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Abstract: In this paper, we present the results of a study of a priority multi-server queuing system
with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP),
phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH
distributions of the service time and the probability of joining the queue, which depends on the
current length of the queue. If the queue is full, the customer does not enter the system. An analytical
model has been developed and studied for a particular case of a queueing system with two priority
classes. We present an algorithm for calculating stationary probabilities of the system state, loss
probabilities, the average number of customers in the queue, and other performance characteristics
for this particular case. For the general case with K priority classes, a new method for assessing the
performance characteristics of complex priority systems has been developed, based on a combination
of machine learning and simulation methods. We demonstrate the high efficiency of the new method
by providing numerical examples.

Keywords: multi-server queueing system; heterogeneous customers; marked Markovian arrival process;
priorities; loss probabilities; machine learning; artificial neural networks; simulation modeling

1. Introduction

Priority queuing systems, which are an essential part of the queuing theory, are effec-
tively used in the analysis of real technical and social systems [1–7]. Examples of systems
with priority traffic include digital television, in which the transmission of synchronization
signals has a higher priority than the transmission of video, and computer networks with
Quality of Service (QoS) support, in particular—Internet of Things (IoT) systems [1–4]. Fur-
thermore, information services with different categories of users [5], as well as any social
systems with different types of clients, such as hospitals, are other examples of the systems
with priority traffic. As an example of the latter, we can cite the studies [6,7], which investi-
gate the effectiveness of algorithms for allocating places in the organ transplant queue for
patients depending on the severity of their disease. In addition, priority systems are used
to provide users with priority login when working with various services. For example, the
paper [5] provides an analysis of the impact of priorities on the workload, transaction time,
and other characteristics, investigating the performance of various databases for users with
different access priorities.

It is well-known [8] that traffic in modern computer networks is correlated, and it
is essential to use Markovian arrival processes (MAP) [9] to model it. A natural general-
ization of MAP for the case of heterogeneous traffic is marked Markovian arrival process
(Marked MAP, MMAP) [9], which describes correlated arrivals of an arbitrary number of
customers types.
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Systems with MMAP are poorly studied in the world literature compared to classical
MAP arrival processes. The article [10] analyzes the queue size of the priority system
MMAP/MAP/1. Investigation of the conditions for a stationary mode of a multi-server
queueing system with an incoming MMAP is presented in the paper [6]. However, it
lacks a description of the algorithm for calculating stationary state probabilities and other
system performance characteristics. In recent works [11,12], the problem of finding a
stationary solution for priority systems with a MMAP for the case of one server was
investigated. The paper [11] examines the relative priority queue, and [12] examines the
absolute priority queue.

Paper [13] considers a complex multi-server queueing system with a MMAP, two
priority classes, and no buffer. Current research is a development and generalization
of this paper. The fundamental difference between this paper and [13] is the presence
of a buffer of finite capacity and an arbitrary number of customers types. On the one
hand, such a generalization significantly complicates the mathematical analysis even for
two customers types. However, on the other hand, it expands the area of the practical
application of the model considered in the paper. The key contribution of this research
is the development of a new method for studying queueing systems with an arbitrary
number of customers types, based on a combination of machine learning and simulation
methods. This method can be effectively used to study many problems in the theory of
queues, for which finding a rigorous analytical solution and numerical results is either
difficult or even impossible using traditional approaches. In particular, this method was
applied to study a Fork-join type QS, and in [14] to estimate performance characteristics of
complex adaptive polling systems.

This paper presents for the first time the results of a study of a multi-server queueing
system with a MMAP, a queue with finite capacity, and an arbitrary number of customers
types. The service times for customers of all types have a phase-type (PH) distribution with
different parameters. Section 2 provides the formal problem statement and description of
the model. For a particular case of two types of customers, Section 3 gives an analytical
solution, including a description of a multidimensional Markov chain, an algorithm for
calculating stationary state probabilities, and other characteristics. Section 4 describes a
new method for studying a generalized model of a multi-server queueing system based
on a combination of machine learning and simulation methods. Finally, Section 5, using a
new approach, presents the results of a numerical study of the crucial characteristics of the
multi-server queueing system, including the loss probabilities of the customers and the
time spent by customers of the given type in the system. Section 6 discusses results and
concludes the paper.

2. Problem Statement

Let us consider a multi-server queueing system with N servers and a queue with
capacity R. Customers of different types arrive according to a marked Markovian arrival
process directed by the underlying irreducible continuous time Markov chain νt, t ≥ 0 with
state space {0, 1, 2, . . . , W}. Process νt stays in state ν during exponentialy distributed time
with parameter λν, ν = 0, W. After that the process moves to state ν′ and either generates a
customer of type k, k ∈ {1, 2, . . . , K} with probability pk(ν, ν′), or moves without customer
generation with probability p0(ν, ν′). Any possible loop transition should happen together
with customer generation, i.e., pk(ν, ν) ≥ 0, k ∈ {1, 2, . . . , K}, but p0(ν, ν) = 0. Transition
probabilities should meet the following requirement:

K

∑
k=0

W

∑
ν′=0

pk(ν, ν′) = 1, ν, ν′ = 0, W.

