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Abstract: According to the spatial dimension, equation type, and time sequence, the latest progress
in controllability of stochastic linear systems and some unsolved problems are introduced. Firstly, the
exact controllability of stochastic linear systems in finite dimensional spaces is discussed. Secondly,
the exact, exact null, approximate, approximate null, and partial approximate controllability of
stochastic linear systems in infinite dimensional spaces are considered. Thirdly, the exact, exact
null and impulse controllability of stochastic singular linear systems in finite dimensional spaces
are investigated. Fourthly, the exact and approximate controllability of stochastic singular linear
systems in infinite dimensional spaces are studied. At last, the controllability and observability for a
type of time-varying stochastic singular linear systems are studied by using stochastic GE-evolution
operator in the sense of mild solution in Banach spaces, some necessary and sufficient conditions
are obtained, the dual principle is proved to be true, an example is given to illustrate the validity
of the theoretical results obtained in this part, and a problem to be solved is introduced. The main
purpose of this paper is to facilitate readers to fully understand the latest research results concerning
the controllability of stochastic linear systems and the problems that need to be further studied, and
attract more scholars to engage in this research.

Keywords: controllability; observability; stochastic linear systems in finite and infinite dimensional
spaces; stochastic singular linear systems in finite and infinite dimensional spaces; semigroup;
evolution operator; GE-semigroup; GE-evolution operator; stochastic GE-evolution operator

1. Introduction

Since Kalman published the seminal paper [1], the controllability of stochastic systems
has become a central problem in the study of mathematical control theory, a large number
of academic papers have been published. For representative papers, see references [1–73].
However, even for the controllability of stochastic linear systems, there are still many
important problems to be solved. In this paper, we discuss the latest development of
controllability of stochastic linear systems and raise some unsolved issues. According to
the spatial dimension, equation type and time sequence, the rest of the paper is organized
as follows. In Section 2, the following contents are introduced concerning the controllability
of stochastic linear systems in finite dimensional spaces: (i) The Lp−exact controllability
and exact observability are discussed; (ii) The exact controllability by feedback controller is
considered; (iii) The exact controllability of the stochastic linear systems with memory is
investigated; (iv) Some theoretical results for these concepts are given and four important
problems to be solved are put forward. In Section 3, the controllability of stochastic
linear systems in infinite dimensional spaces is considered: (i) The null controllability
is investigated by using C0−semigroup in the sense of mild solution in Hilbert spaces;
(ii) The approximate controllability and approximate null controllability are discussed
by using C0−semigroup in the sense of mild solution in Hilbert spaces; (iii) The partial
approximate controllability is studied by using evolution operator in the sense of mild
solution in Hilbert spaces; (iv) According to these theories, three problems that need to be
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studied are raised. In Section 4, the controllability of stochastic singular linear systems in
finite dimensional spaces is dealt with: (i) The exact controllability is considered by using
Gramian matrix; (ii) The exact null controllability is studied by using Gramian matrix;
(iii) The impulse controllability and impulse observability are investigated in the sense of
impulse solution; (iv) A problem that needs to be discussed is put forward. In Section 5,
the controllability of stochastic singular linear systems in infinite dimensional spaces is
studied: (i) The exact controllability for a type of time invariant systems is considered
by using C0−semigroup in the sense of strong solution in Hilbert spaces; (ii) The exact
controllability and approximate controllability for a type of time invariant systems are
investigated by using GE-semigroup in the sense of mild solution in Banach and Hilbert
spaces, respectively; (iii) The exact controllability and approximate controllability for a type
of time-varying systems are dealt with by using GE-evolution operator in the sense of mild
solution in Hilbert spaces; (iv) The exact controllability and approximate controllability for
a type of time invariant systems are considered by using stochastic GE-evolution operator
in the sense of mild solution in Banach spaces; (v) The exact controllability, approximate
controllability, exact observability, and approximate observability for a type of time-varying
systems are studied by using stochastic GE-evolution operator in the sense of mild solution
in Banach spaces. Some necessary and sufficient conditions concerning these concepts
are obtained, the dual principle is proved to be true, an example is given to illustrate the
validity of the theoretical results obtained in this part, and a problem to be solved is raised.

The main idea of this paper is to introduce the latest progress for the controllability of
stochastic linear systems and the mathematical methods applied in this field, including
GE-semigroup, GE-evolution operator, stochastic GE-evolution operator and so on. The
main purpose of this paper is to facilitate readers to fully understand the latest research
results concerning the controllability of stochastic linear systems and the problems that
need to be further studied, and attract more scholars to engage in this research.

Notations. (Ω, F, {Ft}, P) is a complete probability space with filtration {Ft} satisfying
the usual condition (i.e., the filtration contains all P−null sets and is right continuous); all
processes are {Ft}−adapted; w(t) is a standard Wiener process defined on (Ω, F, {Ft}, P); E
denotes the mathematical expectation; Rn is the n−dimensional real Euclidean space with
the standard norm ‖ · ‖Rn , Rn×m is the space of all (n×m) real matrices; In ∈ Rn×n denotes
the identical matrix; T denotes the transpose of a vector or a matrix; H = Rn,Rn×m,

etc, and p ∈ [1, ∞); Lp([0, τ]; H) denotes the set of all functions f : [0, τ] → H sat-
isfying ‖ f (·)‖Lp([0,τ];H) = (

∫ τ
0 ‖ f (t)‖p

Hdt)1/p < ∞; L∞([0, τ]; H) denotes the subset of
Lp([0, τ]; H) whose element is essentially bounded; C([0, τ]; H) denotes the set of all func-
tions f : [0, τ] → H, which are continuous on [0, τ] in the sense of ‖ f (·)‖C([0,τ];H) =
maxt∈[0,τ]‖ f (t)‖H ; Lp(Ω, Ft, P, H) denotes the set of all random variables η ∈ H, such that
η is Ft−measurable and ‖η‖p = (E(‖η‖p

H))
1/p < +∞; Lp([0, τ], Ω, Ft, H) denotes the set of

all processes x(t) ∈ H such that ‖x(t)‖p < +∞, ∀t ∈ [0, τ]; Lp([0, τ], Ω, H) denotes the set
of all processes x(t) ∈ Lp([0, τ], Ω, Ft, H) such that E

∫ τ
0 ‖x(t)‖

p
Hdτ < +∞; L∞([0, τ], Ω, H)

is the subset of L2([0, τ], Ω, H) where each element x(·) is essentially bounded; Let A
be a linear operator. dom(A), ker(A) and ran(A) denote its domain, kernel and range,
respectively; I denotes the identical operator. Other mathematical symbols involved in this
paper will be properly explained in the discussion.

2. Exact Controllability of Finite Dimensional Stochastic Linear Systems

In this section, we discuss the latest development of exact controllability of finite
dimensional stochastic linear systems.
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2.1. Lp-Exact Controllability

In 2017, Wang et al. consider the controllability of the following stochastic linear
differential equation in [59]:

dx(t) = [A(t)x(t) + B(t)u(t)]dt +
d

∑
k=1

[Ck(t)x(t) + Dk(t)u(t)]dwk(t), t ≥ 0, (1)

where A, Ck: [0, τ]×Ω→ Rn×n and B, Dk: [0, τ]×Ω→ Rn×m(k = 1, 2, · · · , d) are suitable
matrix-valued processes; x(t) is the state process valued in Rn and u(t) is the control pro-
cess valued in Rm; {wk(t): (k = 1, 2, · · · , d)} is a system of independent one-dimensional
standard Wiener processes, w(t) = (w1(t), · · · , wd(t)). We will denote system (1) by
[A(·), C(·); B(·), D(·)], with C(·) = (C1(·), · · · , Cd(·)) and D(·) = (D1(·), · · · , Dd(·)).

For the convenience of narration, the following notations and concepts are introduced.
Lp

F(Ω; Lq([0, τ]; H)) is the set of all processes x(·) valued in H, such that

‖x(·)‖Lp
F(Ω;Lq([0,τ];H)) = [E(

∫ τ

0
‖x(t)‖q

Hdt)p/q]1/p < ∞,

Lp
F(Ω; Lp([0, τ]; H)) = Lp

F([0, τ]; H), p ∈ [1, ∞].

Lp
F(Ω; C([0, τ]; H)) is the set of all processes x(·) valued in H, such that for almost

ω ∈ Ω, t→ x(t, ω) is continuous and

‖x(·)‖Lp
F(Ω;C([0,τ];H)) = [E(supt∈[0,τ]‖x(t)‖

p
H)]

1/p < ∞.

In the similar manner, one can define
L∞

F (Ω; L∞([0, τ]; H)) and L∞
F (Ω; C([0, τ]; H)).

Hypothesis 1. The Rn×n−valued processes A(·), Ck(·) satisfy

A(·), Ck(·) ∈ L∞
F (Ω; L∞([0, τ];Rn×n))(k = 1, · · · , d).

Hypothesis 2. For some µ ∈ (1, ∞] and σ ∈ (2, ∞], the following hold:

B(·) ∈ Lµ
F(Ω; L

2σ
σ+2 ([0, τ];Rn×m)), µ ∈ (1, ∞], σ ∈ (2, ∞),

B(·) ∈ Lµ
F(Ω; L2([0, τ];Rn×m)), µ ∈ (1, ∞], σ = ∞,

D1(·), · · · , Dd(·) ∈ Lµ
F(Ω; Lσ([0, τ];Rn×m)).

Now, we introduce the following definition.

Definition 1. (i) A process u(t)(t ∈ [0, τ]) is called a feasible control of system (1) if under
u(t), for any x0 ∈ Rn, system (1) admits a unique strong solution x(t) ∈ L1

F(Ω; C([0, τ];Rn))
satisfying x(0) = x0. The set of feasible controls is denoted by U[0, τ];

(ii) A control u(t) ∈ U[0, τ] is said to be Lp−feasible for system (1) if

p ≥ 1, B(·)u(·) ∈ Lp
F(Ω; L1([0, τ];Rn)), Dk(·)u(·) ∈ Lp

F(Ω; L2([0, τ];Rn×n))

holds true. The set of Lp−feasible controls is denoted by Up[0, τ];
(iii) System (1) is said to be Lp−exactly controllable by U[0, τ] on [0, τ], if for any

x0 ∈ Rn and ξ ∈ Lp(Ω, Fτ , P,Rn), there exists a u(·) ∈ U[0, τ] such that the solution
x(·) ∈ L1

F(Ω; C([0, τ];Rn)) of (1) with x(0) = x0 satisfies x(τ) = ξ.
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2.1.1. The Case D(·) = 0

In this case, we consider system [A(·), C(·); B(·), 0], i.e., the state equation is

dx(t) = [A(t)x(t) + B(t)u(t)]dt +
d

∑
k=1

Ck(t)x(t)dwk(t), t ≥ 0. (2)

Thus, the control u(·) does not appear in the diffusion. The Lp−exact controllability
of system (2) was discussed and the following results were obtained in [59].

Theorem 1 ([59]). Let Hypothesis 1 hold. Let

B(t)B(t)T ≥ δIn, t ∈ [0, τ], a.s.,

for some δ > 0. Then for any p > 1, system (2) is Lp−exactly controllable on [0, τ] by
Up− = ∩q∈(0,p)Uq[0, τ].

Theorem 2 ([59]). Let Hypothesis 1 hold. Suppose there exists a continuous differentiable function
f : [0, τ]→ Rn, ‖ f (t)‖Rn = 1, for all t ∈ [0, τ] such that f (t)T B(t) = 0. Additionally, let

Ck(·) ∈ L∞
F (Ω; C([0, τ];Rn×n)), 1 ≤ k ≤ d. (3)

Then for any p > 1, system (2) is not Lp−exactly controllable on [0, τ] by Up[0, τ].

Corollary 1 ([59]). Let Hypothesis 1 and (3) hold. Let B ∈ Rn×m.
(i) If for some p > 1, system [A(·), C(·); B, 0] is Lp−exactly controllable on [0, τ] by

Up[0, τ], then
rankB = n, (4)

where rankB denotes the rank of B;
(ii) If (4) holds, then for any p > 1, system [A(·), C(·); B, 0] is Lp−exactly controllable on

[0, τ] by Up−[0, τ].

The above result shows that the gap between condition (4) and the Lp−exact control-
lability of system [A(·), C(·); B, 0] (by Up[0, τ], or Up−[0, τ]) is very small.

2.1.2. The Case rankD(·) = n

In this case, we let d = 1, i.e., the Wiener process is one-dimensional. The case d > 1
can be discussed similarly. For system [A(·), C(·); B(·), D(·)], we assume the following:

D(t)D(t)T ≥ δIn, a.s., a.e.t ∈ [0, τ]. (5)

In this case, [D(t)D(t)T ]−1 exists and uniformly bounded. We define

Ã(t) = A(t)− B(t)D(t)T [D(t)D(t)T ]−1C(t),

B̃(t) = B(t){In − D(t)T [D(t)D(t)T ]−1D(t)}, D̃(t) = B(t)D(t)T [D(t)D(t)T ]−1,

and introduce the following controlled system:

dx(t) = [Ã(t)x(t) + B̃(t)v(t) + D̃(t)z(t)]dt + z(t)dw(t), t ∈ [0, τ], x(0) = x0, (6)

with x(t) being the state and (v(·), z(·)) being the control. For system (6), we need the
following set and definition:

Ũp[0, τ] = {v(τ) : B̃(τ)v(τ) ∈ Lp
F(Ω; L1([0, τ];Rn)).
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Definition 2. System (6) is said to be exactly null-controllable by

Ũp[0, τ]× Lp
F(Ω; L2([0, τ];Rn))

on the [0, τ], if for any x0 ∈ Rn, there exists a pair

(v(·), z(·)) ∈ Ũp[0, τ]× Lp
F(Ω; L2([0, τ];Rn)),

such that the solution x(·) to

dx(t) = [Ã(t)x(t) + B̃(t)v(t) + D̃(t)z(t)]dt + z(t)dw(t), t ∈ [0, τ],

x(0) = x0, x(τ) = ξ, (7)

under (v(τ), z(τ)) satisfies x(τ) = 0.

The following results were obtained in [59].

Theorem 3 ([59]). Let Hypothesis 1 and (5) hold. Suppose

Ã(t) ∈ L∞
F (Ω; L1+ε([0, τ];Rn×n)), D̃(t) ∈ L∞

F (Ω; L2([0, τ];Rn×n)),

where ε > 0 is a given constant. Then system (1) is Lp−exactly controllable on [0, τ] by Up[0, τ] if
and only if system (6) is Lp−exactly controllable on [0, τ] by Ũp[0, τ]× Lp

F(Ω; L2([0, τ];Rn)).

Theorem 4 ([59]). Let Hypothesis 1 and (5) hold. Suppose

Ã(t) ∈ L∞
F (Ω; L1+ε([0, τ];Rn×n)), B̃(t) ∈ Lmax{2,p}+ε

F (Ω; L2+ξ([0, τ];Rn×m)),

D̃(t) ∈ L∞
F (Ω; L2+ε([0, τ];Rn×n)), (8)

where ε > 0 is a given constant. Then the following are equivalent:
(i) System (6) is Lp−exactly controllable on [0, τ] by Ũp[0, τ]× Lp

F(Ω; L2([0, τ];Rn));
(ii) System (6) is exactly null-controllable on [0, τ] by Ũp[0, τ]× Lp

F(Ω; L2([0, τ];Rn));
(iii) Matrix G defined below is invertible:

G = E
∫ τ

0
Y(t)B̃(t)B̃(t)TY(t)Tdt, (9)

where Y(·) is the adapted solution to the following stochastic linear equation:

dY(t) = −Y(t)Ã(t)dt−Y(t)D̃(t)dw(t), t ≥ 0, Y(0) = In.

