorem in the D−R domain and taking the real part, we obtain the
following formula:

Re
∫

Σ−R

[E1 ×H∗1 ] ·
r
r

dσ + Re
∫

ΞR

[E1 ×H∗1 ] · ezdσ = 0. (10)

Combining equations (9) and (10) yields the following:

Cabs + Re
∫

Σ+
R

[E0 ×H∗0 ] ·
r
r

dσ + Re
∫

Σ−R

[E1 ×H∗1 ] ·
r
r

dσ = −Re
∫

D+
R /Di

(E0 · J∗)dτ. (11)

Subsequently, consider the far-field patterns F0,1(θ, ϕ) of the fields [22] in the upper
and lower half-spaces D±R

E0,1(M) =
e−jkn0,1r

r
F0,1(θ, ϕ) + o(

1
r
), r → ∞, z 6= 0.
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The far-field patterns are defined at the upper and lower unit hemi-spheres
Ω+ = {0 ≤ ϕ ≤ 360◦; 0 ≤ θ < 90◦}, Ω− = {0 ≤ ϕ ≤ 360◦; 90◦ < θ ≤ 180◦}, where
n0,1 =

√
ε0,1 . Then, having a radius R tending toward infinity leads to the following:

lim
R→∞

Re
∫

Σ+
R

[E0 ×H∗0 ] · r
r dσ = Re lim

R→∞

∫
Σ+

R

E0 ·
[
H∗0 × r

r
]
dσ =

√
ε0 lim

R→∞

∫
Σ+

R

|E0|2dσ =
√

ε0
∫

Ω+

|F0|2dω.

Similarly, for the lower half-space D1:

lim
R→∞

Re
∫

Σ−R

[E1 ×H∗1 ] · r
r dσ = Re lim

R→∞

∫
Σ−R

E1 ·
[
H∗1 × r

r
]
dσ

=
√

ε1 lim
R→∞

∫
Σ−R

|E1|
2dσ =

√
ε1
∫

Ω−
|F1|2dω.

The last integrals can be referred to as the scattering cross-sections in the upper and
the lower half-spaces D0,1— C±sc . Therefore, (11) can be rewritten in a simple form:

Cabs + C+
sc + C−sc = −Re

∫
D0/Di

(E0 · J∗)dτ. (12)

It is worth noting that the scattering cross-sections C±sc include a part associated to the
multipole radiation patterns. Represent the total fields in D±R as E0,1 = Es

0,1 + Ed
0,1, where

Ed
0,1 is the field corresponding to the radiating multipole located at M0, and Es

0,1 is the
scattered field corresponding only to the particle Di. Because the total field E0,1 satisfies
the transmission conditions at the plane interface Ξ, both Es

0,1 and Ed
0,1 should obey the

same transmission conditions. We continue the transformation of the integral in the right
part of (12) and, by employing the δ-function properties [23], we then account for [17]∫

D0/Di

(E0 · J∗)dτ =
∫

D0/Di

(
Es

0(Q) + Ed
0(Q)

)
· pJ∗(Q, M0)dτQ = 4π

k0

∫
D0/Di

Dm∗
n δ(Q−M0)Es

0(Q) · pdτQ

+
∫

D0/Di

Ed
0(Q) · pJ∗(Q, M0)dτQ =

∫
D0/Di

J∗(Q, M0)Ed
0(Q) · pdτQ + 4π

k0
[Dm+

n (Es
0(M) · p)]M=M0

.
(13)

The last term has already been obtained in [17]. Here, Dm+
n is Hermitian conjugate

operator, with respect to (3) having the following form:

Dm+
n = (−1)m−1 jn−1

[
j

k0
ejϕ ∂

∂ρ

]m
P(m)

n

(
j

k0

∂

∂z

)
, (14)

Here, P(m)
n (−x) = (−1)n+mP(m)

n (x) [21]. It should be remembered that Es
0 is an

analytic function in the region D0 [22]. To evaluate the first integral in the right part of
(13), we need a representation for the electric multipole field satisfying the transmission
conditions at the interface Ξ. This can be obtained based on the electric green tensor (GT)

of half-space
↔
G

e
(M, M0), which can be written in the form [24]

↔
G

e
(M, M0) =

 G11 0 0
0 G11 0

∂g/∂xM ∂g/∂yM G33

. (15)

The GT components in D0,1 have the following representations:

Gll(M, M0) =

∞∫
0

J0(λr) vll(λ, z, z0)λdλ , l = 1, 3; g(M, M0) =

∞∫
0

J0(λr) v31(λ, z, z0)λdλ,
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where r2 = (x− x0)
2 +(y− y0)

2, J0—cylindrical Bessel function [21], (x0, y0, z0)—Cartesian
coordinates of point M0. The corresponding spectral functions v11, v33, v31 fulfilling the
transmission conditions at z = 0 can be found in Appendix A (see formulas (A1) and(A2)).

