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1. Introduction

Recall that a Riemannian manifold (Mn, g) of dimension n ≥ 4 is called locally con-
formally flat if and only if the Weyl curvature tensor on Mn vanishes identically, of which
the study has always been an important subject in Riemannian geometry, and especially
from the point of view of submanifold theory. On the latter, the locally conformally flat
hypersurfaces of dimension greater than three in space forms were classified completely by
do Carmo et al. [1]. It is worth pointing out that it admits no real hypersurfaces even with
harmonic Weyl curvature tensor when the ambient space is complex space form N̄n(c̄) of
constant holomorphic sectional curvature c̄ 6= 0 and complex dimension n ≥ 3, which was
proven by Ki et al. in [2]. Thus, it follows that there are no locally conformally flat real
hypersurfaces in such complex space form N̄n(c̄).

In recent decades, the study of Riemannian submanifolds has been extended to the
ambient spaces, which are symmetric spaces other than real space forms and complex
space forms. In particular, related to the study of real hypersurfaces in both complex two-
plane Grassmannian SUm+2/S(U2Um) and complex hyperbolic two-plane Grassmannian
SU2,m/S(U2Um), there are many interesting results that have been established in the last
few decades; for details, see, e.g., [3–12] and the references therein.

The compact complex two-plane Grassmannian SUm+2/S(U2Um) consists of all the
complex two-dimensional linear subspaces in Cm+2, whereas the complex hyperbolic two-
plane Grassmannian SU2,m/S(U2Um) of all complex two-dimensional linear subspaces
in indefinite complex Euclidean space Cm+2

2 is noncompact. By a unified notation, we
denote by M̂m(c) the one of the compact type (resp. noncompact type) for c > 0 (resp.
c < 0), where c = max‖K‖/8 is a scaling factor for its Riemannian metric g and sectional
curvature K (see [11,12]). These are Hermitian symmetric spaces of rank two and complex
dimension 2m equipped with a Kähler structure J and a quaternionic Kähler structure J

not containing J.
Let M be a connected and orientable real hypersurface in M̂m(c) with N its normal

vector field, whose induced metric is still denoted by g. Then, the Reeb vector field ξ on M
is defined by ξ = −JN. Moreover, besides the almost contact metric structure (φ, ξ, η, g)
induced from g and J, there exists a local almost contact metric three-structure (φa, ξa, ηa, g)
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induced from g and J, where ξa = −JaN for a ∈ {1, 2, 3} and {J1, J2, J3} is a canonical local
basis of J (for details, see Section 2). In particular, we denote by D⊥ the distribution on M
spanned by {ξ1, ξ2, ξ3}.

For the shape operator A, a real hypersurface in M̂m(c) is said to be Hopf if it satisfies
Aξ = αξ for α = g(Aξ, ξ). The study of Hopf hypersurfaces in M̂m(c) was initiated by
Berndt and Suh in [13] for c > 0 and [14] for c < 0, respectively. More precisely, we have
the following two well-known classification theorems.

Theorem 1 ([13]). Let M be a connected real hypersurface in SUm+2/S(U2Um), m ≥ 3. Then,
both Rξ and D⊥ are invariant under the shape operator of M if and only if M is an open part of one
of the following spaces:

(A) A tube around a totally geodesic SUm+1/S(U2Um−1) in SUm+2/S(U2Um);
(B) A tube around a totally geodesic HPn = Spn+1/Sp1Spn in SUm+2/S(U2Um), where

m = 2n is even.

Theorem 2 ([14]). Let M be a connected real hypersurface in SU2,m/S(U2Um), m ≥ 2. Then,
both Rξ and D⊥ are invariant under the shape operator of M if and only if one of the following holds:

(A) M is an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1) in SU2,m/
S(U2Um);

(B) M is an open part of a tube around a totally geodesic HHn = Sp1,n/Sp1Spn in SU2,m/
S(U2Um), where m = 2n is even;

(C1) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at infinity is singular
and of type JN ∈ JN;

(C2) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at infinity is singular
and of type JN ⊥ JN;

(D) The normal bundle of M consists of singular tangent vectors of type JN ⊥ JN. Moreover, M
has at least four distinct principal curvatures, which are given by (c is a negative constant):

α = 2
√
−c, γ = 0, λ =

√
−c,

with corresponding principal curvature spaces:

Tα = Rξ ⊕D⊥, Tγ = Jξ, Tλ ⊂ H.

If µ is another (possibly nonconstant) principal curvature function, then Tµ ⊂ H, JTµ ⊂ Tλ,
and JTµ ⊂ Tλ.

Since then, a number of interesting results on Hopf hypersurfaces in M̂m(c) have
been obtained continuously. One of the best known results is that it admits no Hopf
hypersurfaces with a parallel Ricci tensor in M̂m(c), by which we easily see that there does
not exist any Einstein–Hopf hypersurface (see [15,16]). From this, it is clear that all of these
canonical real hypersurfaces of M̂m(c) given in Theorem ?? and Theorem 2 are not of a
constant sectional curvature.