Theorem 5 ([59]). Let Hypothesis 1, (5), and (8) hold. Then system (1) is Lp−exactly controllable
on [0, τ] by Up[0, τ] if and only if G defined by (9) is invertible.

In the above, we have discussed the two extreme cases: either D(·) = 0 or rankD(·) = n.
The case in between remains open. Therefore, we have the following open problem.

Problem 1. If 0 < rankD(·) < n, what are the conditions under which system (1) can be
Lp−exactly controlled?

2.1.3. Duality and Observability Inequality

In this subsection, we introduce the dual principle for system (1). The following result
was obtained in [59].



Mathematics 2021, 9, 3240 6 of 42

Theorem 6 ([59]). Let hypotheses 1 and 2 hold. Then system (1) is Lp−exactly controllable on
[0, τ] by Up,µ,σ[0, τ] if and only if there exists a δ > 0 such that the following, called an observability
inequality holds:

‖B(·)Ty(·) +
d

∑
k

Dk(·)zk(·)‖Up,µ,σ [0,τ]∗ ≥ δ‖η‖Lq(Ω,Fτ ,P,Rn), ∀η ∈ Lq(Ω, Fτ , P,Rn),

where

Up,µ,σ[0, τ] = L
µp

µ−p
F (Ω; L

2σ
σ−2 ([0, τ];Rm)), p ∈ [1, µ), µ ∈ (1, ∞], σ ∈ (2, ∞),

Up,µ,σ[0, τ] = Lp
F(Ω; L

2σ
σ−2 ([0, τ];Rm)), p ∈ [1, µ), µ = ∞, σ ∈ (2, ∞),

Up,µ,σ[0, τ] = L
µp

µ−p
F (Ω; L2([0, τ];Rm)), p ∈ [1, µ), µ ∈ [1, ∞], σ = ∞,

Up,µ,σ[0, τ] = Lp
F(Ω; L2([0, τ];Rm)), p ∈ [1, µ), µ = σ = ∞;

Up,µ,σ[0, τ]∗ denotes the adjoint space of Up,µ,σ[0, τ]; (y(·), z(·)) (with z(·) = (z1(·), · · · ,
zd(·))) is the unique adapted solution to the following system:

dy(t) = −[A(t)Ty(t) +
d

∑
k=1

Ck(t)Tzk(t)]dt +
d

∑
k=1

zk(t)dwk(t), t ∈ [0, τ], y(τ) = η. (10)

Now, we introduce the following definition which makes the name “observability
inequality” aforementioned meaningful.

Definition 3. Let Hypothesis 1 hold and (y(t), z(t)) be the adapted solution to system (10) with
η ∈ Lq(Ω, Fτ , P,Rn). (i) For the pair (B(·),D(·)) with B(·), Dk(·) ∈ L1

F([0, τ];Rn×m)(k =
1, 2, · · · , d) and D(·) = (D1(·), · · · , Dd(·)), the map

η → K∗η = B(·)Ty(·) +
d

∑
k

Dk(·)Tzk(·)

is called an Y[0, τ]−observer of (10) if K∗η ∈ Y[0, τ], ∀η ∈ Lq(Ω, Fτ , P,Rm), where Y[0, τ]
is a subspace of L1

F([0, τ];Rm). System (10), together with the observer of (10) is denoted by
[A(·)T , C(·)T ; B(·)T , D(·)T ];

(ii) Subsystem [A(·)T , C(·)T ; B(·)T , D(·)T ] is said to be Lq−exactly observable by Y[0, τ]
observations if from the observation K∗ ∈ Y[0, τ], the terminal value η ∈ Lq(Ω, Fτ , P,Rn) of
y(·) at τ can be uniquely determined, i.e., the map K∗ : Lq(Ω, Fτ , P,Rn) → Y[0, τ] admits a
bounded inverse.

With the above definition, the following result was obtained in [59]:

Theorem 7 ([59]). Let Hypotheses 1 and 2 hold true. Then, system (1) is Lp−exactly controllable
on [0, τ] by Up,µ,σ[0, τ] if and only if system [A(·)T , C(·)T ; B(·)T , D(·)T ] is Lp−exactly observable
by Up,µ,σ[0, τ]∗ observations.

2.2. Exact Controllability by Feedback Controller

In 2018, Barbu and Tubaro consider the exact controllability by feedback controller of
the following stochastic linear system in [60]:

dx(t) + A(t)x(t)dt = B(t)u(t)dt +
d

∑
k=1

Ckx(t)dwk(t), x(0) = x0, (11)
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with the final target x(τ) = ξ, where A(·), B(·) ∈ C([0, ∞);Rn×m); for some γ > 0,
B(t)B(t)T ≥ γ2 In, ∀t ∈ [0, ∞); Ck ∈ Rn×n;

x(·) ∈ L2([0, τ], Ω,Rn), u(·) ∈ L2([0, τ], Ω,Rm); x0, ξ ∈ Rn.

The problem we address here is the following.

Problem 2. Given x0, ξ ∈ Rn find an Ft−adapted feedback controller u = f (x) and
u ∈ L2([0, τ], Ω,Rm), such that the solution x(t) to system (11) satisfies x(0) = x0, x(τ) = ξ.

Let F ∈ C([0, τ];Rn×n) be the solution to equation

dF(t) =
d

∑
k=1

CkF(t)dwk(t), t ≥ 0, F(0) = In.

By the substitution x(t) = F(t)z(t) one transforms via Ito’s formula equation (see [60]
for details) (11) into stochastic differential equation

dz(t)
dt

+ F(t)−1 A(t)F(t)z(t) = F(t)−1B(t)u(t), z(0) = x0. (12)

In (12), we take as u the feedback controller

u(t) = −α̃sign(F(t)−1B(t))T(z(t)− zτ)), t ≥ 0, (13)

where α̃ ∈ L2(Ω, FT , P,R), zτ ∈ L2(Ω, FT , P,Rn) are given and zτ = F(τ)−1ξ; sign : Rn →
Rn is the multivalued mapping signy = y

‖y‖Rn
if y 6= 0, signy = {β ∈ Rn : ‖β‖Rn ≤ 1} if

y = 0. Arguing as in the proof of Proposition 3.1 in [60], it follows that (12) has unique
absolutely continuous solution z(t). We note that if z(t) is an Ft−adapted solution to (12)
and (13) then x(t) = F(t)z(t) is the solution to closed loop system (11) with feedback control

u(t) = −α̃sign((F(t)−1B(t))T F(t)−1(x(t)− F(t)F(τ)−1x(τ))).

The following results were obtained in [60].

Theorem 8 ([60]). Let τ > 0, x0 ∈ Rn and ξ ∈ L2(Ω, Fτ , P,Rn) be arbitrary but fixed. Then
there is α̃ ∈ L2(Ω, FT , P,R), such that the controller (13) steers x0 in zτ , in time τ, with probabil-
ity one.

Remark 1. It should be noted that, under the assumption of the Theorem 8, the solution z(t) to (12)
is not adapted. Therefore, the solution x(t) = F(t)z(t) to system (11) is not Ft−adapted. Hence,
further research is needed on Problem 2.

Theorem 9 ([59]). Consider system (11) where A ∈ Rn×n, B ∈ Rn×m, 1 ≤ m ≤ n is time
independent and satisfy the Kalman rank condition rank[B, AB, · · · , An−1B] = n. Assume also
that d = 1, C1 = C and C2 = aC, C(Rn) ⊂ B(Rm) for some a ∈ R. Let τ > 0 and x0 ∈ Rn be
arbitrary but fixed. Then there is an Ft−adapted controller u ∈ L2([0, τ], Ω,Rm) which steers x0
in origin, in time τ, with probability one.

Remark 2. One might suspect that the controller u steering x0 in origin can be found in feedback
form but the problem is open.

See [60] (p. 22) for example of this part.
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2.3. Exact Controllability of Stochastic Differential Equation with Memory

In 2020, Wang and Zhou consider the exact controllability of the following controlled
stochastic linear differential equation with a memory in [61].

dx(t) = [A(t)x(t)dt + B(t)u(t) +
∫ t

0
M(t, s)x(s)ds]dt

+ [C(t)x(t) + D(t)u(t)]dw(t), t ≥ 0, (14)

where x(·), u(·) are the state variable, control variable which take values in Rn,Rm, re-
spectively; for any t, s ∈ [0, τ] with τ ∈ [0, ∞), A(t), M(t, s), C(t) ∈ Rn×n, and B(t), D(t) ∈
Rn×m; w(t) is 1-dimensional Wiener process. System (14) is denoted by [A(·), M(·, ·), C(·);
B(·), D(·)].

The following is definition of controllability for system (14).

Definition 4. For any τ0, τ(τ0 ≤ τ), the following system

dx(t) = [A(t)x(t)dt + B(t)u(t) +
∫ t

τ0

M(t, s)x(s)ds]dt

+ [C(t)x(t) + D(t)u(t)]dw(t), t ≥ 0, (15)

τ0 ∈ L2(Ω, Fτ0 , P,Rn), is called exactly controllable on [τ0, τ], if for any τ0 ∈ L2(Ω, Fτ0 , P,Rn),
τ ∈ L2(Ω, Fτ , P,Rn), there exists a control u(·) ∈ L2([τ0, τ], Ω,Rm), such that the solution
x(·, τ0, xτ0 , u(·)) to system (15) with initial condition x(τ0) = xτ0 satisfies x(τ, τ0, xτ0 , u(·)) = xτ

a.s.

Throughout this subsection, we introduce the following basic hypothesis:

A(·), C(·) ∈ L∞([0, τ], Ω,Rn×n), M(·, ·) ∈ L∞([0, τ]; L∞([0, τ], Ω,Rn×n)),

B(·), D(·) ∈ L∞([0, τ], Ω,Rn×m).

2.3.1. Time Invariant Systems

In this subsection, we discuss system (14) with time invariant matrices: i.e.,

[A(·), M(·, ·), C(·); B(·), D(·)] = [A, M, C; B, D].

To consider the exact controllability of system [A, M, C; B, D], we adopt the partial
controllability of controlled system as follows:

dx(t) = [A0(t)x(t)dt + B0(t)u(t)]dt + [A1(t)x(t)dt + B1(t)u(t)]dw(t), t ≥ 0. (16)

For fixed τ ≥ 0 and a matrix Q ∈ Rl×n, define Xτ = {ξ ∈ L2(Ω, Fτ , P,Rl) : ξ(ω) ∈
ran(Q)}.

Definition 5. Let a matrix Q ∈ Rl×n be given. System (16) is called Q−partially controllable on
[0, τ], if for any x0 ∈ Rn, ξ ∈ Xτ , there exists a u(·) ∈ L2([τ0, τ], Ω,Rm), such that the solution
x(·, x0, u(·)) to system (16) with the initial condition x(0) = x0 satisfies Qx(τ, x0, u(·)) = ξ a.s.

Setting

η(·) =
∫ .

0
x(s)ds, y(·) =

[
x1(·)
η(·)

]
, A0 =

[
A M
In 0

]
,

B0 =

[
B
0

]
, C0 =

[
C 0
0 0

]
, D0 =

[
B
0

]
,
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we can rewrite system [A, M, C; B, D] as follows:

dy(t) = [A0(t)y(t)dt + B0(t)u(t)]dt + [C0y(t)dt + D0u(t)]dw(t), t ≥ 0. (17)

The following results were obtained in [61].

Theorem 10 ([61]). System [A, M, C; B, D] is exactly controllable on [0, τ] with x(0) = x0 if and
only if system (17) is [In, 0]−partially controllable on [0, τ] with y(0) = [xT

0 , 0T ]T .

Theorem 11 ([61]). If system [A, M, C; B, D] is exactly controllable on [0, τ], then rankD = n.

In what follows, we tend to present a rank criterion ensuring system [A, M, C; B, D]′s
exact controllability. By Theorem 11, from now on, we suppose that rankD = n. Then,
there exists an invertible K ∈ Rm×m, such that DK = [In, 0]. Set

u(·) = K
[

u1(·)
u2(·)

]
+ Jy(·), BK = [B1, B2],

where B1∈ Rn×n, B2 ∈ Rn×(m−n), and J ∈ Rm×2n. Then, system (17) turns to

dy(t) = {[A0 +

[
BJ − B1([C, 0] + DJ)

0

]
]y(t)

+

[
B1
0

]
[u1(t) + ([C, 0] + DJ)y(t)] +

[
B2
0

]
u2(t)}dt

+

[
In
0

]
[u1(t) + ([C, 0] + DJ)y(t)]dw(t). (18)

Take

Ã0 = A0 +

[
BJ − B1([C, 0] + DJ)

0

]
, v(·) = u(·) + ([C, 0] + DJ)y(·).

Then, system (17) or (18) can be rewritten as

d
[

x(t)
η(t)

]
= [Ã0

[
x(t)
η(t)

]
+

[
B1
0

]
v(t) +

[
B2
0

]
u2(t)]dt

+

[
In
0

]
v(t)dw(t), t ≥ 0. (19)

In order to discuss the exact controllability of (19), we need to introduce the following
stochastic linear differential equation

d
[

x(t)
η(t)

]
= [Ã0

[
x(t)
η(t)

]
+

[
B1
0

]
v(t) +

[
B2
0

]
u2(t)]dt

+

[
In
0

]
v(t)dw(t), t ∈ [0, τ], x(τ) = 0, η(0) = 0. (20)

Let
L = −([0, In]e−ÃT

0 τ [0, In]
T)−1[0, In]e−ÃT

0 τ [In, 0]T ,

L0 = [In, LT ], B0 =

[
B2
0

]
, B̃0 =

[
B1 0
0 0

]
.

The determinant of a square matrix F will be denoted by detF.
The following result was obtained in [61].
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Theorem 12 ([61]). Suppose that for any u2(·) ∈ L2([0, τ], Ω,Rm−n) system (20) admits a
unique solution, and

det([0, In]e−ÃT
0 τ [0, In]

T) 6= 0, ∀t ∈ [0, τ]

holds. Then system [A, M, C; B, D] is exactly controllable if, and only if, the following rank
condition holds:

rank[L0B0, L0 Ã0B0, L0B̃0B0, L0 Ã0B̄0B0, L0B̃0 Ã0B0, · · · ] = n.

2.3.2. Time Varying System

In this part, we discuss time varying stochastic linear system with memory terms, and
tend to to provide some criteria. In Section 2.3.1, we can present some criteria ensuring
system [A, M, C; B, D]′s exact controllability. However, for time variant systems even for
systems without memory terms, it is difficult to list those criteria. However, for some
special systems, we still can make a try.

Case I. M(t, s) = M1(t)M2(s), 0 ≤ s ≤ t ≤ τ, and

M1(·), M2(·) ∈ L∞([0, τ], Ω,Rn×n).

In this case, we can set

η(·) =
∫ .

0
M2(s)x(s)ds, y(·) =

[
x1(·)
η(·)

]
, A0(·) =

[
A(·) M1(·)

M2(·) 0

]
,

B0(·) =
[

B(·)
0

]
, C0(·) =

[
C(·) 0

0 0

]
, D0(·) =

[
B(·)

0

]
.