Thus, the MMAP process is defined by

• W + 1, number of states in the underlying Markov chain;
• K, number of customer types;
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• λν, transition rates;
• pk(ν, ν′), k = 0, K, ν, ν′ = 0, W, transition probabilities between states in the underly-

ing Markov chain νt.

All the information regarding MMAP process is conveniently stored in square matri-
ces Dk, k = 0, K of order W + 1:

(Dk)ν,ν′ = λν pk(ν, ν′), ν, ν′ = 0, W, k = 1, K,

(D0)ν,ν′ =

{
−λν, ν = ν′ = 0, W,
λν p0(ν, ν′), ν 6= ν′, ν, ν′ = 0, W.

Elements of matrices Dk, k = 1, K, are transitions rates of the process νt, accompanied
by generation of type k customers. Non-diagonal elements of matrix D0 have a similar
meaning, while diagonal elements hold the negated sum of state departure transition rates.

A natural requirement for the matrices Dk, k = 1, K, is that not all of them are
zero. When this requirement is met, the matrix D0 is non-degenerate and stable since its
eigenvalues have a negative real part.

The matrices Dk, k = 1, K, can be defined by their matrix generating function D(z) =
K
∑

k=0
Dkzk, |z| < 1. Note that the value of this function at z = 1 (matrix D(1)) is the

infinitesimal generator of the underlying Markov chain νt, t ≥ 0. The stationary distribution
of this chain, represented as a rowvector θ, is defined as a solution of the linear algebraic
system θD(1) = 0, θe = 1. Here and below e is a column vector consisting of ones.

Arrival rate λk of customers of type k and the total cumulative arrival rate λ of MMAP
process are defined as

λk = θDke, k = 1, K

λ = θ
K

∑
k=1

Dke.

Variance vk of inter-arrival intervals of k-type customers is calculated as

v(k) =

2θ(−D0 −
K
∑

l=1,l 6=k
Dl)
−1e

λk
−
(

1
λk

)2

, k = 1, K.

Correlation coefficient c(k)cor of lengths of two adjacent inter-arrival intervals of k-type
customers is calculated by the formula

c(k)cor =

[θ(D0 +
K
∑

l=1,l 6=k
Dl)
−1e

λk
Dk(D0 +

K

∑
l=1,l 6=k

Dl)
−1e−

(
1

λk

)2]
v−1

k , k = 1, K.

More details about a MMAP can be found, for instance, in [15]. Note that stationary
Poisson arrival process is a special case of MMAP with W = 0, K = 1, D0 = −λ and
D1 = λ.

In the general case, customers of different types differ in priorities and parameters of
PH distribution of service time. These differences will be described in more detail below.

Let us consider that all servers are equal and operate independently. Service time of
the k-type customer has PH (Phase Type) distribution with representation (βk, Sk). Here
βk is a row vector of size Mk, and Sk is a square matrix of size Mk. Thus, the service time is

interpreted as the time during which an underlying Markov chain m(k)
t , t ≥ 0, with state

space {1, . . . , Mk, Mk + 1}, will reach the only absorbing state Mk + 1. Transition rates of
the chain m(k)

t , t ≥ 0, within the space of transient states {1, . . . , Mk} are defined by the
sub-generator Sk, and the transition rates to the absorbing state are defined by the vector
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S(k)
0 = −Ske. Initial state of the process mt(k), t ≥ 0, at the time the service starts is selected

according to the probability row vector βk. More information regarding PH distributions
may be found, e.g., in [16,17].

We assume that customers of type k′ < k have higher relative priority than customers
of type k. It means that all customers with higher priority are placed in the queue in
front of customers with lower priority. Let an incoming customer of type k′ finds all

servers busy and i = 1, R− 1, customers waiting in the queue. With probability q(k
′)

i this
customer will join the queue and will be put ahead of all non-priority customers of types
k = k′ + 1, k′ + 2, . . . , K and after all priority customers of types k = 1, 2, . . . , k′. With

probability 1− q(k
′)

i , the new customer decides not to join the queue and leaves the system
forever. If any new customer finds the queue fully occupied, it also leaves the system
forever. To simplify notation, in the case of K = 2 types of customers, we will denote
the probabilities of joining the queue of length i for priority customers of type k = 1 as
qi ≡ q(1)i , and for non-priority customers of type k = 2 as fi ≡ q(2)i .

Our goal is to calculate the stationary distribution of the system, its performance char-
acteristics and conduct a numerical experiment to measure performance, including the prob-
ability of customers losses and the system’s response time. We will use the analytic model,
Monte Carlo method, and machine learning (ML) to calculate the system characteristics.