Meanwhile, such non-existence results have also been established by geometers with-
out the Hopf condition. When c > 0, Suh in [17] proved that there are no real hypersur-
faces with a parallel shape operator, and later, this was generalized to the ones with a
semi-parallel shape operator by Loo [18]. Moreover, for real hypersurfaces in M̂m(c), an
immediate consequence of the Codazzi equation states that the totally umbilicity is too
strong to be satisfied (see also [11]). It should be pointed out that all the results mentioned
above are related to real hypersurfaces in M̂m(c) for m ≥ 3.

Motivated by the above statements, the next important problem associated with real
hypersurfaces in M̂m(c) becomes natural and interesting:

Problem. Does there exist any locally conformally flat real hypersurface in M̂m(c) for m ≥ 3?
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In this paper, we focus on studying the problem above, and as the main result, the
following non-existence theorem is proven.

Theorem 3. There does not exist any locally conformally flat real hypersurface in M̂m(c) for
m ≥ 3.

Remark 1. It was recently proven in [19] that there does not exist any locally conformally
flat real hypersurface in both the complex quadric Qn = SOn+2/SOnSO2 and its dual space
Qn∗ = SOn,2/SOnSO2 for n ≥ 3, which are viewed as another kind of Hermitian symmetric
spaces with rank two.

As a direct consequence of Theorem 3, we have the following result.

Corollary 1. There does not exist any real hypersurface with constant sectional curvature in
M̂m(c) for m ≥ 3.

Finally, it should be noted that the new method used to prove Theorem 3 is now called
the Tsinghua principle due to H. Li, L. Vrancken and X. Wang (cf. [20]), by which one can
combine the Codazzi equation with the Ricci identity in a new way to obtain some nice
linear equations involving the components of the second fundamental form. Recently, this
remarkable principle has been widely applied and proven to be very useful for various
purposes; see, e.g., [19–25].

2. Preliminaries

In this section, we begin with some basic geometric properties of the complex Grass-
mannians of rank two M̂m(c) besides those stated in the introduction section. Then, we
recall the theory of real hypersurfaces in M̂m(c). Furthermore, we state some fundamental
equations for such hypersurfaces, which are needed for the proof of Theorem 3. More
details can be found in [11,13,14,18,26,27].

2.1. The Complex Grassmannians of Rank Two M̂m(c)

The complex Grassmannians of rank two M̂m(c) are both equipped with a Kähler
structure J and a quaternionic Kähler structure J = Span{J1, J2, J3}. Here, Ja is a local
almost Hermitian structure, and it holds:

Ja Ja+1 = Ja+2 = −Ja+1 Ja, a ∈ {1, 2, 3}, (1)

where the index is taken modulo three. Denote by ∇̂ the Levi–Civita connection corre-
sponding to the Riemannian metric g on M̂m(c). Then, the local one-forms q1, q2, and q3
can be defined by:

∇̂X Ja := qa+2(X)Ja+1 − qa+1(X)Ja+2 (2)

for any X ∈ TM̂m(c). Here, the index is taken modulo three. The relation in (2) means that
J is parallel, corresponding to ∇̂. Moreover, it is known that the Kähler structure J and the
quaternionic Kähler structure J are related by the following:

J Ja = Ja J, (J Ja)
2 = Id, Tr(J Ja) = 0, (3)

where the tensor field J Ja defined locally is self-adjoint and Id denotes the identity
transformation.

In terms of the structures mentioned above and tangent vector fields X, Y, Z on M̂m(c),
the Riemannian curvature tensor R̂ of M̂m(c) can be locally expressed as:
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R̂(X, Y) = c{g(Y, Z)X− g(X, Z)Y

+ g(JY, Z)JX− g(JX, Z)JY− 2g(JX, Y)JZ}

+ c
3

∑
a=1
{g(JaY, Z)JaX− g(JaX, Z)JaY− 2g(JaX, Y)JaZ

+ g(J JaY, Z)J JaX− g(J JaX, Z)J JaY}.

(4)

2.2. Real Hypersurfaces in M̂m(c)

Let M be a connected and oriented real hypersurface isometrically immersed in M̂m(c)
(m ≥ 3) with a unit normal vector field N along M. We also denote by g the induced metric
on M. For any tangent vector field X of M, we can decompose JX ∈ TM̂m(c) in terms of
its tangent and normal parts as:

JX = φX + η(X)N, JN = −ξ, η(X) = g(X, ξ), (5)

where φ denotes a tensor field of type (1, 1) on M and η is the one-form over M, corre-
sponding to the Reeb vector field ξ. Then, the almost contact metric structure (φ, ξ, η, g)
induced from g and J satisfies the following relations:

φ2X = −X + η(X)ξ, φξ = 0,

g(φX, Y) = −g(X, φY), η(ξ) = 1,

g(φX, φY) = g(X, Y)− η(X)η(Y).