Hence, time varying system [A(·), M(·, ·), C(·); B(·), D(·)]′s exact controllability turns
to the [In, 0]−partial controllability of the following linear system without memory term:

dy(t) = [A0(t)y(t)dt + B0(t)u(t)]dt + [C0y(t) + D0u(t)]dw(t), t ≥ 0. (21)

The following result provides an equivalent condition ensuring system (21)’s [In, 0]−
partial controllability (see [61] (Theorem 3.1)).

Theorem 13 ([61]). Assume that M(t, s) = M1(t)M2(s), 0 ≤ s ≤ t ≤ τ. Then the following
two statements are equivalent:

(i) System (21) is [In, 0]−partially controllable on [0, τ];
(ii) There exists a positive c such that the following observability inequality holds

‖ξ‖L2(Ω,Fτ ,P,Rn) ≤ c‖B0(·)TY(·) + D0(·)TZ(·)‖L2([0,τ],Ω,Rm),

for all ξ ∈ L2([0, τ], Ω,Rn), and (Y(·), Z(·)) solve the following equation:

dY(t) = [A0(t)TY(t)dt + C0(t)TZ(t)]dt + Z(t)dw(t), t ∈ [0, τ], Y(τ) = [In, 0]Tξ.

Remark 3. Theorem 13 can be used to determine some stochastic system’s exact controllability
(see [61] (Example 3.2)).

Case II. M(t, s) = M(t− s), 0 ≤ s ≤ t ≤ τ, and M(τ) ∈ L∞([0, τ], Ω,Rn×n).
In this case, for the stochastic system [A(·), M(·, ·), C(·); B(·), D(·)], we can present

the following sufficient condition (see [61] (Proposition 3.4)).

Theorem 14 ([61]). Assume that M(t, s) = M(t− s), 0 ≤ s ≤ t ≤ τ, and

M(τ) ∈ L∞([0, τ], Ω,Rn×n).
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If system [A(·), M(·, ·), C(·); B(·), D(·)] is exactly controllable on [τ0, τ], for some τ0 ∈ (0, τ),
then system [A(·), M(·, ·), C(·); B(·), D(·)] is exactly controllable on [0, τ].

The applicable example of this part can be found in [61] (p. 9).
According to the above discussion, further research is needed on the following problems.

Problem 3. Find a u(·) ∈ L2([0, τ], Ω,Rm) in general case such that the system (14) is ex-
actly controllable.

Problem 4. How to discuss the Lp−exact controllability for system (14)?

3. Controllability of Infinite Dimensional Stochastic Linear Systems

In this section, we discuss the latest development of controllability of infinite dimen-
sional stochastic linear systems.

In 2001, Sirbu and Tessitore discussed the null controllability of the following general
infinite dimensional linear stochastic differential equation in [62]:

dx(t) = [Ax(t) + Bu(t)]dt +
∞

∑
k=1

Ckx(t)dw1,k(t) +
∞

∑
j=1

Dju(t)dw2,j(t), x(0) = x0, (22)

where x(·) is the state process valued in H, u(·) is the control process valued in H, A :
dom(A) ⊆ H → H is the infinitesimal generator of a C0−semigroup in H (the Hilbert
space with product < ·, · >), B ∈ B(H) (the space of all bounded linear operators on H);
Ck, Dk ∈ B(H) for each i ∈ N and

∞

∑
k=1
‖Ck‖2

B(H) < +∞,
∞

∑
k=1
‖Dk‖2

B(H) < +∞;

the countable set {w1,k, w2,j, k, j ∈ N} consists of independent standard Wiener processes
defined on the stochastic basis (Ω, F, {Ft}, P).

Given any Hilbert space H, We denote by C2([0, τ], Ω, Ft, H) the space of all ξ ∈
L2([0, τ], Ω, Ft, H) such that ξ has a modification in C([0, τ]; L2(Ω, F, P, H)), where

L2(Ω, F, P, H) = {x : x is F−adapted process valued in H with norm

(E(‖x‖2
H))

1/2 < +∞}.

As it is well known (see for instance [62]) for any initial data x0 ∈ L2(Ω, F0, P, H) and
any control u ∈ L2([0, τ], Ω, Ft, H) there exists a unique mild solution x ∈ C2([0, τ], Ω, Ft, H)
of (22). When needed, we will denote the mild solution of (22) by x(·, x0, u) (the definition
of mild solution is in the ordinary sense).

Definition 6. For τ > 0, the state system (22) is τ−null controllable if for each x0 ∈ L2(Ω, F0, P, H)
there exists u ∈ L2([0, τ], Ω, Ft, H) such that the solution x(τ, x0, u) = 0, P−almost surely. More-
over, the system is null controllable if it is τ−null controllable for each τ > 0.

We recall a classical result on linear quadratic games for Equation (22). By Σ+(H) we
denote the space of all self-adjoint, non-negative, bounded linear operators on H. Moreover,
if J ⊂ R+ is an interval (bounded or unbounded), we denote by Cs(J; Σ+(H)) the space of
all maps Q : J → Σ+(H), such that Q(·)v is continuous in H for every v ∈ H.

Definition 7. We say that Y ∈ Cs((0, ∞); Σ+(H)) is a mild solution of the Riccati equation

dY(t)
dt

= A∗Y(t) + Y(t)A−Y(t)B[I +
∞

∑
j=1

D∗j Y(t)Dj]
−1B∗Y(t)
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+
∞

∑
j=1

C∗j Y(t)Cj + S, Y(0) = +∞ (23)

if
(i) For each δ ∈ (0,+∞), Y(·+ δ) is a mild solution of

dY(t)
dt

= A∗Y(t) + Y(t)A−Y(t)B[I +
∞

∑
j=1

D∗j Y(t)Dj]
−1B∗Y(t)

+
∞

∑
j=1

C∗j Y(t)Cj + S, Y(0) = Y(δ) ∈ Σ+(H);

(ii) lim(t,z)→(0,v) < Y(t)z, z >= +∞ for all v ∈ H, v 6= 0.

The following result was obtained in [62]:

Theorem 15 ([62]). The following conditions are equivalent:
(i) The Riccati Equation (23) has a mild solution;
(ii) The state system (22) is null controllable.

We assume that Ft = σ w1,k(s), w2,k(s), s ∈ [0, t], k ∈ N and introduce the following
backward stochastic differential equation:

dp(t) = −[A∗p(t) + +
∞

∑
k=1

C∗k q1,k(t)]dt +
∞

∑
k=1

q1,k(t)dw1,k(t)

+
∞

∑
j=1

q2,k(t)dw2,j(t), p(τ) = pτ .

The following duality approach was obtained in [62]:

Theorem 16 ([62]). The following statements are equivalent:
(i) System (1) is τ−null controllable;
(ii) There exists a constant Cτ > 0, such that for all pτ ∈ L2(Ω, Fτ , P, H) the following

observability relation holds:

‖p(0)‖2
L2(Ω,F0,P,H) ≤ CτE

∫ τ

0
‖B∗p(t) +

∞

∑
k=1

D∗k q2,k(t)‖2
L2(Ω,Ft ,P,H)dt.

Remark 4. We can give the similar characterization for the exact controllability on the interval
[0, τ]. This is equivalent to the stronger observability inequality

‖p(τ)‖2
L2(Ω,Fτ ,P,H) ≤ CτE

∫ τ

0
‖B∗p(t) +

∞

∑
k=1

D∗k q2,k(t)‖2
L2(Ω,Ft ,P,H)dt.

See [62] (p. 392) for the applicable example.

Problem 5. How about the controllability of the following system?

dx(t) = [A(t)x(t) + B(t)u(t)]dt +
∞

∑
k=1

Ck(t)x(t)dw1,k(t)

+
∞

∑
j=1

Dj(t)u(t)dw2,j(t), x(0) = x0,



Mathematics 2021, 9, 3240 13 of 42

where A(t) : dom(A(t)) ⊆ H → H is the generator of an evolution operator in the Hilbert space
H, B(t) : dom(B(t)) ⊂ U → H is unbounded, U is a Hilbert space; Ck(t) ∈ P([0, τ], B(H)),
Dk(t) ∈ P([0, τ], B(U, H)), for each i ∈ N, P([0, τ], B(U, H)) = {C(·) ∈ B(U, H) : C(·)z is
continuous for every z ∈ U and sup0≤t≤τ‖C(t)‖B(U,H) < +∞}; and

∞

∑
k=1

sup0≤t≤τ‖Ck(t)‖2
B(H) < +∞,

∞

∑
k=1

sup0≤t≤τ‖Dk(t)‖2
B(U,H) < +∞,

B(U, H) denotes the set of all bounded linear operators from U to H; the countable set

{w1,k, w2,j, k, j ∈ N}

consists of independent standard Wiener processes defined on the stochastic basis (Ω, F, {Ft}, P).

In 2015, Shen et al. studied the exact null controllability, approximate controllability
and approximate null controllability of the following linear stochastic system in [63]:

dx(t) = [Ax(t) + Bu(t)]dt + Cx(t)dw(t), x(0) = x0, (24)

where x(t) is the state process valued in H, u(t) is the control process valued in U, x(0) =
x0 ∈ L2(Ω, F0, P, H), w(t) is a standard Wiener process valued in W, and A : D(A) ⊆
H → H is the infinitesimal generator of a C0−semigroup on H; B ∈ B(U, H), C ∈
B(H, B(W, H)); H, U, W are separable Hilbert spaces. System (24) admits a unique mild
solution x(t, x0, u) ∈ L2

F(Ω; C([0, τ]; H)).
We introduce the following backward stochastic system as our adjoint system to obtain

sufficient conditions.

dy(t) = −[A∗y(t) + C∗z(t)]dt + z(t)dw(t), y(τ) = η, (25)

where A∗, C∗ denote the adjoint operators of A, C, respectively.
For any η ∈ H, system (25) admits a unique mild solution (y(t), z(t)). In (25) y(t)

can be interpreted as an evolution process of the fair price, whereas z(t) as the related
consumption and portfolio process.

Remark 5. When C is unbounded, the situation will be more complex.

The closure of a set S will be denoted by S.

Definition 8. For τ > 0, system (24) is null controllable at τ if for each x0 ∈ L2(Ω, F0, P, H),
there exists u ∈ U such that x(τ, x0, u) = 0, P− a.s.

System (24) is approximately controllable at τ if for each x0 ∈ L2(Ω, F0, P, H), there exists
u ∈ U such that {x(τ, x0, u), u ∈ U} = L2(Ω, Fτ , P, H), P− a.s.

System (24) is approximately null controllable at τ if for each x0 ∈ L2(Ω, F0, P, H), there
exists u ∈ U such that x(τ, x0, u) can be arbitrarily close to 0, P− a.s.

The following results were obtained in [63].

Theorem 17 ([63]). System (24) is null controllable if, and only if, there exists a positive constant
c, such that

‖y(0)‖2
L2(Ω,F0,P,H) ≤ c

∫ τ

0
‖B∗y(s)‖2

L2(Ω,Fτ ,P,H)ds.

Theorem 18 ([63]). Let (y(t), z(t)) denote the solution of (25).
(i) System (24) is approximate controllable at τ if and only if for every (y(t), z(t)) such that

B∗y(t) = 0 we have (y(t), z(t)) = 0, t ∈ [0, τ], P− a.s.;
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(ii) System (24) is approximate null controllable at τ if, and only if, for every y(t) such that
B∗y(t) = 0 we have y(0) = 0, t ∈ [0, τ], P− a.s.;

The illustrative example can be found in [63] (p. 601).

Problem 6. If A, B, C are A(t), B(t), C(t), respectively, and A(t) : dom(A(t)) ⊆ H → H is the
generator of an evolution operator; B(t), C(t) are unbounded in (24), how about the controllability
of this system?

In 2019, Dou and Lu studied the partial approximate controllability for the following
system in [64]:

dy(t)− A(t)y(t)dt = (A1(t)y(t) + Bu(t))dt

+ A2(t)y(t)dw(t), t ∈ (0, τ], y(0) = y0, (26)

here A(t) is a linear operator on H, which generates strongly continuous evolution operator;
A1(t), A2(t) ∈ L∞([0, τ]; B(H)), B ∈ B(U, H); U, H are separable Hilbert spaces; u ∈
L2([0, τ], Ft, P, U), y0 ∈ H, w(t) is a one-dimensional standard Wiener process. In (26), y is
the state process valued in H and u is the control process valued in U. In what follows,
y(·, y0, u) denotes the mild solution to (26).

In order to discuss the partial approximate controllability of (26), we introduce the
following equations and concepts.

dz(t)− A(t)∗z(t)dt = −(A∗1z(t) + A∗2 Z(t))dt + Z(t)dw(t), t ∈ (0, τ], z(τ) = zτ , (27)

where the final datum zτ ∈ L2(Ω, Fτ , P, H).
In what follows, we denoted by (z,Z) the mild solution to (27) (the definition of mild

solution is in the ordinary sense).

Definition 9. We say that (27) fulfills the unique continuation property (UCP) with respect
to B∗ if z = Z = 0 in H for a.e. (t, ω) ∈ [0, τ] × Ω, provided that B∗z = 0 in U for a.e.
(t, ω) ∈ [0, τ]×Ω.

z̃(t) + A(t)∗ z̃(t) = −A1(t)∗ z̃(t), t ∈ [t0, τ], z̃(τ) = z̃τ , (28)

where the final dataz̃τ ∈ H and t0 ∈ [0, τ].

Definition 10. We say that (28) fulfills UCP if z̃ = 0 in H for a.e. t ∈ [t0, τ], provided that
B∗ z̃ = 0 for a.e. t ∈ [t0, τ].

Hypothesis 3. Solutions to (28) fulfill the UPC for any t0 ∈ [0, τ].

Denoted by hk(x) the kth Hermite polynomial (see [64]). For k ∈ N∪ {0}, let

Hk = span{hk(
∫ τ

0
l(t)dw(t)) : l ∈ L2([0, τ],R), ‖l‖L2([0,τ],R) = 1}.

We have that H0 = R, Hk and Hr are orthogonal subspaces of L2(Ω, Fτ , P,R) for
k 6= r and

L2(Ω, Fτ , P,R) = ⊕∞
k=0Hk.

For k ∈ N ∪ {0}, denote by Hk(H) the closed subspace of L2(Ω, Fτ , P, H) generated
by H valued random variable of the form ∑r

j=1 ljvj(r ∈ N), lj ∈ Hk, and vj ∈ H. Let {ej}∞
j=1

be an orthonormal basis of H. It is easy to see that

Hk(H) = {
∞

∑
j=1

ljej : {lj}∞
j=1 ⊂ Hk, E

∞

∑
j=1
|lj|2 < +∞}.
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H0(H) = H, Hk(H) and Hr(H) are orthogonal subspaces of L2(Ω, Fτ , P, H) for k 6= r and

L2(Ω, Fτ , P, H) = ⊕∞
k=0Hk(H).

Write
L2

m(Ω, Fτ , P, H) = ⊕m
k=0Hk(H).

Clearly L2
m(Ω, Fτ , P, H) is a closed subspace of L2(Ω, Fτ , P, H). Denote by Γm the

orthogonal projection from L2(Ω, Fτ , P, H) to L2
m(Ω, Fτ , P, H).