Following the multipole definition, consider the multipole representation for the GT
by extracting the singular part as:

↔
W

m

n (M, M0) =
4π

k0
Dm

n

↔
Ge(M, M0) = wm

n (M, M0) · I +
4π

k0
Dm

n

↔
Ge

r (M, M0), (16)

where
↔
Ge

r (M, M0) is the regular part of the GT multipole representation, I—idem factor.
Subsequently, the corresponding electric field of the multipole in D0 appears as:

Ed
0(M) = E0

0(M)− 4π j
k2

0
∇×∇×

{
Dm

n

↔
Ge

r (M, M0)p
}

= E0
0(M) + Er

0(M). (17)

Then,

−Re
∫

D0/Di

J∗(Q, M0)Ed
0(Q) · pdτQ =

− Re
∫

D0/Di

J∗(Q, M0)E0
0(Q) · pdτQ − Re

∫
D0/Di

J∗(Q, M0)Er
0(Q) · pdτQ.

The first integral represents the total energy irradiated by a multipole deposited in
free space. This integral is examined in detail in [25]. Let the polarization vector have the
Cartesian coordinates p =

(
px, py, pz

)
, then the first integral can be written as

− Re
∫

D0/Di

J∗(Q, M0)E0
0(Q) · pdτQ =

π

k2
0

{[
2
3

βm
n +

1
3

](
p2

x + p2
y

)
+

[
2
3
− 2

3
βm

n

]
p2

z

}
‖Pm

n ‖
2. (18)

Substituting a specific expression for J(Q, M0): (4) and E0
0(Q): (5); taking into ac-

count that
1∫
−1

P0
2 (x)[Pm

n (x)]
2

dx = βm
n ‖Pm

n ‖
2 and following [25] we obtain (18), where

βm
n = C(nn2, 000)C(nn2, mm0), C(. . . , . . .) are Clebsch–Gordan coefficients, and ‖Pm

n ‖
2

is the norm of associated Legendre polynomials [21] ‖Pm
n ‖

2 = 2
2n+1

(n+m)!
(n−m)! . Unfortunately,

Clebsch–Gordan coefficients do not have an explicit analytical representation for an arbi-
trary integer n, m but they can be estimated numerically.

Consider the integral containing the regular field in the right part of the last relation.
We start from its z-component, then

pz · ∇ ×∇×
{

Dm
n
↔
G

e

r(M, M0)pz

}
= |pz|

2Dm
n

{
k2

0G33(M, M0) +
∂2

∂z2 G33(M, M0)

}
.

By substituting the representation for the current into the integral, we obtain the
following formula:∫

D0/Di

J∗Er
0pzdτ

=
4π j
k2

0
|pz|

2Dm+
n Dm

n

∫
D0/Di

∞∫
0

A33 J0(λρ)

(
k2

0 +
∂2

∂z2

)
exp{−η0z}

η0
λdλδ(Q−M0)dτQ

=
4π j
k2

0
|pz|

2
∫

D0/Di

∞∫
0

A33(λ, z0)Dm+
n Dm

n J0(λρ)
exp{−η0z}

η0
λ3dλδ(Q−M0)dτQ.

(19)
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It is worth noting that the multipole is located at the 0z axis, M0 = (0, 0, z0). It can
then be realized that

Dm+
n Dm

n =
1

k2m
0

∂2m

∂ρ2m

[
P(m)

n (
j

k0

∂

∂z
)

]2
.

By applying this operator to the integrand of the integral in the right part of (19), the
following can be expressed:{

∂2m

∂ρ2m J0(λρ)

}
ρ=0

{[
P(m)

n (
j

k0

∂

∂z
)

]2 exp{−η0z}
η0

}
z=z0

,

and accounting for J0(λρ) =
∞
∑

l=0

(−1)l

(l!)2

(
λρ
2

)2l
[21], that the following can be presented:

{
∂2m

∂ρ2m J0(λρ)
}

ρ=0

{[
P(m)

n ( j
k0

∂
∂z )
]2 exp{−η0z}

η0

}
z=z0

=

(−1)mλ2m(2m−1)!!
(2m)!!

[
P(m)

n ( j
k0

η0)
]2 exp{−η0z0}

η0
.

By substituting the formula for A33: (A4) we obtain the following:∫
D0/Di

J∗(Q, M0)Er
0(Q)pzdτQ =

4π j|pz |
2(2m−1)!!

k2m+2
0 (2m)!!