3. MMAP/PH/M/N Queueing System with Two Priority Classes
3.1. Markov Chain of the System States

Let at the time t,

• it be the number of customers in the queue, it = 0, R;
• kt be the number of high priority (type 1) customers in the queue, kt = 0, it;
• nt be the number of busy servers, nt = 0, N;
• rt be the number of servers servicing high priority customers, rt = 0, nt;

• n(m(1)
t )

t be the number of servers servicing high priority customers for which the

underlying process is in state m(1)
t , n(m(1)

t )
t = 0, rt, m(1)

t = 1, M1;

• ñ(m(2)
t )

t be the number of servers servicing low priority (type 2) customers for which

the underlying process is in state m(2)
t , ñ(m(2)

t )
t = 0, nt − rt, m(2)

t = 1, M2;
• νt be the state of the underlying process of MMAP, νt = 0, W.

Operation of the system is described by a regular irreducible Markov chain ξt with
continuous time

ξt = {(it, kt, rt, nt, νt, n(1)
t , n(2)

t , . . . , n(M1)
t , ñ(1)

t , ñ(2)
t , . . . , ñ(M2)

t ), t ≥ 0},

with the state space

Ω = {(i, n, r, ν, n(1), n(2), . . . , n(M1), ñ(1), ñ(2), . . . , ñ(M2)),

i = 0, n = 0, N, r = 0, n, ν = 0, W, n(m) = 0, r, m = 1, M1, ñ(m̃) = 0, n− r, m̃ = 1, M2}
⋃

{(i, k, n, r, ν, n(1), n(2), . . . , n(M1), ñ(1), ñ(2), . . . , ñ(M2)),

i = 1, R, k = 0, i, n = N, r = 0, n, ν = 0, W, n(m(1)) = 0, r, m(1) = 1, M1, ñ(m(1)) = 0, N − r,

m(2) = 1, M2,
M1

∑
m(1)=1

n(m(1)) = r,
M2

∑
m(2)=1

ñ(m(2)) = N − r.}



Mathematics 2021, 9, 3236 5 of 27

The number of vectors in the state space for i = 0 is

K0 = (W + 1)
N

∑
n=0

n

∑
r=0

CM1−1
r+M1−1CM2−1

n−r+M2−1,

and, for any fixed i = 1, R, the number of vectors is

K = (i + 1)(W + 1)
N

∑
r=0

CM1−1
r+M1−1CM2−1

N−r+M2−1.

Let us denote:

• I (O) is an identity (zero) matrix of the appropriate dimension;
• W̄ = W + 1;
• ⊗ and ⊕ are the symbols of the Kronecker product and sum of matrices, see [18];
• Cl

n = n!
l!(n−l)! ;

• d(1)r = CM1−1
r+M1−1;

• d(2)r = CM2−1
r+M2−1;

• diag{a1, a2, . . . , an} is a block diagonal matrix in which the diagonal blocks are ai,
i = 1, n, and the remaining blocks are zero;

• diag+{a1, a2, . . . , an} is a square over-diagonal block matrix in which the over-diagonal
blocks are ai, i = 1, n, and the remaining blocks are zero, i.e., this is a matrix of the form

0 a1 0 . . . 0 0
0 0 a2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 an
0 0 0 . . . 0 0

;

• diag−{a1, a2, . . . , an} is a square sub-diagonal block matrix in which the sub-diagonal
blocks are ai, i = 1, n, and the remaining blocks are zero, i.e., this is a matrix of
the form 

0 0 0 . . . 0 0
a1 0 0 . . . 0 0
0 a2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an 0

;

• q̄i = 1− qi, f̄i = 1− fi;

• n(1)
t = {n(1)

t , n(2)
t , . . . , n(M1)

t } is a servicing process for customers of type 1 (high
priority customers);

• n(2)
t = {ñ(1)

t , . . . , ñ(M2)
t } is a servicing process for customers of type 2 (low priority

customers).

With the last two notations, the Markov chain ξt, t ≥ 0, can be written in a more
compact form

ξt = {(it, kt, rt, nt, νt, n(1)
t , n(2)

t ), t ≥ 0}.

We arrange the states of the Markov chain ξt, t ≥ 0, so that the first four compo-
nents {it, kt, rt, νt} are arranged in direct lexicographic order, and the states of each of the
processes nt and ñt are arranged in reverse lexicographic order. Reverse lexicographic
ordering is required here to describe in what follows the transition rates of the processes nt
and ñt using the matrices Pi(·), Ai(·, ·), and Li(·, ·).
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Let us give a brief explanation of the probabilistic values of these matrices. For this,
we introduce the matrices

S̃l =

(
0 O

S(l)
0 Sl

)
, l = 1, 2.

Then:

• Lk(n, S̃l) is a matrix of dimension CMl−1
n−k+Ml−1×CMl−1

n−k+Ml−2, containing transition rates

of the random process n(l)
t , leading to service end at one of the n− k servers, servicing

customers of type l. Here k is the number of available servers, n is the total number of
available servers and servers servicing type l customers.