Definition 11. System (26) is said to be m−approximately controllable if for any ε > 0, y0 ∈ H
and y1 ∈ L2

m(Ω, Fτ , P, H), there is a control u ∈ L2([0, τ], Ω, U), such that the corresponding
mild solution fulfills that ‖Γm(y(τ, y0, u)− y1)‖L2(Ω,Fτ ,P,H) < ε.

The system (26) is said to be partially approximately controllable if it is m−approximately
controllable for all m ∈ N.

To study the above controllability problem, we need the following notion.

Definition 12. Equation (27) is said to fulfill the m-unique continuation property (m-UCP) if
z = Z = 0 in H for a.e. (t, ω) ∈ [0, τ]×Ω, provided that zτ ∈ L2

m(Ω, Fτ , P, H) and B∗z = 0 in
U for a.e. (t, ω) ∈ [0, τ]×Ω.

Equation (27) is said to fulfill the partial UCP if it fulfills m-UCP for all m ∈ N.

The following results were obtained in [64].

Theorem 19 ([64]). (i) System (26) is m-approximately controllable if and only if (27) fulfills the
m-UCP;

(ii) System (26) is partially approximately controllable if and only if (27) fulfills the par-
tial UCP.

Theorem 20 ([64]). Suppose that Hypothesis 3 holds. Then system (26) is partially approximate
controllable.

Problem 7. If B is B(t), and A1(t), B(t), A2(t) are unbounded in (26), how about the controlla-
bility of this system?

4. Controllability of Finite Dimensional Stochastic Singular Linear Systems

Stochastic singular linear systems are also called stochastic implicit systems, stochastic
differential algebraic systems, stochastic descriptor systems, stochastic degenerate sys-
tems, and stochastic generalized systems, etc. Controllability is the important concept for
stochastic singular linear systems. So far, however, few results have been obtained. In this
section, we discuss the latest development of controllability of finite dimensional stochastic
singular linear systems.

In 2013, Gashi and Pantelous studied the exact controllability of the following stochas-
tic singular linear system in [65,66].

Ldx(t) = [Mx(t) + Bu(t)]dt + [Cx(t) + Du(t)]dw(t), x(0 = x0), (29)

where L, M, C ∈ Rn×n, detL = 0; B, D ∈ Rn×m, x(t) is the state process valued in Rn, u(t) is
the state process valued in Rm, w(t) is a one-dimensional standard Wiener process, (L, M)
is regular, i.e., matrix pencil det(sL−M) is not identically zero (s ∈ R). Let us begin by
stating the definition of exact controllability.

Definition 13. System (29) is called exactly controllable at time τ if for any x0 ∈ Rn and
ξ ∈ L2(Ω, Fτ , P,Rn), there exists at least one admissible control u(·) ∈ L2([0, τ], Ω,Rm), such
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that the corresponding trajectory x(·) satisfies the initial condition x(0) = x0 and the terminal
condition x(τ) = ξ, a.s.

The following result was obtained in [65,66].

Theorem 21 ([65,66]). (i) A necessary condition for exact controllability of (29) is

rankK̃1 = n− σ; (30)

(ii) Let the condition (30) hold. A necessary and sufficient condition for exact controllability
of (29) is

rankGτ = n− σ.

Here, Gτ is the Gramian matrix defined as

Gτ = E
∫ τ

0
Φ(t)K̃12K̃T

12Φ(t)Tdt,

where Φ(t) is the unique solution to the matrix stochastic differential equation

dΦ(t) = −Φ(t)[Ñdt + K̃11dw(t)], Φ(0) = I.

For the detail see [65] (Theorem 4) and [65] (Theorem 2).
In 2015, Gashi and Pantelous studied the exact controllability of the stochastic singular

linear system (29) on the basis of [65,66] in [67], in which L is skew-symmetric and M is
symmetric. The following result was obtained in [67].

Theorem 22 ([67]). (i) A necessary condition for exact controllability of (29) is

rankK̃1 = n− q− 2p; (31)

(ii) Let the condition (31) hold. A necessary and sufficient condition for exact controllability of
(29) is

rankGτ = n− q− 2p.

Here, Gτ is the Gramian matrix defined as

Gτ = E
∫ τ

0
Φ(t)K̃12K̃T

12Φ(t)Tdt,

where Φ(t) is the unique solution to the matrix stochastic differential equation

dΦ(t) = −Φ(t)[Ñdt + K̃11dw(t)], Φ(0) = I.

For the detail see [67] (Theorem 5).
See [67] (p. 9) for practical example.
In 2021, Ge and Ge considered the exact null controllability of stochastic singular

linear system (29).
Here, we assume that there are a pair of nonsingular deterministic and constant matri-

ces P1, Q ∈ Rn×n such that the following condition is satisfied:

P1LQ =

[
In1 0
0 N

]
, P1MQ =

[
B1 0
0 In2

]
,

P1B =

[
C1
C2

]
, P1CQ =

[
D1 0
0 0

]
, P1D =

[
G1
0

]
, (32)
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where N ∈ Rn2×n2 denotes a nilpotent matrix with order h, i.e., h = min{k : k ≥ 1, Nk = 0};

B1, D1 ∈ Rn1×n1 , C1, G1 ∈ Rn1×m, C2 ∈ Rn2×m, and n1 + n2 = n. Let
[

x1
x2

]
= Q−1x,

system (29) is equivalent to

dx1(t) = (B1x1(t) + C1u(t))dt + (D1x1(t) + G1u(t))dw(t), x1(0) = x10, (33)

Ndx2(t) = x2(t)dt + C2u(t)dt, x2(0) = x20. (34)

Now, we consider the initial value problem (34). In the following, assume that the
solution to (33) is the strong solution in the ordinary sense and (34) admits the stochastic
Laplace transform (see [68]). Applying the stochastic Laplace transform to (34), we have

(sN − In2)X2(s) = Nx20 + C2U(s). (35)

Definition 14. (Impulse Solution) Suppose that x2(t) is the inverse stochastic Laplace transform
of X2(s) obtained from (35). Then, x2(t) is the impulse solution to (34) in the sense of the stochastic
Laplace transform, or simply, the impulse solution to (34). In this case, if x1(t) denotes the solution

to (33), then x(t) = Q
[

x1(t)
x2(t)

]
is called the impulse solution of Equation (29).

Let Φ(t) be the solution of system

dΦ(t) = (B1dt + D1dw(t))Φ(t), Φ(0) = In1 , (36)

Definition 15. (Exact Null Controllability) System (33) and (34) is said to be exactly null control-

lable on [0, τ] if for any
[

x10
x20

]
∈ Rn, there exists u ∈ L2([0, τ], Ω, Rm), such that (33) and (34)

has a unique solution
[

x1(t)
x2(t)

]
satisfying the initial condition

[
x1(0)
x2(0)

]
=

[
x10
x20

]
in addition

to the terminal condition
[

x1(τ)
x2(τ)

]
= 0.

It is obvious that if (33) and (34) is exactly null controllable, so is (33) and (34). In gen-
eral, if N 6= 0, then (33) and (34) is not necessarily exactly null controllable. Consequently,
we assume that N = 0 in the following.

The following result was obtained in [68].

Theorem 23 ([68]). If G1 = 0, then the necessary condition for (33) to be exactly null controllable
on [0, τ] is that

E(
∫ τ

0
f 2(t)Φ−1(t)C1(Φ−1(t)C1)

Tdt) (37)

is invertible for any real valued polynomial f (t) not identical zero.

Let rankG1 = n1; let u(t) = M1

[
0

v(t)

]
, z(t) = D1x1(t), where M1 denotes an m×m

matrix, which satisfies G1M1 = [In1 0], and v(t) denotes an (m− n1)−dimension vector.
For the above u(t), system (33) and (34) is equivalent to

− dx1(t) = (F1x1(t) + F2z(t) + F3v(t))dt− z(t)dw(t), x1(0) = x10, (38)

x2(t) = −C2M1

[
0

v(t)

]
, t > 0, (39)

where

F1 = D1 − B1, F2 = −In1 , F3v(t) = −C1M1

[
0

v(t)

]
.
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Let Ψ(t) denote the solution of system

dΨ(t) = Ψ(t)(F1dt + F2dw(t)), Ψ(0) = In1 .

The following result was obtained in [68].

Theorem 24 ([68]). System (38) and (39) is exactly null controllable on [0, T] if, and only if,

E(
∫ τ

0
f 2(t)Ψ−1(t)F3(Ψ−1(t)F3)

Tdt)

is invertible for any real valued polynomial f (t) not identical to zero.

The practical example can be found in [68] (supplementary file).
In 2021, Ge considered the impulse controllability and impulse observability of the

following stochastic singular linear system in [69].

Adx(t) = Bx(t)dt + Cu(t)dt + Dx(t)dw(t), x(0) = x0, (40)

y(t) = Gx(t), (41)

where x(t) ∈ L2([0, τ], Ω,Rn) is the state vector, u(t) ∈ L2([0, τ], Ω,Rm) is the control
vector, w(t) is one dimensional standard Wiener process, x0 ∈ L2(Ω, F0, P,Rn) is a given
random variable, y(t) ∈ L2([0, τ], Ω,Rl) is the measurement output.

For a stochastic singular system, impulse terms may exist in the solution. In a practical
system, the impulse terms are generally undesirable because strong impulse behavior may
impede the working of the system or even damage the system. Therefore, the impulse
terms must be eliminated by imposing appropriate controls. In view of this fact, in this part,
the concepts of impulse controllability and impulse observability for stochastic singular
system (40) is considered.

In order to discusses the impulse controllability and impulse observability for stochastic
singular system (40), let us introduce the class Hn of all processes f (t) ∈ L2([0,+∞), Ω,Rn),
such that

(i) f (t) is mean square locally integrable;
(ii) There exist constants a ≥ 0 and M0 > 0 such that

(E‖ f (t)‖2
Rn)1/2 ≤ M0eat, t ≥ 0.

In the following, Ck(J, Ω,Rn) denotes the set of all k times continuously differ-
entiable stochastic processes x(t) ∈ L2(J, Ω,Rn), such that x(i)(t) ∈ L2(J, Ω,Rn)(i =
0, 1, · · · , k)(J = [0, τ]or[0,+∞); we assume that there are a pair of non-singular matrices
P1, Q ∈ Rn×n, such that the following condition is satisfied

P1 AQ =

[
In1 0
0 N

]
, P1BQ =

[
B1 0
0 In2

]
,

P1C =

[
C1
C2

]
, P1DQ =

[
D1 0
0 0

]
, GQ = [G1 G2],

(42)

where N ∈ Rn2×n2 is a nilpotent, the index of nilpotency of N is denoted by h, i.e.,
h = min{k : k is a positive integer, k ≥ 1, Nk = 0}, B1 ∈ Rn1×n1 , C1 ∈ Rn1×m, C2 ∈

Rn2×m, D1 ∈ Rn1×n1 , G1 ∈ Rl×n1 , G2 ∈ Rl×n2 , n1 + n2 = n. Let
[

x1(t)
x2(t)

]
= Q−1x(t),

system (40) and (41) is equivalent to

dx1(t) = (B1x1(t) + C1u(t))dt + D1x1(t)dw(t), x1(0) = x10, (43)

y1(t) = G1x1(t), (44)
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Ndx2(t) = x2(t)dt + C2u2(t)dt, x2(0) = x20, (45)

y2(t) = G2x2(t). (46)

Let Φ(t) be the solution of system

dΦ(t) = (B1dt + D1dw(t))Φ(t), Φ(0) = In1 ,

the following results were obtained in [69]

Theorem 25 ([69]). If u ∈ L2([0, τ], Ω,Rm) is a bounded Borel measurable function, then sub-
system (43) has a unique solution on [0, τ] with any x10 ∈ L2(Ω, F0, P,Rn1), and the solution is
given by the stochastic process

x1(t) = Φ(t)x10 + Φ(t)
∫ t

0
Φ−1(s)C1u(s)ds. (47)

Theorem 26 ([69]). For any x20 ∈ L2(Ω, F0, P,Rn2), u ∈ Ch−1([0,+∞), Ω,Rm) and u(i) ∈
Hm(i = 0, 1, · · · , h− 1), subsystem (45) has a unique impulse solution, which is given by

x2(t) = −
h−1

∑
i=1

δ(i−1)(t)[Nix20 +
h−1

∑
k=i

NkC2u(k−i)(0)]−
h−1

∑
i=0

NiC2u(i)(t), (48)

where δ(t) is the Dirac function, δ(i−1)(t) is the (i− 1)th derivative of δ(t).

Theorem 27 ([69]). Assume that (40) and (41) is equivalent to (43)–(46),

u ∈ Ch−1([0,+∞), Ω,Rm)

is a bounded Borel measurable function, and u(i) ∈ Hm(i = 0, 1, · · · , h − 1). Then, for any
x0 ∈ L2(Ω, F0, P,Rn), system (40) has a unique impulse solution on [0, τ], which is given by

x(t) = Q
[

x1(t)
x2(t)

]
, (49)

where x1(t) and x2(t) are given by (47) and (48), respectively.

Definition 16. System (40) is called impulse controllable, if for any x0 ∈ L2(Ω, F0, P,Rn),
there exists a bounded Borel measurable function u ∈ Ch([0,+∞), Ω,Rm) and u(i) ∈ Hm(i =
0, 1, · · · , h− 1), such that the coefficient vectors of δ(i)(t), i = 0, 1, · · · , h− 2, in the solution
formula (49) are all zero.

The following results were obtained in [69].

Theorem 28 ([69]). System (40) is impulse controllable if, and only if, subsystem (45) is im-
pulse controllable.

Theorem 29 ([69]). Subsystem (45) is impulse controllable if and only if for any

x20 ∈ L2(Ω, F0, P,Rn2),

there exists a bounded Borel measurable function u ∈ Ch−1([0,+∞), Ω,Rm) and u(i) ∈ Hm(i =
0, 1, · · · , h− 1), such that

Nx20 +
h−2

∑
i=0

Ni+1C2u(i)(0) = 0.
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Theorem 30 ([69]). System (40) is impulse controllable if, and only if,

ran(N) = ran([NC2 · · · Nh−1C2]),

where ran(N) = {y : y = Nz, z ∈ L2(Ω, F0, P,Rn2)}, ran([NC2 · · · Nh−1C2]) = {y :
∃αk ∈ L2(Ω, F0, P,Rm), k = 1, 2, · · · , h− 1, y = ∑h−1

k=1 NkC2αk}.

Now, we discuss the impulse observability of system (40) and (41). Without loss of
generality, let u(t) ≡ 0.

Definition 17. System (40) and (41) with subsystem (43)–(46) is called impulse observable if,
y2(t)|t=0 = 0 implies x2(t)|t=0 = 0.

Impulse observability guarantees the ability to uniquely determine the impulse be-
havior in solution from information of the impulse behavior in output, and focuses on the
impulse terms that take infinite values in the solution.

The following results were obtained in [69].

Theorem 31 ([69]). Subsystem (43) and (44) is always impulse observable.

Theorem 32 ([69]). System (40) and (41) is impulse observable if, and only if, one of the following
conditions holds:

(i) Subsystem (45) and (46) is impulse observable;
(ii)

ker(


G2N
G2N2

...
G2Nh

) = ker(N).

where ker(N) = {x : Nx = 0, x ∈ L2(Ω, F0, P, Rn2)},

ker(


G2N
G2N2

...
G2Nh

) = {x :


G2N
G2N2

...
G2Nh

x = 0, x ∈ L2(Ω, F0, P, Rn2)}.