∞∫
0

ε1η0−ε0η1
ε1η0+ε0η1

[
P(m)

n ( j
k0

η0)
]2 exp{−2η0z0}

η0
λ2m+3dλ

(20)

By taking the real part of the integral, we obtain the following:

−Re
∫

D0/Di

J∗Er
0 · pzdτQ =

4π|pz |
2(2m−1)!!

k2m+2
0 (2m)!!

Im
∞∫
0

ε1η0−ε0η1
ε1η0+ε0η1

[
P(m)

n ( j
k0

η0)
]2 exp{−2η0z0}

η0
λ2m+3dλ.

(21)

Consider the integrand in (21) following to [26]. It is clear that under λ > max(k0, k1)

we have Imη0,1 = 0. Based on the properties of P(m)
n (jx) under Imx = 0, depending

on the specific integer values of n, m, the following correlations are relevant: either

ReP(m)
n (jx) = 0, or ImP(m)

n (jx) = 0. Hence, Im
[

P(m)
n (j η0

k0
)
]2
≡ 0 for ∀n, m, n ∈ N, n ≥ m,

and λ > max(k0, k1). Therefore, for all real valued k1 > k0, we obtain the following:

−Re
∫

D0/Di

J∗Er
0 · pzdτQ =

4π|pz |
2(2m−1)!!

k2m+2
0 (2m)!!

Im
k1∫
0

ε1η0−ε0η1
ε1η0+ε0η1

[
P(m)

n ( j
k0

η0)
]2 exp{−2η0z0}

η0
λ2m+3dλ.

(22)

We continue to analyze the regular field x-component in the same manner:

px · ∇ ×∇×
{

Dm
n
↔
G

e

r(M, M0)px

}
= px · ∇ ×∇× Dm

n

{
G11(M, M0) +

∂
∂x g(M, M0)

}
· px =

4π j
k2

0
|px|

2Dm
n

{
k2

0

[
G11(M0, M0) +

∂
∂x g(M, M0)

]
+
[

∂2

∂x2 G11(M0, M0) +
∂3

∂x3 g(M, M0)
]}

.
(23)

It should be remembered that the presence of any odd order derivatives with re-
spect to x or y of the integral containing J0(λr) leads to the nullification of the result at
M = M0 (r = 0). This can be easily observed from the series for the Bessel function of zero
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order, which contains only even powers of argument. Subsequently, the relation (23) can
be written as the following formula:

px · ∇ ×∇×
{

Dm
n

↔
Ge

r (M, M0)px

}
=

4π j
k2

0
|px|

2Dm
n

{
k2

0G11(M0, M0) +
∂2

∂x2 G11(M0, M0)

}
.

Let us proceed to the consideration of the x-component, that is:∫
D0/Di

J∗Er
0pxdτ =

4π j
k2

0
|px|

2Dm+
n Dm

n
∫

D0/Di

∞∫
0

A11(λ, z0)
(

k2
0 +

∂2

∂x2

)
J0(λρ)

exp{−η0z}
η0

λdλδ(Q−M0)dτQ.
(24)

Following our previous consideration for the z-component (22) and the explicit for-
mula for A11: (A3), we can present the following:∫

D0/Di

J∗Er
0pxdτ

=
4π j
k2

0
|px|

2Dm+
n Dm

n

∫
D0/Di

∞∫
0

A11

(
k2

0 +
∂2

∂x2

)
J0(λρ)

exp{−η0z}
η0

λdλδ(Q−M0)dτQ

=
4π j|px|

2(2m)!

k2m
0 [(2m)!!]2

∞∫
0

η0 − η1

η0 + η1

[
P(m)

n

(
j

k0
η0

)]2 exp{−2η0z0}
η0

λ2m+1dλ+

+
4π j
k2

0
|px|

2
∞∫

0

A11(λ, z0)

{
∂2m

∂ρ2m
∂2

∂x2 J0(λρ)

}
ρ=0

{[
P(m)

n

(
j

k0

∂

∂z

)]2 exp{−η0z}
η0

}
z=z0

λdλ.

(25)

Then, the last integral in the previous relation (25) can be transformed as:

∞∫
0

η0−η1
η0+η1

ζ0

{
∂2m

∂ρ2m
∂2

∂x2 J0(λρ)
}

ρ=0

{[
P(m)

n ( j
k0

∂
∂z )
]2 exp{−η0z}

η0

}
z=z0

λdλ =

− (2m+1)!!
k2m

0 (2m+2)!!