(6)

Choose {J1, J2, J3} to be a canonical local basis of J, and this induces a local almost
contact metric three-structure (φa, ξa, ηa, g) on M by, a ∈ {1, 2, 3},

JaX = φaX + ηa(X)N, JaN = −ξa, ηa(X) = g(X, ξa). (7)

Furthermore, it follows that:
φ2

a X = −X + ηa(X)ξa, φaξa = 0,

g(φaX, Y) = −g(X, φaY), ηa(ξa) = 1,

g(φaX, φaY) = g(X, Y)− ηa(X)ηa(Y).

(8)

From the relation in (1), we further obtain that:
φaξa+1 = ξa+2 = −φa+1ξa,

φaφa+1X = φa+2X + ηa+1(X)ξa,

φa+1φaX = −φa+2X + ηa(X)ξa+1,

(9)

where the index is taken modulo three.
Moreover, in terms of (3), these two almost contact metric structures (φ, ξ, η, g) and

(φa, ξa, ηa, g) are related by:

φaφX− η(X)ξa = φφaX− ηa(X)ξ, φξa = φaξ. (10)

Then, there exists a local symmetric (1, 1)-tensor field θa on M defined by:

θaX := φaφX− η(X)ξa. (11)

More identities of θa have been established in [11,18].
If ξ /∈ D⊥, where D⊥ = Span{ξ1, ξ2, ξ3} as stated in Section 1, there exists a unit vector

field X0 ∈ D such that η(X0)X0 is the projection of ξ onto D satisfying −1 ≤ η(X0) ≤ 1
and η(X0) 6= 0. Then, a distribution F⊥ can be defined by:

F⊥ := Span{ξ1, ξ2, ξ3, X0, φ1X0, φ2X0, φ3X0}, (12)
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whereas F is the orthonormal complement of F⊥ such that TM = F ⊕ F⊥. We can
check that {ξ1, ξ2, ξ3, X0, φ1X0, φ2X0, φ3X0} are orthonormal and dimF = 4m − 8. In
particular, F is invariant under φ, φa, and θa. From Lemma 3.2 (e) of [11], we know
that θ2

a X = X − g(X, φξa)φξa for all X ∈ TM, and hence, it follows that θa|F has two
eigenvalues ε = ±1. If we denote by Fa(ε) the eigenspace corresponding to eigenvalue ε of
θa|F , it holds that dimFa(1) =dimFa(−1) is even, and we derive that φFa(ε) = φaFa(ε) =
θaFa(ε) = Fa(ε), φbFa(ε) = θbFa(ε) = Fa(−ε) (a 6= b).

If ξ ∈ D⊥, we notice that dimD = 4m− 4 for the orthonormal complement D of D⊥.
Moreover, D is invariant under φ, φa, and θa. In this case, Lemma 3.2 (e) of [11] also implies
that θa|D has two eigenvalues ε = ±1, of which the corresponding eigenspace is denoted
by Da(ε). Thus, we see that dimDa(1)=dimDa(−1) is even and φDa(ε) = φaDa(ε) =
θaDa(ε) = Da(ε), φbDa(ε) = θbDa(ε) = Da(−ε) (a 6= b).

Similar to the method in [18], by direct calculation, we can verify these facts mentioned
above, which involve both of the cases ξ /∈ D⊥ and ξ ∈ D⊥.

On the other hand, if we denote by ∇ and A the induced connection of ∇̂ on M and
the shape operator of M, the formulas of Gauss and Weingarten are given by, respectively,

∇̂XY = ∇XY + g(AX, Y)N, ∇̂X N = −AX (13)

for all X, Y ∈ TM. Using (J Ja)> = θaX and (J Ja)⊥ = ηa(φX)N for X ∈ TM, where ·> and
·⊥ denote the tangential part and normal part, respectively, we obtain from the expression
of the curvature tensor R̂ in (4) the equations of Gauss and Codazzi as follows (see [11]):

R(X, Y)Z = c{g(Y, Z)X− g(X, Z)Y

+ g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ}

+ c
3

∑
a=1

{
g(φaY, Z)φaX− g(φaX, Z)φaY− 2g(φaX, Y)φaZ

}
+ c

3

∑
a=1

{
g(θaY, Z)θaX− g(θaX, Z)θaY

}
+ g(AY, Z)AX− g(AX, Z)AY,

(14)

(∇X A)Y− (∇Y A)X = c{η(X)φY− η(Y)φX− 2g(φX, Y)ξ}

+ c
3

∑
a=1

{
ηa(X)φaY− ηa(Y)φaX− 2g(φaX, Y)ξa

}
+ c

3

∑
a=1

{
ηa(φX)θaY− ηa(φY)θaX

}
.