• Pn(βl) is a matrix of dimension CMl−1
n+Ml−1 × CMl−1

n+Ml
. It contains transition rates of the

process n(l)
t , leading to increase from n to n + 1 the number of servers servicing type l

customers.
• An(k, S̃l) is a matrix of dimension CMl−1

n+Ml−1 × CMl−1
n+Ml

. The matrix contains transition
rates, which do not lead to the change of the number n of busy servers, servicing type
l customers. Here n is the number of servers servicing customers of type l, k is the
total number of available servers and servers servicing customers of type l.

In the following we assume L0(0) = A0(·) = P−1(·) = 0. The algorithm for calculating
the matrices Pi(·), Ai(·, ·) and Li(·, ·) follows from the results of V. Ramaswamy and D.
Lucantoni published in [19,20]. This algorithm is described clearly step by step in [21]. We
give the corresponding description in Appendix A.

Theorem 1. The infinitesimal generator of the Markov chain ξt has the following block structure:

Q =



T Q0,1 O . . . O O
Q1,0 Q1,1 Q1,2 . . . O O
O Q2,1 Q2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . QR−1,R−1 QR−1,R
O O O . . . QR,R−1 QR,R


,

where non-zero blocks T, Qi,i′ are defined as:

1. T = (Tn,n′)n,n′=0,N + ∆(0) is a tridiagonal block matrix, where

(a) Tn,n, n = 0, N − 1, is a square matrix of order W̄
n
∑

r=0
d(1)r d(2)n−r

Tn,n =diag{D0 ⊕ Ar(N − n + r, S1)⊕ An−r((N − r, S2), r = 0, n},
n = 0, N − 1,

(b) TN,N is a square matrix of order W̄
N
∑

r=0
d(1)r d(2)N−r

TN,N = diag{D̄⊕ Ar(r, S1)⊕ AN−r((N − r, S2), r = 0, N},

where D̄ = D0 + q̄0D1 + f̄0D2

(c) Tn,n−1 is a matrix of dimension W̄
n
∑

r=0
d(1)r d(2)n−r × W̄

n−1
∑

r=0
d(1)r d(2)n−r−1
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Tn,n−1 =

 diag{I
W̄d(1)r

⊗ LN−n(N − r, S̃2), r = 0, n− 1}
O

W̄d(1)n ×W̄
n−2
∑

r=0
d(1)r d(2)n−r−1

| IW̄ ⊗ LN−n(N, S̃1)


+

 diag−{IW̄ ⊗ LN−n(N − n + r, S̃1)⊗ I
d(2)n−r

r = 1, n− 1}
O

W̄d(1)n ×W̄
n−1
∑

r=0
d(1)r d(2)n−r−1

,

n = 1, N,

(d) Tn,n+1 is matrix of dimension W̄
n
∑

r=0
d(1)r d(2)n−r × W̄

n+1
∑

r=0
d(1)r d(2)n−r+1

Tn,n+1 =

(
diag{D2 ⊗ I

d(1)r
⊗ Pn−r(β2), r = 0, n} | O

W̄
n
∑

r=0
d(1)r d(2)n−r×W̄d(1)n+1

)

+


O

W̄
n−1
∑

r=0
d(1)r d(2)n−r×W̄

n+1
∑

r=0
d(1)r d(2)n−r+1

O
W̄d(1)n ×W̄

n
∑

r=0
d(1)r d(2)n−r+1

|D1 ⊗ Pn(β1)


+

(
diag+{D1 ⊗ Pr(β1)⊗ I

d(2)n−r
, r = 0, n− 1} | O

W̄
n
∑

r=0
d(1)r d(2)n−r×W̄d(1)n+1

)
,

n = 0, N − 1

2. Block Q0,1 is a matrix of dimension W̄
N
∑

n=0

n
∑

r=0
d(1)r d(2)n−r × 2W̄

N
∑

r=0
d(1)r d(2)N−r,:

Q0,1 =

 O
W̄

N−1
∑

n=0

n
∑

r=0
d(1)r d(2)n−r×2W̄

N
∑

r=0
d(1)r d(2)N−r

H1 | H2

,

where square matrices H1, H2 of order W̄
N
∑

r=0
d(1)r d(2)N−r are defined as:

H1 = f0diag{D2 ⊗ I
d(1)r d(2)N−r

, r = 0, N},

H2 = q0diag{D1 ⊗ I
d(1)r d(2)N−r

, r = 0, N}.