∞∫
0

η0−η1
η0+η1

[
P(m)

n ( j
k0

η0)
]2 exp{−2η0z0}

η0
λ2m+3dλ.

The collection of the two previously obtained relations allows us to conclude that∫
D0/Di

J∗Er
0pxdτ =

4π j|px|
2(2m− 1)!!

k2m
0 (2m)!!

∞∫
0

η0 − η1

η0 + η1

[
P(m)

n

(
j

k0
η0

)]2 exp{−2η0z0}
η0

λ2m+1dλ−

−4π j|px|
2(2m + 1)!!

k2m+2
0 (2m + 2)!!

∞∫
0

η0 − η1

η0 + η1

[
P(m)

n

(
j

k0
η0

)]2 exp{−2η0z0}
η0

λ2m+3dλ =

4π j|px|
2(2m− 1)!!

k2m+2
0 (2m)!!

∞∫
0

η0 − η1

η0 + η1

(
k2

0 − λ2 (2m + 1)
(2m + 2)

)[
P(m)

n

(
j

k0
η0

)]2 exp{−2η0z0}
η0

λ2m+1dλ.

(26)

Obtaining the real part from both sides of (26) and accounting for (22), we finally
apprehend the following

−Re
∫

D0/Di

J∗(Q, M0)Er
0(Q) · pxdτQ =

4π|px |
2(2m−1)!!

k2m+2
0 (2m)!!

Im
k1∫
0

η0−η1
η0+η1

(
k2

0 − λ2 (2m+1)
(2m+2)

)[
P(m)

n ( j
k0

η0)
]2 exp{−2η0z0}

η0
λ2m+1dλ.

(27)

It is clear that, for the y-component, we can obtain a similar representation.
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2.3. Results

In the previous section, we completed all preliminary considerations and are ready to
formulate the main result.

Theorem 1. Let us consider the boundary value problem of excitation (1) of a penetrable scatterer
deposited above a transparent substrate by a multipole of arbitrary order (4) and polarization p
= (px,py,pz), localized at the point M0 = (0,0,z0) of the Cartesian coordinate system. Then, the
extinction cross-section Cext := Cscs + Cabs [27] accepts the following form:

Cext = −
4π

k0
Re
[
Dm+

n (Es
0(M)·p)

]
M=M0

+
π

k2
0

{[
2
3

βm
n +

1
3

](
p2

x + p2
y

)
+

[
2
3
− 2

3
βm

n

]
p2

z

}
‖ Pm

n ‖
2+

4πp2
z(2m− 1)!!

k2m+2
0 (2m)!!

Im
k1∫

0

ε1η0 − ε0η1

ε1η0 + ε0η1

[
P(m)

n

(
j

k0
η0

)]2 exp{−2η0z0}
η0

λ2m+3dλ+

4π
(

p2
x + p2

y

)
(2m− 1)!!

k2m+2
0 (2m)!!

Im
k1∫

0

η0 − η1

η0 + η1

(
k2

0 − λ2 (2m + 1)
(2m + 2)

)[
P(m)

n

(
j

k0
η0

)]2 exp{−2η0z0}
η0

λ2m+1dλ.

(28)

It is can clearly be observed that, in case of an absence of the substrate
ε1 = ε0 ⇒ k1 = k0 ⇒ η1 = η0 , the Formula (28) is reduced to the following:

C0
ext = −

4π

k0
Re
[
Dm+

n (Es
0(M) · p)

]
M=M0

+
π

k2
0

{[
2
3

βm
n +

1
3

](
p2

x + p2
y

)
+

[
2
3
− 2

3
βm

n

]
p2

z

}
‖Pm

n ‖
2, (29)

which represents the OT for multipole excitations of a particle in free space [25].
Let us consider a specific case: excitation by a vertical electric quadrupole px = py = 0

deposited in M0 = (0, 0, z0). This case corresponds to m = 0, n = 1. Subsequently,

D0
1 = P1(

j
k0

∂

∂z
) =

j
k0

∂

∂z
.

Using an estimate of the second term in (29), and then following [25], we obtain
the following:

π∫
0

[P1(cos θ)] sin2 θ sin θdθ =

1∫
−1

x2(1− x2)dx =
4
15

.

Considering that D0+
1 = − j

k0
∂
∂z , Formula (29) can be rewritten as

C0
ext =

4π

k2
0

Im
[

pz ·
∂

∂z
Es

0(M)

]
M=M0

+
4π

15k2
0

. (30)

We subsequently transform the corresponding integral in (28) as

4πp2
z

k2
0

Im
k1∫
0

ε1η0−ε0η1
ε1η0+ε0η1

[
j

k0
η0

]2 exp{−2η0z0}
η0

λ3dλ =

− 4πp2
z

k4
0

Im
k1∫
0

ε1η0−ε0η1
ε1η0+ε0η1

exp{−2η0z0}η0λ3dλ.