(15)

By contracting Y and Z in (14), we have the following expression of the Ricci tensor
of M:

Ric(X, Y) = c
{
(4m + 7)g(X, Y)− 3η(X)η(Y)

}
+ c

3

∑
a=1

{
ηa(φX)ηa(φY)− 3ηa(X)ηa(Y)

− ηa(ξ)g(φX, φaY)− ηa(ξ)ηa(Y)η(X)
}

+ Hg(AX, Y)− g(A2X, Y),

(16)

where H = TrA denotes the mean curvature of the real hypersurface M in M̂m(c).
In particular, the shape operator A and the Riemannian curvature tensor R are related

by the Ricci identity:

(∇2 A)(W, X, Y)− (∇2 A)(X, W, Y) = R(W, X)AY− AR(W, X)Y. (17)
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In order to apply the Tsinghua principle, we shall give the following lemma on the
covariant derivatives of tensors {ξ, η, φ, ξa,ηa, φa, θa} without proof, which can be proven
by direct calculation. Furthermore, most of them were presented in [11].

Lemma 1. Let M be a real hypersurface in M̂m(c), m ≥ 3, with the Levi–Civita connection ∇ of
the induced metric g. Then, for the two contact metric structures (φ, ξ, η, g) and (φa, ξa, ηa, g),
a ∈ {1, 2, 3}, we have:

∇Xξ = φAX,

(∇Xη)Y = −g(AX, φY),

(∇Xφ)Y = η(Y)AX− g(AX, Y)ξ,

∇Xξa = φa AX + qa+2(X)ξa+1 − qa+1(X)ξa+2,

(∇Xηa)Y = −g(AX, φaY) + qa+2(X)ηa+1(Y)− qa+1(X)ηa+2(Y),

(∇Xφa)Y = ηa(Y)AX− g(AX, Y)ξa + qa+2(X)φa+1Y− qa+1(X)φa+2Y,

(∇Xθa)Y = ηa(φY)AX− g(AX, Y)φξa + qa+2(X)θa+1Y− qa+1(X)θa+2Y.

3. Key Lemmas and Important Classification Results

In this section, following the idea of Tsinghua principle, we first prove the next two
lemmas, which are related to the general real hypersurfaces and the locally conformally
flat real hypersurfaces, respectively, in M̂m(c) for m ≥ 3.

Lemma 2. Let M be a real hypersurface in M̂m(c), m ≥ 3. Then, in terms of these two almost
contact metric structures (φ, ξ, η, g) and (φa, ξa, ηa, g) with the index a ∈ {1, 2, 3}, for any
tangent vector fields W, X, Y, Z ∈ TM, we have:

S
WXY

I(W, X, Y, Z) = − S
WXY
{g(R(W, X)Y, AZ) + g(R(W, X)Z, AY)}, (18)

where S
WXY

is the cyclic summation over W, X, Y and I(W, X, Y, Z) is given by:

I(W, X, Y, Z) := c
{

g(AW, φY)g(φX, Z)− g(AW, φX)g(φY, Z)

+ 2g(AW, φZ)g(φX, Y)− 3g(AW, Y)η(X)η(Z) + 3g(AW, X)η(Y)η(Z)
}

+ c
3

∑
a=1

{
g(AW, φaY)g(φaX, Z)− g(AW, φaX)g(φaY, Z)

+ 2g(AW, φaZ)g(φaX, Y)− 3g(AW, Y)ηa(X)ηa(Z) + 3g(AW, X)ηa(Y)ηa(Z)
}

+ c
3

∑
a=1

{
g(φa AW, φX) + ηa(AW)η(X)− g(AW, X)ηa(ξ))

}
g(θaY, Z)

− c
3

∑
a=1

{
g(φa AW, φY) + ηa(AW)η(Y)− g(AW, Y)ηa(ξ))

}
g(θaX, Z)

+ c
3

∑
a=1

{
g(AW, Y)ηa(φX)ηa(φZ)− g(AW, X)ηa(φY)ηa(φZ))

}
.

Proof. First of all, we put:

B := S
WXY
{g((∇2 A)(W, X, Y), Z)− g((∇2 A)(W, Y, X), Z)}. (19)

Then, this lemma shall be proven by calculating B through two different ways. From
the Codazzi equation in (15), we calculate:
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g((∇2 A)(W, X, Y), Z)− g((∇2 A)(W, Y, X), Z)

=c
{
(∇Wη)(X)g(φY, Z) + η(X)g((∇Wφ)Y, Z)− (∇Wη)(Y)g(φX, Z)

− η(Y)g((∇Wφ)X, Z)− 2g((∇Wφ)X, Y)η(Z)− 2g(φX, Y)g(∇Wξ, Z)
}

+ c
3

∑
a=1

{
(∇Wηa)(X)g(φaY, Z) + ηa(X)g((∇Wφa)Y, Z)− (∇Wηa)(Y)g(φaX, Z)

− ηa(Y)g((∇Wφa)X, Z)− 2g((∇Wφa)X, Y)ηa(Z)− 2g(φaX, Y)g(∇Wξa, Z)
}

+ c
3

∑
a=1

{
[(∇Wηa)(φX) + g((∇Wφ)X, ξa)]g(θaY, Z) + ηa(φX)g((∇Wθa)Y, Z)

}
− c

3

∑
a=1

{
[(∇Wηa)(φY) + g((∇Wφ)Y, ξa)]g(θaX, Z) + ηa(φY)g((∇Wθa)X, Z)

}
.