3. Block Q1,0 is a matrix of dimension 2W̄
N
∑

r=0
d(1)r d(2)N−r × W̄

N
∑

n=0

n
∑

r=0
d(1)r d(2)n−r:

Q1,0 =


O

W̄
N
∑

r=0
d(1)r d(2)N−r×W̄

N−1
∑

n=0

n
∑

r=0
d(1)r d(2)n−r

F1

O
W̄

N
∑

r=0
d(1)r d(2)N−r×W̄

N−1
∑

n=0

n
∑

r=0
d(1)r d(2)n−r

F2

,

where square matrices F1, F2 of order W̄
N
∑

r=0
d(1)r d(2)N−r are defined as:

F1 = diag{I
W̄d(1)r

⊗ L0(N − r, S̃2)PN−r−1(β2), r = 0, N − 1, O
W̄d(1)N d(2)0

}

+ diag−{IW̄ ⊗ L0(r, S̃1)⊗ PN−r(β2), r = 1, N},
F2 = diag{O

W̄d(2)N
, IW̄ ⊗ L0(r, S̃1)Pr−1(β1)⊗ I

d(2)N−r
, r = 1, N}

+ diag+{IW̄ ⊗ Pr(β1)⊗ L0(N − r, S̃2), r = 0, N − 1}.
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4. Block Qi,i−1, i = 2, R, of order (i + 1)W̄
N
∑

r=0
d(1)r d(2)N−r × iW̄

N
∑

r=0
d(1)r d(2)N−r :

Qi,i−1 =

 F1 O
W̄

N
∑

r=0
d(1)r d(2)N−r×(i−1)W̄

N
∑

r=0
d(1)r d(2)N−r

Ii ⊗ F2

, i = 2, R.

5. Block Qi,i, i = 1, R− 1, is a square matrix of order (i + 1)W̄
N
∑

r=0
d(1)r d(2)N−r:

Qi,i = Ii+1 ⊗ TN,N + ∆(i), i = 1, R− 1.

6. Block QR,R is a square matrix of order (R + 1)W̄
N
∑

r=0
d(1)r d(2)N−r:

QR,R = IR+1 ⊗ T̂N,N + ∆(R),

where matrix T̂N,N is derived from matrix TN,N by replacing the Kronecker factors D̄ with
the factors D(1).

7. Block Qi,i+1 of dimension (i + 1)W̄
N
∑

r=0
d(1)r d(2)N−r × (i + 2)W̄

N
∑

r=0
d(1)r d(2)N−r:

Qi,i+1 =

(
Ii+1 ⊗ diag{ fiD2 ⊗ I

d(1)r d(2)N−r
, r = 0, N} | O

(i+1)W̄
N
∑

r=0
d(1)r d(2)N−r×W̄

N
∑

r=0
d(1)r d(2)N−r

)
+

+ Îi+1 ⊗ diag{qiD1 ⊗ I
d(1)r d(2)N−r

, r = 0, N}, i = 0, R− 1,

where Îi+1 is a matrix of dimension (i + 1)× (i + 2) defined as
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

.

Matrices ∆(i), i = 0, R are diagonal matrices, such that the equality Qe = 0T holds.

Remark 1. Let us explain in more details how to calculate matrices ∆i, i = 0, R. Let i = 0. Firstly,
calculate the column vector Te + Q0,1e. Then the elements of this vector, taken with a minus sign,
are the diagonal elements of the matrix ∆0. Similarly, to build the ∆i matrix for i = 1, R, we need to
calculate the column vector Qi,i−1e + Qi,ie + Qi,i+1e. Then the elements of this vector, taken with
a minus sign, are the diagonal elements of the matrix ∆i.

3.2. Stationary Distribution

Let p be the row vector of the stationary probability distribution of the states of the
Markov chain. Then, this vector is defined as the only solution of the system of linear
algebraic equations

pQ = 0, pe = 1. (1)

If system (1) has large dimension. For this, we represent vector p as p = (p0, p1, . . . , pR),

where vector p0 has order W̄
N
∑

n=0

n
∑

r=0
d(1)r d(2)n−r, and vector pi has order (i + 1)W̄

N
∑

r=0
d(1)r d(2)N−r,

i = 1, R.
Then the vectors pi, i = 0, R, can be calculated by the algorithm, which consists of the

following steps.
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1. Find the matrices GR−1, GR−2, . . . , G0 from the reverse recursion equation:

Gi = (−Qi+1,i+1 −Qi+1,i+2Gi+1)
−1Qi+1,i, i = R− 2, R− 1, . . . , 0,

where
GR−1 = (−QR,R)

−1QR,R−1.

2. Calculate Q̄i,i, Q̄i,i+1 by the formulas

QR,R = QR,R,

Qi,i = Qi,i + Qi,i+1Gi, i = 0, R− 1,

Qi,i+1 = Qi,i+1, i = 0, R− 1.

3. Find the matrices Φi from the recurrence relations:

Φ0 = I, Φi = Φi−1Q̄i−1,i(−Q̄i,i)
−1, i = 1, R.