Then, we finally obtain the extinction cross-section for the vertical electric quadrupole
in the following form:

Cext =
4πp2

z

15k2
0
+

4π

k2
0

Im
[

pz ·
∂

∂z
Es

0(M)

]
M=M0

− 4πp2
z

k4
0

Im
k1∫

0

ε1η0 − ε0η1

ε1η0 + ε0η1
exp{−2η0z0}η0λ3dλ. (31)

The first term in (31) is responsible for the energy emitted by the excited source at infin-
ity in free space, and the last term is responsible for the presence of the transparent prism.
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2.4. Discussion

The result obtained is the most important generalization of the optical theorem to
the case of a local scatterer of an arbitrary internal structure, located near a transparent
substrate, and excited by an electric multipole of arbitrary polarization and arbitrary order.
Previous generalizations of the OT were made for the case of a scatterer in free space [17]
or for the case of excitation by some special case of multipole excitation [13]. In all these
cases, the expression for the extinction cross-section is expressed in a closed analytical form,
which includes only definite integrals, and there are no Sommerfeld integrals which are
responsible for the near field.

An essential difference between excitation by a multipole and a plane wave is the
presence of a constant term in Equations (28) and (29), which is responsible for the radiation
energy of the multipole itself, in the absence of a scatterer. This term is absent for the case
of the classical formula for excitation by a plane wave, since the energy flux of a plane
wave through any closed surface is equal to zero. Therefore, the obtained Formulas (28)
and (29) convert into the classical case, even when the local source of excitation is moving
to infinity.

The generalized optical theorem (28) obtained can be used to test computer models
by comparing the scattering cross-section for non-absorbing particles with the extinction
cross-section. The fact is that the extinction cross-section is presented in a closed analytical
form, and the scattering cross-section for particles located near a transparent substrate is
expressed in terms of elementary functions [24], which makes the implementation of such
a test a simple task. In addition, it seems to be useful for analyzing the fine structure of the
fluorescence process [28] and for considering the excitation of optical antennas located on
a transparent substrate [29]. Some preliminary results obtained from the application of the
generalized optical theorem have been published in [30].

3. Conclusions

In the present paper, we generalized the optical theorem to the case of a penetrable
particle deposited near a transparent substrate excited by an electric multipole of arbitrary
order and polarization. The generalization of the OT, performed in the present study, is
part of the scientific progress in the accumulation of knowledge and the expansion of its
area of application. As noted in the introduction, the generalization of the OT can be used
in the same situations as the classical OT. It can be used, for example, for the verification of
a new computer model when a local non absorbing particle, in the presence of a transparent
substrate, is excited by a multipole, or to perform investigations of the fine structure of
the fluorescent process for Raman spectroscopy or for the analysis of the excitation of
the optical antennas deposited on a transparent substrate. It should be emphasized that
multipoles are increasingly more involved in practical optics. They are most actively used
to determine the contribution of various harmonics (dipoles, quadrupoles, among others)
to scattering by a local obstacle [6,31].
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Appendix A

The corresponding spectral functions v11, v33, v31 provide satisfaction of the transmis-
sion conditions at z = 0 and accept the following form:

vll(λ, z, z0) =

{ exp{−η0|z−z0|}
η0

+ All(λ, z0)
exp{−η0z}

η0
, z0 > 0, z ≥ 0,

Bll(λ, z0)
exp{η1z}

η0
, z0 > 0, z ≤ 0, l = 1, 3;

(A1)

v31(λ, z, z0) =

{
A31(λ, z0) exp{−η0z}, z0 > 0, z ≥ 0,

B31(λ, z0) exp{η1z}, z0 > 0, z ≤ 0
(A2)

here η2
0,1 = λ2 − k2

0,1; k0,1 = k · n0,1 and

A11(λ, z0) =
η0 − η1

η0 + η1
ζ0; B11(λ, z0) =

2η0ζ0

η0 + η1
; (A3)

A33(λ, z0) =
ε1η0 − ε0η1

ε1η0 + ε0η1
ζ0; B33(λ, z0) =

2ε1η0ζ0

ε1η0 + ε0η1
; (A4)

A31(λ, z0) =
2(ε1 − ε0)ζ0

(η0 + η1)(ε1η0 + ε0η1)
; B31(λ, z0) =

2(ε1 − ε0)ζ0

(η0 + η1)(ε1η0 + ε0η1)
, (A5)

where ζ0 = exp{−η0z0}.
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