This, combined with the equations in Lemma 1, gives:

g((∇2 A)(W, X, Y), Z)− g((∇2 A)(W, Y, X), Z) = I(W, X, Y, Z). (20)

On the other hand, by using the Ricci identity (17), we obtain:

B = S
WXY
{g((∇2 A)(W, X, Y), Z)− g((∇2 A)(W, Y, X), Z)}

= S
WXY
{g((∇2 A)(W, X, Y), Z)− g((∇2 A)(X, W, Y), Z)}

= − S
WXY
{g(R(W, X)Y, AZ) + g(R(W, X)Z, AY)}.

(21)

Hence, this assertion immediately follows from (20) and (21).

Further, for a locally conformally flat real hypersurface M in M̂m(c), by Lemma 2, we
derive the following lemma, which is of great significance for the later proof.

Lemma 3. Let M be a locally conformally flat real hypersurface in M̂m(c) for m ≥ 3. Then, in
terms of these two almost contact metric structures (φ, ξ, η, g) and (φa, ξa, ηa, g) with a ∈ {1, 2, 3},
for any tangent vector fields W, X, Y, Z ∈ TM, we have:

S
WXY

I(W, X, Y, Z) = S
WXY

II(W, X, Y, Z) (22)

where I(W, X, Y, Z) is defined as in Lemma 2 and:

II(W, X, Y, Z) = 1
4m−3

{
Ric(X, AY)− Ric(Y, AX)

}
g(W, Z). (23)

Proof. We first recall that the curvature tensor of a locally conformally flat real hypersurface
M in M̂m(c), where the Weyl curvature tensor vanishes, is given by:

g(R(X, Y)Z, W) = 1
4m−3

{
Ric(Y, Z)g(X, W)− Ric(X, Z)g(Y, W)

+ Ric(X, W)g(Y, Z)− Ric(Y, W)g(X, Z)
}

+ r
2(2m−1)(4m−3)

{
g(X, Z)g(Y, W)− g(Y, Z)g(X, W)

}
,

(24)

where r denotes the scalar curvature of M.
This, together with (21), yields:

B = 1
4m−3 S

WXY

{
Ric(X, AY)− Ric(Y, AX)

}
g(W, Z). (25)

Thus, from (19) and (20), the assertion follows immediately, where by the expression
of Ricci tensor in (16), we can rewrite II(W, X, Y, Z) as:
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II(W, X, Y, Z) = 3c
4m−3

{
η(Y)η(AX)− η(X)η(AY)

}
g(W, Z)

+ 3c
4m−3

3

∑
a=1

{
ηa(Y)ηa(AX)− ηa(X)ηa(AY)

}
g(W, Z)

− c
4m−3

3

∑
a=1

{
ηa(φY)ηa(φAX)− ηa(φX)ηa(φAY)

}
g(W, Z)

+ c
4m−3

3

∑
a=1

ηa(ξ)
{

g(φY, φa AX)− g(φX, φa AY)
}

g(W, Z)

− c
4m−3

3

∑
a=1

ηa(ξ)
{

ηa(AY)η(X)− ηa(AX)η(Y)
}

g(W, Z).

(26)

Remark 2. As the key to apply the Tsinghua principle successfully, we find it by calculation that
all the terms, involving qa(X) for a ∈ {1, 2, 3} and X ∈ TM, are canceled out by each other, and
this greatly simplifies the calculation on the linear relationship described in I(W, X, Y, Z).

At the end of this section, two important classification theorems of the real hypersur-
faces with isometric Reeb flow in M̂m(c) (m ≥ 3) are stated for later use. Here, for a real
hypersurface M in M̂m(c), its Reeb flow is isometric if and only if it holds Lξ g = 0 with Lξ

the Lie derivative L along the direction of ξ, which is also equivalent to Aφ = φA.

Theorem 4 ([28]). Let M be a connected orientable real hypersurface in the complex two-plane
Grassmannian SUm+2/S(U2Um), m ≥ 3. Then, the Reeb flow on M is isometric if and only if M
is an open part of a tube around a totally geodesic SUm+1/S(U2Um−1) in SUm+2/S(U2Um).

Theorem 5 ([29]). Let M be a connected orientable real hypersurface in the complex hyperbolic
two-plane Grassmannian SU2,m/S(U2Um), m ≥ 3. Then, the Reeb flow on M is isometric if
and only if M is an open part of a tube around some totally geodesic SU2,m−1/S(U2Um−1) in
SU2,m/S(U2Um) or a horosphere whose center at infinity is singular.

Remark 3. It should be pointed out that these real hypersurfaces with isometric Reeb flow have at
least three distinct constant principle curvatures (see [28,29] or [11]). This implies that it admits no
totally umbilical real hypersurfaces in M̂m(c) for m ≥ 3. Otherwise, for such a real hypersurface in
M̂m(c) with Aφ = φA, it has isometric Reeb flow, and this is a contradiction.