4. Calculate the vector p0 as the only solution of the system of algebraic equations:

p0(−Q̄0,0) = 0, (2)

p0(e +
R

∑
i=1

Φie) = 1. (3)

5. Calculate vectors pi using formulas:

pi = p0Φi, i = 1, R.

Remark 2. When solving a system of linear algebraic Equations (2) and (3) it is necessary to know
that system (2) has a rank equal to its dimension minus one. However, replacing one of the equations,
for example, the first one, of this system by Equation (3), we get a system that has a unique solution.
This modification must be done before solving the system.

Remark 3. Generally speaking, in order to find the Markov chain stationary distribution, it is
necessary to solve the system of linear algebraic Equations (1) or, writing by blocks,

min{i+1,R}

∑
j=max{i−1,0}

piQi,j = 0, i = 0, R,
R

∑
i=0

pie = 1. (4)

This system has rank W̄
N
∑

n=0

n
∑

r=0
d(1)r d(2)n−r +

R
∑

i=1
(i + 1)W̄

N
∑

r=0
d(1)r d(2)N−r and, for reasonably

large values of R, N and dimensions of MMAP and PH, the rank of this system becomes so large
that it is not possible to solve the system straightforward, for example, using an inverse matrix.
Therefore, it seems appropriate to use the algorithm described above, in which the maximum block

size used is (R + 1)W̄
N
∑

r=0
d(1)r d(2)N−r.

However, for small values of the parameters, system (1) or (4) can be used to check
the solution obtained using the algorithm described above. In particular, this fact can be
used when debugging the algorithm.

3.3. Performance Measures

As a result of the calculation of the stationary distribution of the system, a number of
important stationary performance measures can be found. Let us discuss some of them.
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• Vector of probabilities that the queue is empty and n devices are occupied:

p0(n) = p0U(n),

where

U(n) =



O
W̄

n−1
∑

l=0

l
∑

m=0
d(1)m d(2)l−m×W̄

n
∑

r=0
d(1)r d(2)n−r

I
W̄

n
∑

r=0
d(1)r d(2)n−r

O
W̄

N
∑

l=n+1

l
∑

m=0
d(1)m d(2)l−m×W̄

n
∑

r=0
d(1)r d(2)n−r

, n = 0, N.

• The probability that the queue is empty, n servers are busy, and r of them are servicing
high priority customers:

p0(n, r) = p(n)u(n, r), n = 0, N, r = 0, n,

where column vector u(n, r) is defined as

u(n, r) =


0T

W̄
r−1
∑

l=0
d(1)l d(2)n−l

e
W̄d(1)r d(2)n−r

0T

W̄
n
∑

l=r+1
d(1)l d(2)n−l

.

• The probability that the queue is empty and n servers are busy:

p0(n) =
n

∑
r=0

p0(n, r), n = 0, N.

• The probability that there are i customers in the queue, of which k have high priority,
and r high priority customers are being serviced:

pi(k, r) = pi


0T

kW̄
N
∑

n=0
d(1)n d(2)N−n

u(N, r)
0T

(i−k)W̄
N
∑

n=0
d(1)n d(2)N−n

, i = 1, R, k = 0, i, r = 0, N.

• The probability that there are i customers in the queue, of which k have high priority:

pi(k) =
N

∑
r=0

pi(k, r), i = 1, R, k = 0, i.

• The probability that there are i customers in the queue:

pi = pie, i = 1, R.

The equality pi =
i

∑
k=0

pi(k) must hold.

• The average number of customers in the system:

N̄system =
N

∑
n=1

np0(n) +
R

∑
i=1

(i + N)pi.
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• The average number of high priority customers in the system:

N̄(1)
system =

N

∑
n=1

n

∑
r=1

rp0(n, r) +
N

∑
n=1

R

∑
i=1

i

∑
k=1

(r + k)pi(k, r).

• The average number of busy servers:

N̄servers =
N

∑
n=1

np0(n) + N
R

∑
i=1

pi.

• The average number of servers servicing high priority customers:

N̄(1)
servers =

N

∑
n=1

n

∑
r=1

rp0(n, r) +
R

∑
i=1

i

∑
k=0

N

∑
r=1

rpi(k, r).

• The average queue length:

N̄queue =
R

∑
i=1

ipi.

We implemented the algorithm for calculating the stationary distribution of the system
states and performance metrics described above in Python 3 language. Numerical results
are discussed in Section 5.

4. Performance Evaluation of Priority Queueing Systems with an Arbitrary Number of
Customers Types

The analytical solution is applicable only for priority systems with two types of
customers. For systems in general, it is almost impossible to construct a Markov chain
generator, find a stationary distribution, and calculate all the necessary performance
characteristics.

Using simulation for finding characteristics for a large dataset of input parameters
records can take too long (tens or hundreds of hours). Therefore, to solve the problem
formulated in the article, a new method has been developed based on a combination of
machine learning (ML) and simulation methods.