For the impulse observability and impulse controllability, the so-called dual princi-
ple holds, which reveals the close relation between impulse observability and impulse
controllability.

In order to introduce the dual principle for system (40) and (41), let us first introduce
the dual system.

Definition 18. The following system{
ATdz(t) = BTz(t)dt + GTv(t)dt + DTz(t)dw(t),
w0(t) = CTz(t),

(50)

is called the dual system of the system (40) and (41).

The following dual principle was obtained in [69].

Theorem 33 ([69]). Let (50) be the dual system of system (40) and (41). Then, system (40) and
(41) is impulse observable (impulse controllable) if, and only if, its dual system (50) is impulse
controllable (impulse observable).
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An illustrative example is given in [69] (p. 908).
Furthermore, in 2021, Ge discussed the exact observability for a kind of stochastic

singular linear systems in the sense of impulse solution. Some necessary and sufficient
conditions were obtained. See [70] (Theorems 3.1 and 3.3) for details.

Problem 8. How to discuss the Lp−exact controllability for the following stochastic singular
linear system?

Ldx(t) = [A(t)x(t) + B(t)u(t)]dt +
d

∑
k=1

[Ck(t)x(t) + Dk(t)u(t)]dwk(t), t ≥ 0, x(0) = x0.

where L as defined in (29); A(t), B(t), Ck(t), Dk(t) as defined in (1).

5. Controllability of Infinite Dimensional Stochastic Singular Linear Systems

In this section the latest development of the controllability of infinite dimensional
stochastic singular linear systems is discussed by using the methods of C0−semigroup,
GE-semigroup, GE-evolution operator, and stochastic GE-evolution operator, respectively.
Some necessary and sufficient conditions concerning the controllability are introduced.

5.1. C0−Semigroup Method for a Class of Time Invariant Systems in Hilbert Spaces

In 2015, Liaskos et al. studied the exact controllability of the following stochastic
singular linear system by using the C0−semigroup method in the sense of strong solution
in Hilbert spaces in [71].

dLx(t) = [Mx(t) + Cu(t) + f (t)]dt + Bdw(t), t ∈ [0, τ], x(0) = ξ. (51)

In order to introduce the exact controllability, make the following assumptions
and preparations.

Let H, U, K be separable and infinite dimensional Hilbert spaces, x(t) be the state
process valued in H, u(t) be the control process valued in U, and w(t) be a U−valued
standard Wiener process in (51). The closure of an operator S will be denoted by S. We
use the notation S⊥ for the orthogonal complement of a set S and for the restriction of the
operator A to a linear subset S the symbol A|S. For the coefficients L, M, C, f , B, ξ involved
in (51), the following assumptions and definitions should be considered.
(A1) (i) L ∈ B(H), ker(L) 6= {0}. (ii) ker(L) = ker(L).
(A2) (i) M : dom(M) ⊆ H → H is a linear, densely defined and closed operator.

(ii) For the linear subspace D = {x ∈ dom(M) : Mx + f (t) ∈ ran(L)}, we assume
that D ∩ ker(L) = {0} and P⊥1 D is dense in P⊥1 H, where P1, P⊥1 are the projections onto
ker(L) and (ker(L))⊥, respectively.
(A3) (i) The operator pencil λL−M : dom(M)→ H is of parabolic type, i.e., the restriction
of the pencil λL−M : D → ran(L) is invertible with a bounded inverse (λL−M)−1, for
all λ > ω, where ω is a negative real constant. This regularity on the pencil also implies
that M(D) = ran(L) and M|D : D → ran(L) is invertible with a bounded inverse M−1.

(ii) The bounded pseudo-resolvent operators R1(λ) = (λL−M)−1L : H → D and
R2(λ) = L(λL−M)−1 : ran(L) → L(D) satisfy ‖U(λ)‖B(H) ≤ c

λ−ω , for all λ > ω, 0 <
c < 1, where U(λ) stands for both R1(λ), R2(λ).
(A4) f ∈ L1([0, τ]; H) ∩ L2([0, τ], Ω, Ft, H), satisfying f (t) ∈ L(D), P− a.s., a.e. in [0, τ].
(A5) B : U → H is a linear operator with ran(B) ⊆ L(D), such that B ∈ B(U, H).
(A6) ξ is a D−valued random variable P− a, s., with ξ ∈ L2(Ω, F0, P, H).
(A7) C ∈ B(K, H), with ran(C) ⊆ L(D), such that for any u ∈ L2([0, τ], Ω, K), the stochastic
process Cu(t), t ∈ [0, τ] satisfies

E[
∫ τ

0

∫ t

0
‖(L⊥)−1M0S1(s− t)(L⊥)−1(Cu(s) + f (s))‖Hdsdt] < ∞,
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where L⊥ = L|P⊥1 H : P⊥1 H → Q⊥H, Q is the projection onto ker(L∗); M0 = M(P⊥1 |D)−1,

S1(t) is the C0-semigroup in the closed subspace P⊥1 H generated by the operator (L⊥)−1M0.

Definition 19. An H−valued stochastic process x(t), t ∈ [0, τ], is called a strong solution of the
initial value problem (51), if

(i) x ∈ D, P− a.s., a.e. in [0, τ] and x ∈ L1([0, τ]; H), P− a.s.
(ii) Lx, Mx ∈ L1([0, τ]; H), P− a.s.
(iii) Lx(t) = Lξ +

∫ t
0 [Mx(s) + Cu(t) + f (s)]ds + Bw(t), P− a.s., a.e. in [0, τ].

From the above, the controlled stochastic singular linear system (51) has a unique
strong solution xu(t), t ∈ [0, τ], which admits the form:

xu(t) = (P⊥1 |D)−1S1(t)P⊥1 ξ +
∫ t

0
(P⊥1 |D)−1S1(t− s)(L⊥)−1[Cu(s) + f (s)]ds

+
∫ t

0
(P⊥1 |D)−1S1(t− s)(L⊥)−1Bdw(s), t ∈ [0, τ]. (52)

Definition 20. Stochastic singular linear system (51) is called exactly controllable at time τ > 0,
if for any ξ which is D−valued random variable P− a.s., with ξ ∈ L2(Ω, F0, PH) and for any ξτ

which is also a D−valued random variable P− a.s., with ξ ∈ L2(Ω, Fτ , P, H), there exists at least
one control u ∈ L2([0, τ], Ω, K), such that the corresponding strong solution xu(t), which admits
the form of (52), satisfies the initial condition xu(0) = ξ and the terminal condition xu(τ) = ξτ .

The following result was obtain in [71].

Theorem 34 ([71]). Suppose that L⊥S1(t)v(t)− f (t) ∈ ran(C), P− a.s., a.e. in [0, τ]. Then
there exists at least one u ∈ L2([0, τ], Ω, K), such that the corresponding strong solution xu(t),
which admits the form of (52), satisfies the initial condition xu(0) = ξ and the terminal condition
xu(τ) = ξτ and hence stochastic singular linear system (51) is exactly controllable.

See [71] for the details of practical example.
In 2018, Liaskos et al. studied the exact controllability of the stochastic singular linear

system (51) by using the C0−semigroup method in the sense of strong solution in Hilbert
spaces in [72].

Suppose that (A1)–(A6) hold true, and

E[
∫ τ

0

∫ t

0
‖M0(L⊥)−1S2(s− t)(L⊥)−1(Cu(s) + f (s))‖Hdsdt] < ∞.

Then, the controlled stochastic singular linear system (51) has a unique strong solution
xu(t), t ∈ [0, τ], which admits the form:

xu(t) = (P⊥1 |D)−1(L⊥)−1S2(t)Lξ

+
∫ t

0
(P⊥1 |D)−1(L⊥)−1S2(t− s)[Cu(s) + f (s)]ds

+
∫ t

0
(P⊥1 |D)−1(L⊥)−1S2(t− s)Bdw(s), t ∈ [0, τ], (53)

where S2(t) is the C0−semigroup generated by the operator M0(L⊥)−1.
The following result was obtained in [72]:

Theorem 35 ([72]). Suppose that S2(t)v(t)− f (t) ∈ ran(C), P− a.s., a.e. in [0, τ]. Then, there
exists at least one u ∈ L2([0, τ], Ω, K), such that the corresponding strong solution xu(t), which
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admits the form of (53), satisfies the initial condition xu(0) = ξ and the terminal condition
xu(τ) = ξτ and hence stochastic singular linear system (51) is exactly controllable.

5.2. GE-Semigroup Method for a Class of Time Invariant Systems

In this subsection, we discuss the controllability of the following time invariant
stochastic singular linear system by using GE-semigroup in the sense of mild solution in
Banach and Hilbert spaces, respectively,

Adx(t) = Bx(t)dt + Cv(t)dt + Ddw(t), x(0) = x0, t ≥ 0, (54)

where x(t) is the state process valued in H, v(t) is the control process valued in U, w(t) is
the standard Wiener process on Z, x0 ∈ L2(Ω, F0, P, H) is a given random variable, H, U, Z
are Banach or Hilbert spaces; A ∈ B(H), C ∈ B(U, H), D ∈ B(Z, H), B : dom(B) ⊆ H → H
is a linear operator. This subsection is organized as follows. Firstly, the GE-semigroup is
introduced and the mild solution of (54) is obtained; Secondly, the controllability of (54) is
discussed in Banach spaces; Thirdly, the controllability of (54) is discussed in Hilbert spaces.

5.2.1. GE-Semigroup and Mild Solution of System (54)

In this part, the existence and uniqueness of the mild solution to system (54) are
considered by GE-semigroup theory.

Definition 21 ([73–77]). Suppose {U(t) : t ≥ 0} is one parameter family of bounded linear
operators in Banach space H, and A is a bounded linear operator. If

U(t + s) = U(t)AU(s), t, s ≥ 0,

then {U(t) : t ≥ 0} is called a GE-semigroup induced by A.
If the GE-semigroup U(t) satisfies

lim
t→0+

‖U(t)x−U(0)x‖H = 0,

for arbitrary x ∈ H, then it is called strongly continuous on H.

Lemma 1 ([73,74,76,77]). If GE-semigroup U(t) is strongly continuous on H, then there exist
M ≥ 1 and ω > 0, such that

‖U(t)‖L(H,H) ≤ Meωt, t ≥ 0,

i.e., U(t) is exponentially bounded.

Definition 22 ([75–77]). Suppose U(t) is strongly continuous GE-semigroup induced by A. If

Bx = lim
h→0+

AU(h)A− AU(0)A
h

x,

for every x ∈ D1, where

D1 = {x : x ∈ dom(B) ⊆ H, U(0)Ax = x, ∃ lim
h→0+

AU(h)A− AU(0)A
h

x},

then B is called a generator of GE-semigroup U(t) induced by A.

Now, we consider the initial value problem (54).
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Definition 23. If B is a generator of GE-semigroup U(t) induced by A, x0 ∈ L2(Ω, F0, P, D1),
and v(t) ∈ L2([0, b], Ω, U); Cv(t), Ddw(t) ∈ A(L2([0, b], Ω, D1)), the mild solution x(t, x0)
to (54) is defined by

x(t, x0) = U(t)Ax0 +
∫ t

0
U(t− τ)Cv(τ)dτ +

∫ t

0
U(t− τ)Ddw(τ). (55)

From the above knowledge, we have the following proposition.

Proposition 1 ([76,77]). If B is the generator of GE-semigroup U(t) induced by A, v(t) ∈
L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D1); Cv(t), Ddw(t) ∈ A(L2([0, b], Ω, D1)), and U(0) is a
definite operator, then there exists unique mild solution x(t, x0) to (54), which is given by (55).

In the following, we suppose that Proposition 1 holds true.

5.2.2. Controllability of System (54) in Banach Spaces

In this following, we discuss the exact (approximate) controllability of system (54) in
Banach spaces. Some necessary and sufficient conditions are given.

Definition 24. (a) Stochastic singular system (54) is said to be exactly controllable on [0, b], if for
all x0 ∈ L2(Ω, F0, P, D1), xb ∈ L2(Ω, Fb, P, D1), there exists v(t) ∈ L2([0, b], Ω, U), such that
the mild solution x(t, x0) to (54) satisfies x(T, x0) = xb;

(b) Stochastic singular system (54) is said to be approximately controllable on [0, b], if for any
state xb ∈ L2(Ω, Fb, P, D1), any initial state x0 ∈ L2(Ω, F0, P, D1), and any ε > 0, there exists a
v ∈ L2([0, b], Ω, U), such that the mild solution x(t, x0) satisfies

‖x(b, x0)− xb‖L2(Ω,FT1 ,P,D1)
< ε.

In order to discuss the controllability, we introduce the following concepts.
Banach space {v(t) ∈ U : Cv(t) ∈ A(D1)} is still denoted by U.
Controllability operator

Cb
0 : L2([0, b], Ω, U)→ L2(Ω, Fb, P, D1)

associated with system (54) is defined as

Cb
0v =

∫ b

0
U(b− τ)Cv(τ)dτ.

It is obvious that operator Cb
0 is a bounded linear operator, and its dual

Cb∗
0 : L2(Ω, Fb, P, (D1)

∗)→ L2([0, b], Ω, U∗)

is defined by
Cb∗

0 z∗ = C∗U∗(b− τ)E(z∗|Fτ).

where z∗ ∈ L2(Ω, Fb, P, (D1)
∗).

The following results were obtained in [76].

Theorem 36 ([76]). Stochastic singular system (54) is exactly controllable on [0, b] if, and only if,
ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 37 ([76]). Assume that H and U are reflexive Banach spaces. Stochastic singular sys-
tem (54) is exactly controllable on [0, b] if, and only if, one of the following conditions hold:
(a) ‖Cb∗

0 z∗‖L2([0,b],Ω,U∗) ≥ γ‖z∗‖L2(Ω,Fb ,P,(D1)∗)
for some γ > 0 and all

z∗ ∈ L2(Ω, FT , P, (D1)
∗);
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(b) ker(Cb∗
0 ) = {0} and ran(Cb∗

0 ) is closed.

Theorem 38 ([76]). Stochastic singular system (54) is approximately controllable on [0, b] if, and
only if, ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 39 ([76]). Stochastic singular system (54) is approximate controllable on [0, b] if, and
only if,

ker(Cb∗
0 ) = {0}.

See [76] (p. 908) for the illustrative example.

5.2.3. Controllability of System (54) in Hilbert Spaces

In this following, we discuss the exact (approximate) controllability of system (54) in
Hilbert spaces. Some necessary and sufficient conditions are given. In order to discuss the
controllability, we introduce the following operator.

Hilbert space {v(t) ∈ U : Cv(t) ∈ A(D1)} is still denoted by U.
Controllability Gramian operator Gb

c : L2(Ω, Fb, P, D1)→ L2(Ω, Fb, P, D1) in connec-
tion with stochastic descriptor linear system (54) is defined as

Gb
c z =

∫ b

0
S(b− t)CC∗S∗(b− t)E(z|Ft)dt.

The following results were obtained in [77].