4. Proof of Main Theorem

Throughout this section, we always assume that M is a locally conformally flat real
hypersurface in M̂m(c), m ≥ 3. For the Reeb vector field ξ on M, we prove that it belongs
either to the distribution D or to its orthonormal complement D⊥.

Proposition 1. Let M be a locally conformally flat real hypersurface in M̂m(c), m ≥ 3. Then, the
Reeb vector field ξ belongs to the distribution D or D⊥.

Proof. We argue by contradiction. Assume that at some point x ∈ M, it satisfies that ξ /∈ D

and ξ /∈ D⊥. Then, there exist a neighborhood U of x in M, on which we can write:

ξ = η(X0)X0 + η(ξ1)ξ1 (27)

for unit vector fields X0 ∈ D and ξ1 ∈ D⊥ such that:

η(X0)η(ξ1) 6= 0, [η(X0)]
2 + [η(ξ1)]

2 = 1. (28)
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Put e1 = ξ1, e2 = ξ2, e3 = ξ3, e4 = X0, e5 = φ1X0, e6 = φ2X0, and e7 = φ3X0. From
Section 2, it follows that dimF1(1) = 2m− 4 = dimF1(−1) for a = 1 and m ≥ 3. Choosing
some fixed unit vector field e8 ∈ F1(1), we can take e9 := φ1e8 ∈ F1(1), e10 := φ2e8 ∈
F1(−1) and e11 := φ3e8 ∈ F1(−1). Further, if we define H := F 	 Span{e8, e9, e10, e11},
it can be seen that θ1|H has also two eigenvalues ε = ±1, of which the corresponding
eigenspace is denoted by H(ε). Then, dimH(1) = 2m − 6 = dimH(−1). Next, we
proceed to choose a fixed unit vector field e12 ∈ H(1) and take e13 := φ1e12 ∈ H(1),
e14 := φ2e12 ∈ H(−1), and e15 := φ3e12 ∈ H(−1). Repeating this way, a local orthonormal
frame field {ei}4m−1

i=1 along M can be chosen as:
e1 = ξ1, e2 = ξ2, e3 = ξ3, e4 = X0,

e5 = φ1X0, e6 = φ2X0, e7 = φ3X0,

e4p−8 ∈ F1(1), e4p−7 = φ1e4p−8 ∈ F1(1),

e4p−6 = φ2e4p−8 ∈ F1(−1), e4p−5 = φ3e4p−8 ∈ F1(−1),

(29)

where dimF1(1) = 2m− 4 = dimF1(−1) and 4 ≤ p ≤ m + 1 for m ≥ 3.
For the shape operator A of M, we set Aei := ∑4m−1

j=1 aijej for 1 ≤ i ≤ 4m− 1. Obvi-
ously, aij = aji for 1 ≤ i, j ≤ 4m− 1.

In order to apply Lemma 3, we first calculate I(W, X, Y, Z) and II(W, X, Y, Z) directly,
by choosing appropriate W = ei, X = ej, Y = ek, Z = e`, 1 ≤ i, j, k, ` ≤ 4m− 1. Moreover,
making use of (22), we shall obtain a system of linear equations of the components aij,
by means of which we will complete the proof of Proposition 1. For the convenience of
calculation, the following agreement is presented:

α = 1
4m−3 η(ξ1), m ≥ 3.

From (28), it is obvious that −1 < α < 1 and α 6= 0.

Firstly, we choose W, X, Y, Z ∈ {e4p−8, e4p−7, e4p−6, e4p−5} for 4 ≤ p ≤ m + 1.

We begin with the calculation by taking in (22):

(W, X, Y, Z) = (e4p−8, e4p−7, e4p−6, e4p−8), (e4p−8, e4p−7, e4p−5, e4p−7),

respectively. Then, we have the equations:

a4p−8,4p−5 + (3− α)a4p−7,4p−6 = 0, a4p−7,4p−6 + (3− α)a4p−8,4p−5 = 0,

which implies that a4p−8,4p−5 = a4p−7,4p−6 = 0.
Similarly, in (22), we consider the following:

(W, X, Y, Z) = (e4p−8, e4p−7, e4p−6, e4p−7), (e4p−8, e4p−7, e4p−5, e4p−8),

(e4p−8, e4p−7, e4p−5, e4p−5), (e4p−7, e4p−6, e4p−5, e4p−7),

and further obtain that a4p−8,4p−6 = a4p−7,4p−5 = a4p−6,4p−5 = a4p−8,4p−7 = 0.
By summarizing the conclusion above, for 4 ≤ p ≤ m + 1, we have:{

a4p−8,4p−7 = a4p−8,4p−6 = a4p−8,4p−5 = 0,

a4p−7,4p−6 = a4p−7,4p−5 = a4p−6,4p−5 = 0.
(30)

Next, if we take in (22), respectively,

(W, X, Y, Z) = (e4p−8, e4p−7, e4p−6, e4p−5), (e4p−8, e4p−7, e4p−5, e4p−6),

(e4p−7, e4p−6, e4p−5, e4p−8),

then a system of equations can be obtained as:
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2a4p−6,4p−6 = a4p−8,4p−8 + a4p−7,4p−7,

2a4p−5,4p−5 = a4p−8,4p−8 + a4p−7,4p−7,

2a4p−7,4p−7 = a4p−6,4p−6 + a4p−5,4p−5.