The essence of the method is that based on the synthetic dataset, train a machine
learning model to predict the characteristics of the priority system. The training dataset
is generated by repeated execution of the simulation model on different random input
parameters values. To train machine learning algorithms, we generated a dataset of
200,000 records.

This section firstly describes the simulation model. Since most ML algorithms require
a fixed number of input parameters, we had to restrict the input parameters space and use
a functional definition of some of the model parameters. Below, we discuss this approach,
outline the ML algorithms used, and describe how the synthetic input dataset for model
training was generated.

4.1. Performance Estimation with Monte Carlo Method

The discrete-event simulation model [22] allows estimation of the characteristics
of the priority queueing system by simulating the events occurring in it: the arrival of
new customers, service start and finish times. The time in the model changes in leaps
and bounds at the start of event processing. During the execution of the model, various
characteristics are calculated, e.g., queue length, customers delays, the total busy time of
the servers. When the execution ends, the collected data is averaged to provide estimates
of stationary values of the system characteristics.

The main limitation of this method is the need to simulate a massive number of
events to obtain robust estimates. The number of events depends both on the model’s
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size (queue capacity, number of devices and priority classes, dimensions of underlying
chains in MMAP and PH distributions) and on the stochastic characteristics of the random
distributions. For instance, to obtain the results presented in this article, it was required to
simulate an average of 5 million events for each set of input data.

The simulation model uses the same input parameters as the analytic model:

• K is the number of customers types;
• Dk is a set of matrices defining the MMAP, k = 1, K;
• PHk is a set of phase-type distributions of service time for customers of type k, speci-

fied with matrices Sk and initial probability vectors βk, k = 1, K;
• R is the queue capacity;
• N is the number of servers;
• pe is an array of size K × R, in which cell [k, r] contains the probability that the

customer of type k joins the queue when its length is equal to r, r = 1, R.

In order to validate the implementation of the Monte Carlo method, we used the
results of the analytical model obtained for K = 2. We discuss the validation results in
Section 5.

4.2. Performance Estimation with Machine Learning (ML) Methods

The estimation of the characteristics of a priority system with the Monte Carlo method
is relatively slow. As noted above, the computation of a simulation model with large input
datasets takes much time.

In order to speed up the estimation of the characteristics, we decided to use machine
learning methods. We concentrated on estimating average response time and packet loss
probability for the given customer type. In general, the model can be trained to predict any
characteristic obtained using the Monte Carlo method. Let us consider in more detail the
application of ML algorithms.

4.2.1. Definition of ML Input Parameters

To estimate the priority queueing system performance we need to specify the number
of customers types K, MMAP matrices Dk, k = 1, K, set of PH distributions for each
customer type, number of servers N, queue capacity R and an array of customer joining
probabilities pe, e = 1, K× R. The machine learning algorithm cannot be constructed
for an arbitrary MMAP and PH distributions since the algorithm must have a fixed
number of input parameters. At the same time, there can be an arbitrary number of
customer types and, correspondingly, an arbitrary number of matrices Dk, Sk and vectors βk.
Moreover, MMAP and PH distributions matrices may have an arbitrary order. Therefore,
we applied the following restrictions and assumptions to the problem to limit the number
of input parameters.

• We define MMAP with the number of types of customers K, coefficient of variation
ca, skewness γa, lag-1 autocorrelation l and arrival rates λk, k = 1, K. For these
parameters, we firstly fit stationary PH distribution with matrix D0 with arrival
rate ∑K

k=1 λk using the three moments matching method proposed by Johnson and
Taafe [23]. Then we use method proposed by Horvath et al. [24] to find MAP from
this PH distribution and lag-1 autocorrelation l. Finally, we split the matrix D′1 of the
found MAP into matrices Dk, k = 1, K, proportionally to the arrival rates λk.

• To avoid an arbitrary number of arrival rates λk, k = 1, K, we explicitly specify rates of
the lowest and highest priority customers λ1 and λK only. To find intermediate rates,
we specify an approximation function f , such that any arrival rate can be computed
as λk = f (k, λ1, λK). This function f along with boundary rates λ1 and λK are input
parameters for the ML algorithm.

• We define the phase-type distributed service times for customers of different types
in the same way as we defined the MMAP by specifying coefficient of variation cs,
skewness γs and service rates µk, k = 1, K. To define service rates, we specify only
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boundary rates µ1 and µK for the highest and lowest priority customers, and the
approximation function g such that the service rate of any intermediate customer
type is µk = g(k, µ1, µK). To fit PH distributions from these parameters, we use
the moments matching method [23]. The main limitation here is that service time
distributions of different types of customers have the same coefficient of variation and
skewness and differ only in rate.

• To slightly simplify the model, we assumed that the probability pk that the customer
joins the queue when all servers are busy depends only on this customer type. Thus,
the joining probability is assumed independent of the queue length. Then, we assumed
that customers with the highest priority always join the queue (p1 ≡ 1), while the
joining probability for customers of other types depends on the type number k. This
dependence is specified with a function h, such that pk = h(k).