Theorem 40 ([77]). The necessary and sufficient condition for the stochastic singular linear
system (54) to be exactly controllable on [0, b] is that one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D1)
≥ γ‖z‖2

L2(Ω,Fb ,P,D1)
for some γ > 0 and all z ∈ L2(Ω, Fb, P, D1);

(b) limλ→0+ ‖(λI + Gb
c )
−1 − (Gb

c )
−1‖B(L2(Ω,Fb ,P,D1)),L2(Ω,Fb ,P,D1))

= 0;
(c) limλ→0+ ‖λ(λI + Gb

c )
−1‖B(L2(Ω,Fb ,P,D1),L2(Ω,Fb ,P,D1))

= 0;
(d) ker(Cb∗

0 ) = {0} and ran(Cb∗
0 ) is closed.

Theorem 41 ([77]). The necessary and sufficient condition for the stochastic singular linear
system (54) to be approximately controllable on [0, b] is that one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D1)
> 0 for all z ∈ L2(Ω, Fb, P, D1), z 6= 0;

(b) limλ→0+ < λ(λI + Gb
c )
−1x, z >L2(Ω,Fb ,P,D1)

= 0 for all x, z ∈ L2(Ω, Fb, P, D1);
(c) limλ→0+ ‖λ(λI + Gb

c )
−1z‖L2(Ω,Fb ,P,D1)

= 0 for all z ∈ L2(Ω, Fb, P, D1).

5.3. GE-Evolution Operator Method for a Class of Time-Varying Systems

In this subsection, we discuss the controllability of the following time varying stochas-
tic singular linear system by using GE-evolution operator in Hilbert spaces,

Adx(t) = B(t)x(t)dt + C(t)v(t)dt + D(t)dw(t), x(0) = x0, t ≥ 0, (56)

where A ∈ B(H) is a deterministic and constant operator, B(t) : dom(B(t)) ⊆ H → H is a
linear operator (possibly unbounded), B(t), C(t), D(t) are deterministic and time varying
operators; C(t) ∈ P([0, b], B(U, H)), D(t) ∈ P([0, b], B(Z, H)); x(t) is the state process
valued in H, v(t) is the control process in U, w(t) is the stand Wiener process valued
in Z, x0 ∈ L2(Ω, F0, P, H) is a given random variable, H, U, Z are Hilbert spaces. This
subsection is organized as follows. Firstly, the GE-evolution operator is introduced and
the mild solution of (56) is obtained; Secondly, the controllability of (56) is discussed by
GE-evolution operator in the sense of mild solution in Hilbert spaces.
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5.3.1. GE-Evolution Operator and Mild Solution of System (56)

In the following, we discuss mild solution of time varying stochastic singular sys-
tem (56) according to GE-evolution operator. First of all, we recall the GE-evolution operator,
and then the mild solution of (56) is given.

Definition 25 ([78–80]). Let ∆(b) = {(t, s) : 0 ≤ s ≤ t ≤ b}. U(t, s) : ∆(b) → B(H) is said
to be a GE-evolution operator induced by A on [0, b] if it has the following properties:
(a) U(t, s) = U(t, r)AU(r, s), 0 ≤ s ≤ r ≤ t ≤ b;
(b) U(s, s) = U0, 0 ≤ s ≤ b, where U0 is a definite operator independent of s;

GE-evolution operator U(t, s) is said to be strongly continuous on [0, b] if it has the follow-
ing property:
(c) U(·, s) is strongly continuous on [s, b] and U(t, ·) is strongly continuous on [0, t];

GE-evolution operator U(t, s) is said to be exponential bounded on [0, b] if it has the follow-
ing property:
(d) There exist M ≥ 1 and ω > 0, such that

‖U(t, s)‖B(H) ≤ Meω(t−s), 0 ≤ s ≤ t ≤ b.

Definition 26 ([78–80]). Assume that U(t, s) is a strongly continuous and exponential bounded
GE-evolution operator induced by A. If

B(t)x = lim
h→0+

AU(t + h, t)A− AU(t, t)A
h

x, t ∈ [0, b],

for every x ∈ D0(t), where

D0(t) = {x : x ∈ dom(B(t)) ⊆ H, U0 Ax = x,

∃ lim
h→0+

AU(t + h, t)A− AU(t, t)A
h

x, t ∈ [0, b]},

then B(t) is called a generator of GE-evolution operator U(t, s).

In the following, we always assume that B(t) is the generator of GE-evolution operator
U(t, s) induced by A and D0(t) = D0 is independent of t.

Now, we consider the initial value problem (56).

Definition 27. If x0 ∈ L2(Ω, F0, P, D0), v(t) ∈ L2([0, T], Ω, U); C(t)v(t), D(t)dw(t) ∈
A(L2([0, b], Ω, D0)), the mild solution x(t, x0) to (56) is defined by

x(t, x0) = U(t, 0)Ax0 +
∫ t

0
U(t, τ)C(τ)v(τ)dτ +

∫ t

0
U(t, τ)D(τ)dw(τ). (57)

Proposition 2 ([80]). There exists unique mild solution x(t, x0) to (56), which is given by (57),
if v(t) ∈ L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D0); C(t)v(t), D(t)dw(t) ∈ A(L2([0, b], Ω, D0)),
and (U0B(t))|D0 satisfies the following assumptions:
(P1) For t ∈ [0, b], (λI + (U0B(t))|D0)

−1 exists for all λ with Reλ ≤ 0 and there is a constant
M > 0, such that

‖(λI + (U0B(t))|D0)
−1‖B(H) ≤

M
|λ|+ 1

,

for all Reλ ≤ 0, t ∈ [0, b].
(P2) There exist constants L > 0 and 0 < α ≤ 1, such that

‖((U0B(t))|D0 − (U0B(s))|D0)((U0B(τ))|D0)
−1‖B(H) ≤ L|t− s|α,

for t, s, τ ∈ [0, b].
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In the following, we suppose that Proposition 2 holds true.

5.3.2. Controllability of System (56)

In this part, the exact controllability and approximate controllability of system (56) are
discussed by using GE-evolution operator in the sense of mild solution in Hilbert spaces.
In order to discuss the controllability, we introduce the following concepts.

Hilbert space {v(t) ∈ U : C(t)v(t) ∈ A(D0)} is still denoted by U.
Controllability operator CT

0 : L2([0, b], Ω, U) → L2(Ω, Fb, P, D0) and Controllability
Gramian Gb

c : L2(Ω, Fb, P, D0)→ L2(Ω, Fb, P, D0) associated with system (56) are defined as

Cb
0v =

∫ b

0
U(T, τ)C(τ)v(τ)dτ,

Gb
c z =

∫ b

0
U(b, τ)C(τ)C∗(τ)U∗(b, τ)E(z|Fτ)dτ,

respectively. It is obvious that operators Cb
0 and Gb

c are bounded linear operators, and
the dual

Cb∗
0 : L2(Ω, Fb, P, D0)→ L2([0, b], Ω, U)

of Cb
0 is defined by Cb∗

0 z = C∗(τ)U∗(b, τ)E(z|Fτ), where z ∈ L2(Ω, Fb, P, D0) and

Gb
c = Cb

0Cb∗
0 .

Definition 28. (a) Time varying stochastic singular system (56) is said to be exactly controllable on
[0, b], if for all x0 ∈ L2(Ω, F0, P, D0), xb ∈ L2(Ω, Fb, P, D0), there exists v(t) ∈ L2([0, b], Ω, U),
such that the mild solution x(t, x0) to (56) satisfies x(T, x0) = xb;

(b) Time varying stochastic singular system (56) is said to be approximately controllable on
[0, b], if for any state xb ∈ L2(Ω, Fb, P, D0), any initial state x0 ∈ L2(Ω, F0, P, D0), and any
ε > 0, there exists a v ∈ L2([0, b], Ω, U), such that the mild solution x(t, x0) to (56) satisfies

‖x(b, x0)− xb‖L2(Ω,Fb ,P,D0)
< ε.

The following results were obtained in [80].

Theorem 42 ([80]). The necessary and sufficient conditions for time-varying stochastic singular
system (56) to be exactly controllable on [0, b] are ranCb

0 = L2(Ω, Fb, P, D0).

Theorem 43 ([80]). Time varying stochastic singular system (56) is exactly controllable on [0, b]
if, and only if, one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D0)
≥ γ‖z‖2

L2(Ω,Fb ,P,D0)
for some γ > 0 and all

z ∈ L2(Ω, Fb, P, D0);

(b) limλ→0+ ‖(λI + GT
c )
−1 − (GT

c )
−1‖L(L2(Ω,Fb ,P,D0),L2(Ω,Fb ,P,D0))

= 0;
(c) limλ→0+ ‖λ(λI + GT

c )
−1‖L(L2(Ω,Fb ,P,D0),L2(Ω,Fb ,P,D0))

= 0;
(d) ‖Cb∗

0 z‖L2([0,b],Ω,U) ≥ γ‖z‖L2(Ω,Fb ,P,D0)
for some γ > 0 and all z ∈ L2(Ω, Fb, P, D0);

(e) ker(Cb∗
0 ) = {0} and ran(Cb∗

0 ) is closed.

Theorem 44 ([80]). The necessary and sufficient conditions for time varying stochastic singular
system (56) to be approximately controllable on [0, T] are that one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D0)
> 0 for all z ∈ L2(Ω, Fb, P, D0), z 6= 0;

(b) limλ→0+ < λ(λI + GT
c )
−1x, z >L2(Ω,Fb ,P,D0)

= 0 for all x, z ∈ L2(Ω, Fb, P, D0);
(c) limλ→0+ ‖λ(λI + GT

c )
−1z‖L2(Ω,Fb ,P,D0)

= 0 for all z ∈ L2(Ω, Fb, P, D0);
(d) ker(Cb∗

0 ) = {0}.
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The details of applicable example can be found in [80].

5.4. Stochastic GE-Evolution Operator Method for a Class of Time Invariant Systems

In this subsection, we discuss the controllability of the following time varying stochas-
tic singular linear system by using stochastic GE-evolution operator in Banach spaces,

Adx(t) = Bx(t)dt + Cv(t)dt + Dx(t)dw(t), t ≥ 0, x(0) = x0, (58)

where x(t) is the state process valued in H, v(t) is the control process valued in U, w(t)
is the one-dimensional standard Wiener process, x0 ∈ L2(Ω, F0, P, H) is a given random
variable, H, U are Banach spaces; A, D ∈ B(H), C ∈ B(U, H), B : dom(B) ⊆ H → H is a
linear operator. The organization of this subsection is as follows. Firstly, the concept of
stochastic GE-evolution operator is introduced, and the mild solution to system (58) is given
by stochastic GE-evolution operator. Secondly, The exact controllability and approximate
controllability of (58) are discussed by stochastic GE-evolution operator in the sense of
mild solution in Banach spaces, respectively.

5.4.1. Stochastic GE-Evolution Operator and Mild Solution of System (58)

In the following, the stochastic GE-evolution operator is introduced, and the mild
solution of system (58) is give by stochastic GE-evolution operator.

Definition 29 ([81]). Let ∆b = {(t, s) : 0 ≤ s ≤ t ≤ b}. A family of stochastic operators
{S(t, s) : (t, s) ∈ ∆b} on H is said to be a stochastic GE-evolution operator induced by A on [0, b]
if it has the following properties:
(i) S : ∆b ×Ω→ B(H) is strongly measurable;
(ii) S(t, s) is strongly Ft−measurable for t ≥ s;
(iii) S(s, s) = S0, 0 ≤ s ≤ b, and S(t, r)AS(r, s) = S(t, s) for any 0 ≤ s ≤ r ≤ t ≤ b, where
S0 ∈ B(H) is a steady operator independent of s;
(iv) For any ξ ∈ H, (t, s)→ S(t, s)ξ is mean square continuous from ∆T into H.

In the following, we always suppose that B is a generator of GE-semigroup U(t)
induced by A.

Now, we consider the mild solution of stochastic singular linear system (58).

Definition 30. If v(t) ∈ L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D1), then the mild solution x(t, x0) ∈
L2([0, b], {Ft}, D1) to (58) is defined by

x(t, x0) = U(t)Ax0 +
∫ t

0
U(t− τ)Cv(τ)dτ +

∫ t

0
U(t− τ)Dx(τ, x0)dw(τ), (59)

where L2([0, b], {Ft}, D1) denotes the Banach space of all D1−valued processes x with norm

‖x‖L2([0,b],{Ft},D1)
= supt∈[0,b](E‖x(t)‖2

D1
)1/2 < +∞.

Lemma 2 ([81]). If v(t) ∈ L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D1);

Cv(t) ∈ A(L2([0, b], Ω, D1)),

then system (58) has a unique mild solution x(t, x0) ∈ L2([0, b], {Ft}, D1), which is given by (59).

Definition 31. We say that stochastic GE-evolution operator S(t, s) induced by A is related to the
linear homogeneous equation

Adx(t) = Bx(t)dt + Dx(t)dw(t), x(s) = x0, 0 ≤ s ≤ t ≤ b, (60)
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if x(t) = S(t, s)Ax0 is the mild solution to (60) with x(s) = S(s, s)Ax0 = x0 for arbitrary
x0 ∈ L2(Ω, F0, P, D1).

In the following, we suppose that there exists a stochastic GE-evolution operator
S(t, s) induced by A related to (60) and Lemma 2 holds true. Furthermore, we suppose that
the following estimates hold for any 0 ≤ s ≤ t ≤ b and ξ ∈ L2(Ω, Fs, P, D1) :

E
∫ t

s
‖S(r, s)ξ‖2

D1
dr ≤ c‖ξ‖2

L2(Ω,Fs ,P,D1)
;

supr∈[s,t]E‖S(r, s)ξ‖2
D1
≤ c‖ξ‖2

L2(Ω,Fs ,P,D1)
.

We can obtain the following theorem.

Theorem 45 ([81]). The mild solution x(t, x0) to (58) can be written in the form

x(t, x0) = S(t, 0)Ax0 +
∫ t

0
S(t, s)Cv(s)ds. (61)

5.4.2. Controllability of System (58)

In the following, we discuss the exact and approximate controllability of stochastic
singular linear system (58) by using stochastic GE-evolution operator theory, some criteria
are obtained. In order to discuss the controllability, we introduce the following concepts.

Banach space {v(t) ∈ U : Cv(t) ∈ A(D1)} is still denoted by U.
Controllability operator Cb

0 : L2([0, b], Ω, U) → L2(Ω, Fb, P, D1) associated with sys-
tem (58) is defined as

Cb
0v =

∫ b

0
S(T, τ)Cv(τ)dτ.

It is obvious that operator Cb
0 is a bounded linear operator, and the dual

Cb∗
0 : L2(Ω, Fb, P, D0)→ L2([0, b], Ω, U)

of Cb
0 is defined by Cb∗

0 z = C∗S∗(b, τ)E(z|Fτ), where z ∈ L2(Ω, Fb, P, D1).

Definition 32. (a) Stochastic singular linear system (58) is called to be exactly controllable on
[0, b], if for all x0 ∈ L2(Ω, F0, P, D1), xb ∈ L2(Ω, Fb, P, D1), there exists v(t) ∈ L2([0, b], Ω, U),
such that the mild solution x(t, x0) to stochastic singular linear system (58) which is given by (61)
satisfies x(T, x0) = xb;

(b) Stochastic singular linear system (58) is called to be approximately controllable on [0, b],
if for any state xb ∈ L2(Ω, Fb, P, D1), any initial state x0 ∈ L2(Ω, F0, P, D1), and any ε > 0,
existence v ∈ L2([0, b], Ω, U) makes that the mild solution x(t, x0) which is given by (61) satisfies

‖x(b, x0)− xb‖L2(Ω,Fb ,P,D1)
< ε.