This gives a4p−8,4p−8 = a4p−7,4p−7 = a4p−6,4p−6 = a4p−5,4p−5.
Moreover, we can take (W, X, Y, Z) = (e4p1−8, e4p1−7, e4p2−8, e4p2−7) in (22) such that

5 ≤ p2 = p1 + 1 ≤ m + 1 if m ≥ 4 to obtain the recurrence relation:

2a4p2−8,4p2−8 = a4p1−8,4p1−8 + a4p1−7,4p1−7.

It follows that:
aii = ajj, 8 ≤ i < j ≤ 4m− 1. (31)

Consider W, X, Y, Z ∈ {e1, . . . , e7, e4p−8, e4p−7, e4p−6, e4p−5} for 4 ≤ p ≤ m + 1.

Repeating the calculation by taking in (22) for 5 ≤ k ≤ 8:

(W, X, Y, Z) = (e1, e2, e4, e4p−k), (e2, e3, e5, e4p−k),

(e3, e1, e6, e4p−k), (e1, e2, e7, e4p−k),

respectively, we derive, for 4 ≤ p ≤ m + 1,

ai,4p−8 = ai,4p−7 = ai,4p−6 = ai,4p−5 = 0, 4 ≤ i ≤ 7. (32)

For 5 ≤ k ≤ 8, taking in (22), respectively,

(W, X, Y, Z) = (e4, e5, e1, e4p−k), (e5, e6, e2, e4p−k), (e6, e7, e3, e4p−k),

from (28) and (32), we conclude, for 4 ≤ p ≤ m + 1,

ai,4p−k = 0, 1 ≤ i ≤ 3, 5 ≤ k ≤ 8. (33)

Further, for 5 ≤ k, ` ≤ 8, we take (W, X, Y, Z) = (e1, e2, e4p1−k, e4p2−`) in (22) for
4 ≤ p1 < p2 ≤ m + 1 if m ≥ 4, and later, it holds between the cross terms:

a4p1−k,4p2−` = 0, 4 ≤ p1 < p2 ≤ m + 1, 5 ≤ k, ` ≤ 8. (34)

Finally, we calculate by choosing W, X, Y, Z ∈ {e1, . . . , e7, e8, e9, e10, e11}.

For 1 ≤ i ≤ 3 and 4 ≤ j ≤ 7, taking in (22) (W, X, Y, Z) = (e9, e10, ei, ej) and:

(W, X, Y, Z) = (e9, e10, e1, e1), (e8, e9, e2, e2), (e8, e9, e6, e6),

(e9, e10, e4, e4), (e8, e9, e4, e4), (e10, e11, e6, e1),

(e9, e11, e1, e1), (e8, e10, e4, e4), (e10, e11, e7, e1),

respectively, from the combination of (28), (30), and (31), we obtain:

aij = 0, 1 ≤ i < j ≤ 7. (35)

In particular, by taking in (22), respectively,

(W, X, Y, Z) =(e8, e9, e1, e5), (e8, e9, e2, e6), (e8, e9, e3, e7), (e4, e5, e8, e9),

(e8, e9, e5, e1), (e8, e9, e6, e2), (e8, e9, e7, e3),

with the use of (28), (31), and (35), we have:

aii = ajj, 1 ≤ i < j ≤ 8. (36)
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From the equations of (30)–(36), we easily see that M is totally umbilical, and by
Remark 3, it is obviously a contradiction.

Hence, we complete the proof by this contradiction.

In order to complete the proof of Theorem 3, by Proposition 1, we only need to
consider the following two cases:

• Case I: The Reeb vector field ξ belongs to the distribution D;
• Case II: The Reeb vector field ξ belongs to the distribution D⊥.

In the following, we first prove that Case I will not happen, as is shown in Proposition 2.

Proposition 2. Let M be a locally conformally flat real hypersurface in M̂m(c), m ≥ 3. Then, the
Reeb vector field ξ belongs to the distribution D⊥.

Proof. Suppose that ξ ∈ D. Without loss of generality, we can also take ξ = X0 for such
unit vector field X0 ∈ D. Choosing the local orthonormal frame field {ei}4m−1

i=1 the same
as in (29), we repeat the calculations of Proposition 1 step by step and conclude that M
is still totally umbilical, which combined with Remark 3 appears as a contradiction. By
Proposition 1, we see that for a locally conformally flat real hypersurface M in M̂m(c)
(m ≥ 3), its Reeb vector field ξ must belong to the distribution D⊥.