The following results were obtained in [81].

Theorem 46 ([81]). Stochastic singular system (58) is exactly controllable on [0, b] if, and only if,
ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 47 ([81]). Assume that H and U are reflexive Banach spaces. Stochastic singular system
(58) is exactly controllable on [0, b] if and only if one of the following conditions holds:
(a) ‖Cb∗

0 z∗‖L2([0,b],Ω,U∗) ≥ γ‖z∗‖L2(Ω,Fb ,P,(D1)∗)
for some γ > 0 and all

z∗ ∈ L2(Ω, Fb, P, (D1)
∗);

(b) ker(Cb∗
0 ) = {0} and ran(Cb∗

0 ) is closed.
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Theorem 48 ([81]). The necessary and sufficient condition for the stochastic singular linear system
(58) to be approximately controllable on [0, b] is ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 49 ([81]). Stochastic singular systems (58) is approximate controllable on [0, b] if, and
only if, one of the following conditions holds:
(a) ‖Cb∗

0 z∗‖L2([0,b],Ω,U∗) > 0 for all z∗ ∈ L2(Ω, Fb, P, (D1)
∗), z∗ 6= 0;

(b) ker(Cb∗
0 ) = {0}.

The practical example can be found in [81] if there is a need.

5.5. Stochastic GE-Evolution Operator Method for a Class of Time-Varying Systems

In this subsection, we study the controllability and observability of the following time
varying stochastic singular linear system by using stochastic GE-evolution operator in
Banach spaces,

O1dv(t) = O2(t)v(t)dt + O3(t)u(t)dt + O4(t)v(t)dw(t), t ≥ 0, v(0) = v0,

x(t) = O5(t)v(t), (62)

where v(t) is the state process valued in Y1, u(t) is the control process valued in Y2, w(t)
is the one-dimensional standard Wiener process, v0 ∈ L2(Ω, F0, P, Y1) is a given random
variable, x(t) is the output process valued in Y3, Y1, Y2, Y3 are Banach spaces;

O1 ∈ B(Y1), O3(t) ∈ P([0, T], B(Y2, Y1)), O4(t) ∈ P([0, b], B(Y1)),

O5(t) ∈ P([0, b], B(Y1, Y3)), O2(t) is a linear operator from dom(O2(t)) ⊆ Y1 to Y1; O1, O2(t),
O3(t), O4(t), O5(t) are deterministic and constant operators; This subsection is organized
as follows. Firstly, the mild solution of (62) is obtained by stochastic GE-evolution operator;
Secondly, the exact controllability of (62) is discussed by using stochastic GE-evolution
operator in the sense of mild solution in Banach spaces; Thirdly, the approximate con-
trollability of (62) is discussed by using stochastic GE-evolution operator in the sense of
mild solution in Banach spaces; Fourthly, the observability of (62) is studied, and the dual
principle is given; At last, we give an example to illustrate the validity of the theoretical
results obtained in this subsection.

5.5.1. Mild Solution of System (62)

In this part, we always suppose that O2(t) is a generator of GE-evolution operator
V(t, s) induced by O1 and

D = {v ∈ domO2(t) ⊆ Y1, V0O1v = v,

∃ lim
h→0+

O1V(t + h, t)O1 −O1V(t, t)O1

h
v, 0 ≤ t ≤ b}

is independent of t, 0 ≤ t ≤ b.
Now, we consider the mild solution of time varying stochastic singular linear

Equation (62).

Definition 33. If u(t) ∈ L2([0, b], Ω, Y2), v0 ∈ L2(Ω, F0, P, D), then the mild solution v(t, v0) ∈
L2([0, b], {Ft}, D) to time varying stochastic singular Equation (62) is defined by

v(t, v0) = V(t, 0)O1v0 +
∫ t

0
V(t, τ)O3(τ)u(τ)dτ +

∫ t

0
V(t, τ)O4(τ)v(τ, v0)dw(τ). (63)
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Lemma 3. Time varying stochastic singular Equation (62) has a unique mild solution, which is
given by (63), if u(t) ∈ L2([0, b], Ω, Y2), v0 ∈ L2(Ω, F0, P, D);

O3(t)u(t) ∈ O1(L2([0, b], Ω, D)),

and (V0O2(t))|D satisfies following assumptions:
(P1) For t ∈ [0, b], (λI + (V0O2(t))|D)−1 exists for all λ with Reλ ≤ 0 and there is a

constant M, such that

‖(λI + (V0O2(t))|D)−1‖B(Y1)
≤ M
|λ|+ 1

,

for all Reλ ≤ 0, t ∈ [0, b], where I denotes the identical operator on D, (V0O2(t))|D denotes the
restriction of V0O2(t) on D.

(P2) There exist constants L and 0 < α ≤ 1, such that

‖((V0O2(t))|D − (V0O2(s))|D)((V0O2(τ))|D)−1‖B(Y1)
≤ L|t− s|α,

for s, t, τ ∈ [0, b].

Proof. First of all, according to Theorem 6.1 of [82] (see P.150 of [82]), we have that
V(t, s)|O1(D) is a unique evolution operator induced by O1 with generator O2(t) on O1(D).
Let Y11 denote the space of all D valued processes ξ, such that

|ξ|Y11 = supt∈[0,b](E‖ξ(t)‖2
D)

1/2 < +∞.

For any ξ(t) ∈ Y11 define

P1(ξ)(t) = V(t, 0)O1v0 +
∫ t

0
V(t, s)O3(s)u(s)ds

+
∫ t

0
V(t, s)O4(s)ξ(s)dw(s), t ∈ [0, b],

and

P2(ξ)(t) =
∫ t

0
V(t, s)O4(s)ξ(s)dw(s), t ∈ [0, b].

Assume, see (d) of Definition 25, that ‖V(t, s)‖B(Y1)
≤ M1, 0 ≤ s ≤ t ≤ b, we have

|P2(ξ)|Y11 ≤ supt∈[0,b](E
∫ t

0
‖V(t, s)O4(s)ξ(s)‖2

Dds)1/2

≤ M1‖O4(s)‖P([0,b],B(Y1))
b1/2|ξ|Y11 , t ∈ [0, b].

Therefore, if b is sufficient small, P1 is a contraction and it is easy to see that its
unique fixed point can be identified as the mild solution to time varying stochastic singular
Equation (62). The case of general b can be handled in a standard way.

Theorem 50. Suppose that stochastic GE-evolution operator G(t, s) induced by O1 is related to
the linear homogeneous time varying stochastic singular equation

O1dv(t) = O2(t)v(t)dt + O4(t)v(t)dw(t), v(s) = v0, 0 ≤ s ≤ t ≤ b, (64)

Lemma 3 holds true, and the following estimates hold for any 0 ≤ s ≤ t ≤ b and ξ ∈
L2(Ω, Fs, P, D) :

E
∫ t

s
‖G(r, s)ξ‖2

Ddr ≤ c‖ξ‖2
L2(Ω,Fs ,P,D)

;

supr∈[s,t]E‖G(r, s)ξ‖2
D1
≤ c‖ξ‖2

L2(Ω,Fs ,P,D)
.
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Then, the mild solution v(t, v0) to time varying stochastic singular Equation (62) can be written in
the form

v(t, v0) = G(t, 0)O1v0 +
∫ t

0
G(t, s)O3(s)u(s)ds. (65)

Proof. Since G(t, 0)O1v0 and G(t, s)O3(s)u(s) are mild solutions of time varying stochastic
singular Equation (64) with v(0) = v0 and v(s) = G(s, s)O3(s)u(s), respectively, we
have that

G(t, 0)O1v0 = V(t, 0)O1v0 +
∫ t

0
V(t, τ)O4(τ)G(τ, 0)O1v0dw(τ),

G(t, s)O3(s)u(s) = V(t, s)O1G(s, s)O3(s)u(s) +
∫ t

s
V(t, τ)O4(τ)G(τ, s)O3(s)u(s)dw(τ)

= V(t, s)O3(s)u(s) +
∫ t

s
V(t, τ)O4(τ)G(τ, s)O3(s)u(s)dw(τ).

We have to prove that the process v(t, v0) in (65) is a solution to the integral Equation
(63). By the representation of v(τ, v0), we have∫ t

0
V(t, τ)O4(τ)v(τ, v0)dw(τ) =

∫ t

0
V(t, τ)O4(τ)G(τ, 0)O1v0dw(τ)

+
∫ t

0
V(t, τ)O4D(τ)(

∫ τ

0
G(τ, s)O3(s)u(s)ds)dw(τ)

= G(t, 0)O1v0 −V(t, 0)O1v0 +
∫ t

0
ds
∫ t

s
V(t, τ)O4(τ)G(τ, s)O3(s)u(s)dw(τ)

= G(t, 0)O1v0 −V(t, 0)O1v0 +
∫ t

0
[G(t, s)O3(s)u(s)−V(t, s)O1G(s, s)O3(s)u(s)]ds

= G(t, 0)O1v0 −V(t, 0)O1v0 +
∫ t

0
G(t, s)O3(s)u(s)ds−

∫ t

0
V(t, s)O3(s)u(s)ds,

where the stochastic Fubini theorem is given in Theorem 4.33 of [83]. Therefore,

v(t, v0) = G(t, 0)O1v0 +
∫ t

0
G(t, s)O3(s)u(s)ds

= V(t, 0)O1v0 +
∫ t

0
V(t, τ)O3(τ)u(τ)dτ +

∫ t

0
V(t, τ)O4(τ)v(τ, v0)dw(τ),

which proves (63).

In the following, we always assume that time varying stochastic singular Equation (62)
has a unique mild solution in the form of (65).

In order to obtain the criteria of controllability, the following concepts are introduced.
Banach space {u(t) ∈ Y2 : O3(t)u(t) ∈ O1(D)} is still denoted by Y2.
Controllability operator

Qb
C : L2([0, b], Ω, Y2)→ L2(Ω, Fb, P, D)

associated with time varying stochastic singular Equation (62) is defined as

Qb
Cu =

∫ T

0
G(T, τ)O3(τ)u(τ)dτ.

It is obvious that operator Qb
C is a bounded linear operator, and its dual

Qb∗
C : L2(Ω, Fb, P, (D)∗)→ L2([0, b], Ω, Y∗2 )
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is defined by
Qb∗

C y∗ = O∗3(τ)G
∗(b, τ)E(y∗|Fτ).

where y∗ ∈ L2(Ω, Fb, P, (D)∗).

5.5.2. Exact Controllability of System (62)

In this part, we discuss the exact controllability of time varying stochastic singular
Equation (62) by stochastic GE-evolution operator theory, some criteria are obtained.

Definition 34. Time varying stochastic singular Equation (62) is called to be exactly controllable on
[0, b], if for all v0 ∈ L2(Ω, F0, P, D), vb ∈ L2(Ω, Fb, P, D), there exists u(t) ∈ L2([0, b], Ω, Y2),
such that the mild solution v(t, v0) to time varying stochastic singular Equation (62) satisfies
v(b, v0) = vb.

From the Definition 34, we can obtain the following theorem immediately.

Theorem 51. Time varying stochastic singular Equation (62) is exactly controllable on [0, b] if,
and only if, ran(Qb

C) = L2(Ω, Fb, P, D).

Theorem 52. Assume that Y1 and Y2 are reflexive Banach spaces. Time varying stochastic singular
Equation (62) is exactly controllable on [0, b] if, and only if, one of the following conditions holds:

(a) ‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

≥ γ‖y∗‖L2(Ω,Fb ,P,(D)∗) for some γ > 0 and all

y∗ ∈ L2(Ω, Fb, P, (D)∗);

(b) ker(Qb∗
C ) = {0} and ran(Qb∗

C ) is closed.

Proof. (a)⇒ (b) Notice that (a) implies that Qb∗
C is injective. To prove that Qb∗

C has closed
range, assume that Qb∗

C y∗n is a Cauchy sequence in L2([0, b], Ω, Y∗2 ), then (a) implies that
y∗n is a Cauchy sequence in L2(Ω, Fb, P, (D)∗). Since Qb∗

C is a bounded linear operator, if
limn→+∞ y∗n = y∗, then limn→+∞ Qb∗

C y∗n = Qb∗
C y∗ and so Qb∗

C has closed range.
(b)⇒(a). (b) shows that Qb∗

C has an algebraic inverse with domain equal to ran(Qb∗
C ). Since

ran(Qb∗
C ) is closed, it is a Banach space under the norm of L2([0, b], Ω, Y∗2 ), i.e.,

‖u∗‖ran(Qb∗
C ) = ‖u

∗‖L2([0,b],Ω,Y∗2 )
, u∗ ∈ ran(Qb∗

C ).

By Corollary A.3.50 of [84], we have that (Qb∗
C )−1 is bounded on this range, i.e., there

exists a γ > 0, such that

‖(Qb∗
C )−1u∗‖L2(Ω,Fb ,P,(D)∗) ≤

1
γ
‖u∗‖L2([0,b],Ω,Y∗2 )

,

for every u∗ ∈ ran(Qb∗
C ). Substituting u∗ = CT∗

0 y∗ proves (a).
It remains to show that (a) is equivalent to exact controllability of time varying

stochastic singular Equation (62).
Necessity. Assume that time varying stochastic singular Equation (62) is exactly

controllable. By Theorem 51, we have ran(Qb
C) = L2(Ω, Fb, P, D).

If Qb
C is a one to one operator, then (Qb

C)
−1 exists on L2(Ω, Fb, P, D). According to the

continuity of operator Qb
C we have that (Qb

C)
−1 is a closed operator. From the closed graph

theorem, we obtain that (Qb
C)
−1 is a bounded linear operator on L2(Ω, Fb, P, D), i.e.,

(Qb
C)
−1 ∈ B(L2(Ω, Fb, P, D), L2([0, b], Ω, Y2)).
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Therefore

((Qb
C)
−1)∗ ∈ B(L2([0, b], Ω, Y∗2 ), L2(Ω, Fb, P, (D)∗)).

This implies that there exists γb > 0, such that

‖((Qb
C)
−1)∗v∗‖L2(Ω,Fb ,P,(D)∗) ≤ γb‖v∗‖L2([0,b],Ω,Y∗2 )

. (66)

Assume y∗ ∈ L2(Ω, Fb, P, (D)∗), then

u∗ = Qb∗
C y∗ ∈ L2([0, b], Ω, Y∗2 ).

Therefore, for all y0 ∈ L2(Ω, Fb, P, D), we find that

< y0, ((Qb
C)
−1)∗u∗ >=< y0, ((Qb

C)
−1)∗Qb∗

C y∗ >

=< (QT
C)
−1y0, QT∗

C y∗ >=< y0, y∗ >,

where < y0, y∗ >= y∗(y0). From (66), we obtain that

‖y∗‖L2(Ω,Fb ,P,(D)∗) = sup‖y0‖L2(Ω,Fb ,P,D)
=1| < y0, y∗ > |

≤ ‖((Qb
C)
−1)∗u∗‖L2(Ω,Fb ,P,(D)∗)

≤ γb‖u∗‖L2([0,b],Ω,Y∗2 )
= γb‖Qb∗

C y∗‖L2([0,b],Ω,Y∗2 )
,

i.e.,

‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

≥ 1
γb
‖y∗‖2

L2(Ω,Fb ,P,(D)∗)

= γ‖y∗‖L2(Ω,Fb ,P,(D)∗),

where γ = 1
γb

. This implies that (a) holds.

If Qb
C is not a one to one operator, then

ker(Qb
C) = {u : u ∈ L2([0, b], Ω, Y2), Qb

Cu = 0} 6= {0}.

A factor space is defined as follows

Y21 = L2([0, b], Ω, Y2)/ker(Qb
C) = {u1 : u1 = {u + u2 : u2 ∈ ker(Qb

C)}}.

For u1 ∈ Y21,
‖u1‖Y21 = infu2∈ker(Qb

C)
‖u + u2‖L2([0,b],Ω,Y2)

.

If we define operator

Qb
1 : Y21 → L2(Ω, Fb, P, D), Qb

1u1 = Qb
Cu,

then
Qb

1 ∈ B(Y21, L2(Ω, Fb, P, D)),

and Qb
1 is a bijective operator. It can be seen from the above proof that

‖Qb∗
1 y∗‖Y∗21

≥ γ‖y∗‖2
L2(Ω,Fb ,P,(D)∗)

.

According to the definition of Y21 and Qb
1, we obtain

‖Qb∗
1 y∗‖Y∗21

= ‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

.
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This implies that (a) holds.
Sufficiency. Assume (a). It is need to prove that if y ∈ L2(Ω, Fb, P, D), then y ∈ ranQb

C.
From

Qb
C ∈ B(L2([0, b], Ω, Y2), L2(Ω, Fb, P, D)),

we find that
Qb∗

C ∈ B(L2(Ω, Fb, P, (D)∗), L2([0, b], Ω, Y∗2 )).

For y ∈ L2(Ω, Fb, P, D), we can define a functional f on ranQb∗
C satisfying

f (Qb∗
C g∗) =< y, g∗ >, g∗ ∈ L2(Ω, Fb, P, (D)∗). (67)

This implies that f is linear for Qb∗
C g∗. According to (a), if

lim
n→∞

Qb∗
C g∗n = 0,

then
lim

n→∞
g∗n = 0,

and
lim

n→∞
f (Qb∗

C g∗n) = lim
n→∞

< y, g∗n >= 0.

Therefore, f is continuous linear functional on

ran(Qb∗
C ) ⊂ L2([0, b], Ω, Y∗2 ).

By Hahn–Banach theorem, we have that f can be extended as a continuous linear
functional on L2([0, b], Ω, Y∗2 ). According to Y∗∗2 = Y2, the existence of

u ∈ L2([0, b], Ω, Y2) = L2([0, b], Ω, Y∗∗2 )

makes
f (Qb∗

C g∗) =< u, Qb∗
C g∗ >, g∗ ∈ L2(Ω, Fb, P, (D)∗). (68)

According to (67) and (68), we obtain that for every g∗ ∈ L2(Ω, Fb, P, (D)∗),

< y, g∗ >=< Qb
Cu, g∗ > .

Hence y = Qb
Cu, i.e.,

ran(Qb
C) = L2(Ω, Fb, P, D).

From Theorem 51, time varying stochastic singular Equation (62) is exactly control-
lable.

5.5.3. Approximate Controllability of System (62)

In this section, we discuss the approximate controllability of time varying stochastic
singular Equation (62). Some necessary and sufficient conditions are obtained.

Definition 35. Time varying stochastic singular Equation (62) is called to be approximately
controllable on [0, b], if for any state vb ∈ L2(Ω, Fb, P, D), any initial state v0 ∈ L2(Ω, F0, P, D),
and any ε > 0, existence u ∈ L2([0, b], Ω, Y2) makes that the mild solution v(t, v0) to time varying
stochastic singular Equation (62) satisfies

‖v(b, v0)− vb‖L2(Ω,Fb ,P,D) < ε.
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It is obvious that the necessary and sufficient conditions for the time varying stochastic
singular Equation (62) to be approximately controllable on [0, b] are

ran(Qb
C) = L2(Ω, Fb, P, D). (69)

Theorem 53. Time varying stochastic singular Equation (62) is approximate controllable on [0, b]
if, and only if, one of the following conditions holds:

(a) ‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

> 0 for all y∗ ∈ L2(Ω, Fb, P, (D)∗), y∗ 6= 0;

(b) ker(Qb∗
C ) = {0}.

Proof. It is obvious that (a) is equivalent to (b). We only need to prove that (b) is equivalent
to approximate controllability of time varying stochastic singular linear Equation (62).

If
ran(Qb

C) = L2(Ω, Fb, P, D), y∗ ∈ ker(Qb∗
C ),

i.e., Qb∗
C y∗ = 0, then

< u, Qb∗
C y∗ >=< Qb

Cu, y∗ >, u ∈ L2([0, b], Ω, Y2).

Since ran(Qb
C) = L2(Ω, Fb, P, D), we have

< y, y∗ >= 0, y ∈ L2(Ω, Fb, P, D).

Therefore, y∗ = 0, i.e., ker(Qb∗
C ) = {0}.

Conversely, if ker(Qb∗
C ) = {0} but

ran(Qb
C) 6= L2(Ω, Fb, P, D),

then ran(Qb
C) is the proper subspace of L2(Ω, Fb, P, D). According to Hahn–Banach theo-

rem, there exists
y∗ ∈ L2(Ω, Fb, P, (D)∗), y∗ 6= 0,

such that
< Qb

Cu, y∗ >= 0, u ∈ L2([0, b], Ω, Y2).

Thus < u, Qb∗
C y∗ >= 0, i.e., Qb∗

C y∗ = 0. By ker(Qb∗
C ) = {0}, we find that y∗ = 0. This

contradicts y∗ 6= 0. Therefore,

ran(Qb
C) = L2(Ω, Fb, P, D).

Hence (69) is true if, and only if, (b) holds, i.e., time varying stochastic singular
Equation (62) is approximately controllable on [0, b] if, and only if, (b) holds.

5.5.4. Observability

Consider the following time varying stochastic singular equation

O1dv(t) = O2(t)v(t)dt + O4(t)v(t)dw(t), t ≥ 0, v(0) = v0, x(t) = O5(t)v(t), (70)

and its dual time varying stochastic singular equation

O∗1 dv∗(t) = O∗2(t)v
∗(t)dt + O∗5(t)u

∗(t)dt + O∗4(t)v
∗(t)dw(t), t ≥ 0, v∗(0) = v∗0 . (71)

For the time varying stochastic singular Equation (70), the following concepts are defined.
The observability operator of time varying stochastic singular Equation (70) on [0, b]

is the continuous linear operator

QT
O : L2(Ω, Fb, P, D)→ L2([0, b], Ω, Y3)
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defined by Qb
Oy = O5(t)G(b, t)E(y|Ft), its dual operator

Qb∗
O : L2([0, b], Ω, Y∗3 )→ L2(Ω, Fb, P, (D)∗)

is defined by

Qb∗
O x∗ =

∫ b

0
G∗(b, t)O∗5(t)x∗(t)dt.

Definition 36. Time varying stochastic singular Equation (70) is said to be exactly observable on
[0, b] if Qb

O is injective and its inverse is bounded on ran(Qb
O).

In the case of Definition 36, the state v0 can be uniquely and continuously constructed
from the knowledge of the output x(t) in L2([0, b], Ω, Y3).

Definition 37. Time varying stochastic singular Equation (70) is said to be approximately observ-
able on [0, b] if Qb

O is injective.

In the case of Definition 37, the state v0 can be uniquely constructed from the knowl-
edge of the output x(t) in L2([0, b], Ω, Y3).

We can obtain the following dual principle.

Theorem 54. Assume that Y1 and Y3 are reflexive. Time varying stochastic singular Equation (70)
is exactly (approximately) observable on [0, b] if, and only if, its dual time varying stochastic
singular Equation (71) is exactly (approximately) controllable on [0, b].

Proof. Here, we only prove the case of exact observability. Since

Qb∗
O x∗ =

∫ b

0
G∗(b, t)O∗5(t)x∗(t)dt

happens to be the controllability operator Qb
C of time varying stochastic singular Equation (71),

so Qb∗
C = Qb

O.
If the time varying stochastic singular Equation (70) is exactly observable, then there

exists 1/γ > 0, such that

‖(Qb
O)
−1x‖L2(Ω,Fb ,P,D) ≤

1
γ
‖x‖L2([0,b],Ω,Y3)

,

for all x ∈ ran(Qb
O). This implies that

γ‖y‖L2(Ω,Fb ,P,D) = γ‖(Qb
O)
−1Qb

Oy‖L2(Ω,Fb ,P,D)

≤ ‖Qb
Oy‖L2([0,b],Ω,Y3)

= ‖Qb∗
C y‖L2([0,b],Ω,Y3)

,

where
y = (Qb

O)
−1x, y ∈ L2(Ω, Fb, P, D).

According to Theorem 52 (a), we have that (71) is exactly controllable.
Assume next that the time varying stochastic singular Equation (71) is exactly control-

lable. From Theorem 52 (b), we have that Qb
O is injective and has closed range. According

to closed graph theorem (Qb
O)
−1 is bounded on ranQT

O.

Theorems 52 and Definitions 36 and 37 yield the following conditions for observability
of time varying stochastic singular Equation (70).

Corollary 2. Time varying stochastic singular Equation (70) is exactly observable on [0, b] if, and
only if, one of the following conditions holds for some γ > 0 and for all y ∈ L2(Ω, Fb, P, D):
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(a) ‖Qb
Oy‖L2([0,b],Ω,Y3)

≥ γ‖y‖L2(Ω,Fb ,P,D);
(b) ker(Qb

O) = {0} and ran(Qb
O) is closed.

Corollary 3. Time varying stochastic singular Equation (70) is approximately observable on [0, b]
if, and only if, ker(Qb

O) = {0}.

5.5.5. An Illustrative Example

In this part, we give an example to illustrate the effectiveness of the obtained results.
According to [72], in input–output economics, many models were established to

describe the real economics. The economics Leontief dynamic input–output model can be
extended as an ordinary differential equation of the form:

O1
dv(t)

dt
= O2(t)v(t) + O3(t)u(t), x(t) = O5(t)v(t) (72)

in Banach space Y1, where O1 ∈ B(Y1) and O2(t) : dom(O2(t)) ⊆ Y1 → Y1 is a linear
and possibly unbounded operator, O3(t), O5(t) ∈ P([0, b], B(Y1)), while v(t) and u(t) are
state process and control process valued in Y1, respectively, for t ≥ 0. However, in reality,
there are many unpredicted parameters and different types of uncertainty that have not
been implemented in the mathematical modelling process of this equation. Nonetheless,
according to [85,86], we can consider a stochastic version of the singular Equation (72)
with the one-dimensional standard Wiener process w(t) used to model the uncertainties of
the form:

O1dv(t) = O2(t)v(t)dt + O3(t)u(t)dt + O4(t)v(t)dw(t), x(t) = O5(t)v(t), (73)

where O4(t) ∈ P([0, b], B(Y1)). This stochastic version of the input-output model is a time
varying stochastic singular equation in Banach space Y1 of the form (62).

We consider the following unforced time varying stochastic singular equation, i.e.,
u(t) = 0 in time varying stochastic singular Equation (73):

O1dv(t) = O2(t)v(t)dt + O4(t)v(t)dw(t), x(t) = O5(t)v(t). (74)

Time varying stochastic singular Equation (74) is the form of time varying stochastic singu-
lar linear Equation (70). In what follows, we will verify the effectiveness of Corollary 3.

If for some concrete engineering practice, the following data are taken in time varying
stochastic singular Equation (74):

O1 =

[
U1 0
0 0

]
, O2(t) =

[
−(2t + 1)U1 0

0 5(t2 + 1)U2

]
,

O4(t) =
[

(2t)1/2U1 0
0 3t2U2

]
, O5(t) =

[
7(t + 1)2U1 0

0 0

]
,

where U1, U2 are identical operators in Banach spaces Y11, Y12, respectively. Time varying
stochastic singular Equation (74) can be written as[

U1 0
0 0

][
dv1(t)
dv2(t)

]
=

[
−(2t + 1)U1 0

0 5(t2 + 1)U2

][
v1(t)dt
v2(t)dt

]

+

[
(2t)1/2U1 0

0 3t2U2

][
v1(t)
v2(t)

]
dw(t),

x(t) =
[

7(t + 1)2U1 0
0 0

][
v1(t)
v2(t)

]
, (75)
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where
[

v1(t)
v2(t)

]
∈ Y11 ⊕ Y12 = Y1. We can find that D = Y11. According to [87], we

can obtain

G(t, s) =

[
exp[− 3

2 t2 − t + 3
2 s2 + s +

∫ t
s (2r)1/2w(r)ds]U1 0

0 0

]
.

It is obvious that time varying stochastic singular Equation (75) satisfies the conditions

of Lemma 3. If
[

y
0

]
∈ L2(Ω, Fb, P, D), and

Qb
O

[
y
0

]
= O5(t)G(b, t)E(

[
y
0

]
|Ft) = 0, t ∈ [0, b],

then

O5(b)G(b, b)E(
[

y
0

]
|Fb) = 7(b + 1)2

[
y
0

]
= 0,

i.e., y = 0. This implies that ker(Qb
O) = {0}. Therefore time varying stochastic singular

Equation (75) is approximately observable by Corollary 3.
In this section, we have discussed the controllability of some types of stochastic

singular linear systems. However, the following problems still need to be studied.

Problem 9. How about the controllability of the following system?

Ldx(t) = [A(t)x(t) + B(t)u(t)]dt +
∞

∑
k=1

Ck(t)x(t)dw1,k(t)

+
∞

∑
j=1

Dj(t)u(t)dw2,j(t), x(0) = x0,

where L ∈ B(H) and ker(L) 6= {0}, A(t) : dom(A(t)) ⊆ H → H is the generator of a
GE-evolution operator induced by L in the Hilbert (or Banach) space H, B(t) : dom(B(t)) ⊂
U → H is a linear operator, U is a Hilbert (or Banach) space; Ck(t) ∈ P([0, b], B(H)), Dk(t) ∈
P([0, b], B(U, H)), for each i ∈ N; and in Hilbert spaces,

∞

∑
k=1

sup0≤t≤b‖Ck(t)‖2
B(H) < +∞,

∞

∑
k=1

sup0≤t≤b‖Dk(t)‖2
B(U,H) < +∞;

in Banach spaces,

∞

∑
k=1

sup0≤t≤b‖Ck(t)‖B(H) < +∞,
∞

∑
k=1

sup0≤t≤b‖Dk(t)‖B(U,H) < +∞;

the countable set {w1,k, w2,j, k, j ∈ N} consists of independent standard Wiener processes defined
on the stochastic basis (Ω, F, {Ft}, P).

6. Conclusions

We have introduced the latest progress in controllability of stochastic linear systems
and put forward some problems that need to be further studied, which includes stochastic
linear systems in finite dimensional spaces, stochastic linear systems in infinite dimensional
spaces, stochastic singular linear systems in finite dimensional spaces, and stochastic
singular linear systems in infinite dimensional spaces. The controllability and observability
for a type of time-varying stochastic singular linear systems have been studied by using
stochastic GE-evolution operator in the sense of mild solution in Banach spaces, some
necessary and sufficient conditions have been obtained, the dual principle has been proved



Mathematics 2021, 9, 3240 40 of 42

to be true, an example has been given to illustrate the validity of the theoretical results
obtained in this part. Readers can easily and comprehensively understand the latest
progress concerning the controllability of stochastic linear systems and further problems to
be solved. The next research direction is how to solve these problems.
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