To complete the proof of Theorem 3, we are left just to consider Case II, which states
that M is a locally conformally flat real hypersurface in M̂m(c) (m ≥ 3) with ξ ∈ D⊥.
In this case, by Section 2, we know that dimD⊥ = 4m − 4. Noting that dimD⊥1 (1) =
2m − 2 = dimD⊥1 (−1) for a = 1 and m ≥ 3, we choose some fixed unit vector field
e4 ∈ D⊥1 (1) such that e5 := φ1e4 ∈ D⊥1 (1), e6 := φ2e4 ∈ D⊥1 (−1), and e7 := φ3e4 ∈ D⊥1 (−1),
respectively. If we define P := D⊥ 	 Span{e4, e5, e6, e7}, the same as θ1|D⊥ , θ1|P also has
two eigenvalues ε = ±1. We denote by P(ε) the corresponding eigenspace and further
obtain that dimP(1) = 2m− 4 = dimP(−1) for m ≥ 3. Later, another fixed unit vector
field e8 ∈ P(1) can be chosen such that e9 := φ1e8 ∈ P(1), e10 := φ2e8 ∈ P(−1), and
e11 := φ3e8 ∈ P(−1). Repeating this way, there exist a local orthogonal frame field {ei}4m−1

i=1
given by: 

e1 = ξ1, e2 = ξ2, e3 = ξ3,

e4q−8 ∈ D⊥1 (1), e4q−7 = φ1e4q−8 ∈ D⊥1 (1),

e4q−6 = φ2e4q−8 ∈ D⊥1 (−1), e4q−5 = φ3e4q−8 ∈ D⊥1 (−1),

(37)

where dimD⊥1 (1) = 2m− 2 = dimD⊥1 (−1) and 3 ≤ q ≤ m + 1 for m ≥ 3.
By choosing appropriate W = ei, X = ej, Y = ek, Z = e`, 1 ≤ i, j, k, ` ≤ 4m− 1, we

proceed to calculate I(W, X, Y, Z) and II(W, X, Y, Z) in (22).
Put Aei = ∑4m−1

j=1 aijej for 1 ≤ i ≤ 4m− 1 with aij = aji for 1 ≤ i, j ≤ 4m− 1. Similarly,
by taking different values in (W, X, Y, Z), we still apply the relation in (22) of Lemma 3 to
obtain a system of linear equations of the components aij.

We start with the calculation by taking in (22), for 6 ≤ i ≤ 8 and 7 ≤ j ≤ 8,

(W, X, Y, Z) = (e4q−8, e4q−7, e4q−6, e4q−i), (e4q−8, e4q−7, e4q−5, e4q−j),

(e4q−7, e4q−6, e4q−5, e4q−7),

respectively, and it follows that:{
a4q−8,4q−7 = a4q−8,4q−6 = a4q−8,4q−5 = 0,

a4q−7,4q−6 = a4q−7,4q−5 = a4q−6,4q−5 = 0.
(38)

For 4 ≤ q2 = q1 + 1 ≤ m + 1, by further taking in (22), respectively,
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(W, X, Y, Z) = (e4q−8, e4q−7, e4q−6, e4q−5), (e4q−8, e4q−7, e4q−5, e4q−6),

(e4q−7, e4q−6, e4q−5, e4q−8), (e4q1−8, e4q1−7, e4q2−8, e4q2−7),

we conclude that:
aii = ajj, 4 ≤ i < j ≤ 4m− 1. (39)

For 5 ≤ k, ` ≤ 8, taking (W, X, Y, Z) = (e1, e2, e4q1−k, e4q2−`) in (22), we obtain these
cross terms, for 3 ≤ q1 < q2 ≤ m + 1 if m ≥ 4,

a4q1−k,4q2−` = 0, 5 ≤ k, ` ≤ 8. (40)

Repeating the calculation and taking in (22), for 5 ≤ k ≤ 8 and 5 ≤ ` ≤ 6,

(W, X, Y, Z) = (e4q−8, e4q−7, e1, e4q−k), (e4q−7, e4q−6, e2, e4q−5),

(e4q−5, e4q−8, e2, e4q−6), (e4q−6, e4q−5, e2, e4q−`),

(e4q−7, e4q−5, e3, e4q−6), (e4q−8, e4q−6, e3, e4q−5),

(e4q−6, e4q−5, e3, e4q−`),

respectively, we obtain:

ai,4q−k = 0, 1 ≤ i ≤ 3, 5 ≤ k ≤ 8. (41)

Moreover, if in (22), we proceed to take, respectively,

(W, X, Y, Z) =(e5, e6, e1, e1), (e5, e7, e1, e1), (e4, e5, e2, e2),

(e5, e6, e1, e2), (e5, e6, e2, e1), (e4, e5, e3, e2),

by virtue of (38) and (39), we obtain:

a12 = a13 = a23 = 0, a11 = a22 = a33 = a44. (42)

Summarizing all the results of (38)–(42), we immediately obtain:

aij = 0, aii = ajj, 1 ≤ i < j ≤ 4m− 1, (43)

which implies that M is still totally umbilical, a contradiction to the statement in Remark 3.
For this reason, exactly it admits no locally conformally flat real hypersurfaces in M̂m(c),
m ≥ 3.

In conclusion, we have completed the proof of Theorem 3.
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