Taking into account the assumptions described above, it is possible to build a machine
learning algorithm for a given class of problems, the input parameters of which are:

• K, number of customers types;
• N, number of servers;
• ca, coefficient of variation of the arrival MMAP;
• γa, skewness of the arrival MMAP;
• l, lag-1 autocorrelation of the arrival MMAP;
• λ1, arrival rate of the highest priority customers;
• λK, arrival rate of the lowest priority customers;
• fa, approximation function of arrival rates, λk = fa(k, λ1, λK), k = 1, K;
• cs, coefficient of variation of service time PH distributions;
• γs, skewness of service time PH distributions;
• µK, service rate of the lowest priority customers;
• µ1, service rate of the highest priority customers;
• gs, approximation function of service rates, µk = gs(k, µ1, µK), k = 1, K;
• R, queue capacity;
• h, approximation function of customer joining probability pk = h(k), such that

h(1) ≡ 1 and pk = h(k) ∈ [0, 1] for any k = 1, K.

Using these input parameters, we built ML models for the prediction of system
response time and customers loss probability. In addition, we also built ML models for
systems classification depending on the given threshold values of the response time and
customer loss probability (e.g., the system is classified as “good” or “bad” depending on
the predicted loss probability is below or above the threshold). These ML models use
artificial neural networks, decision trees, and random forests.

4.2.2. Machine Learning Models

To study priority queueing system performance, we used ML methods to solve two
types of problems: regression and classification.

1. In regression problems, we trained the models to predict the performance characteris-
tics value, e.g., “what is the expected average system size for this input?”.

2. In classification problems, we used the ML models to predict whether the specific
performance characteristic fits the given threshold, e.g., “will the system for this input
provide priority customer loss probability less than 0.05?”.

We used four types of ML algorithms: decision trees [25], random forests [26], gradient
boosting [27] and artificial neural networks (ANN). All of these algorithms were applied to
both regression and classification problems.

Hyperparameters for decision trees, random forests, and gradient boosting are pre-
sented in Section 5. Let us discuss neural networks in more detail since their architecture
for regression and classification problems is different.

Figure 1 shows the architecture of a neural network for regression problems of pre-
dicting response time and loss probability. We used a brute force algorithm to select
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optimal neural network parameters by varying the number of hidden layers from one to
two and the number of neurons from 64 up to 256. The network has one hidden layer
with 128 perceptrons. We used Adam’s algorithm [28] to optimize the stochastic gradient
descent. Activation function on the hidden and output layers was ReLu [29]. To train the
ANN, the dataset was split into subsets (batches) of 512 copies. The number of epochs for
training was equal to 1000.

Hidden
layer 

Input layer 

128 
inputs

ReLu

ReLu
26 features 

Figure 1. Neural network architecture for regression problems.

Figure 2 shows the neural network architecture for classification problems. We used
brute force algorithm to select optimal neural network parameters. The network consists
of an input layer with 26 inputs, two hidden layers with 128 perceptrons in each one, and
an output layer. Each layer uses the ReLu activation function. As in ANN for regression
problems, we used Adam’s algorithm to optimize gradient descent.

First hidden
layer 

Input layer 

128 
inputs

26 features 

Second hidden
layer 

128 
inputs

ReLu

ReLu

ReLu

Figure 2. Neural network architecture for classification problems.

4.2.3. Generation of Synthetic Dataset for Machine Learning

The dataset is needed to train and test the ML model. We used the data obtained after
repeated simulation model execution with different randomly generated input parameters
to build this dataset. Let us discuss the synthetic input parameters generator in more detail.

All the numerical parameters are assumed to be uniformly distributed. For each of
them we specify its minimum and maximum values.

To set the customers arrival rates λk, we explicitly select random arrival rates of the
highest and lowest priority customers λ1, λK ∈ [λmin, λmax], along with the approximation
function fa, λk = fa(k, λ1, λK). This approximation function is randomly selected from the
predefined set of functions. The same approach is used for customers service rates and the
probabilities of customers joining the queue.

Figure 3 shows the set of approximation functions used for arrival rates λk and service
rates µk for customers types k = 1, K calculation. This set includes:
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• Fc(n) ≡ C, constant values;
• Fl(n) =

yK−y1
K−1 (n− 1) + y1, linear approximation;

• Fp(n) =
yK−y1
(K−1)2 (n− 1)2 + y1, parabolic approximation;

• Fh(n) =
K(y1−yK)
(K−1)n + KyK−y1

K−1 , hyperbolic approximation;

• Fe(n) = y1

(
yK
y1

) n−1
K−1 , exponential approximation;

• Flog(n) =
yK−y1

ln K ln n + y1, logarithmic approximation;
• Fg(n) =

y1
2n , geometric progression.

Figure 3. Approximation functions for arrival and service rates.

In all functions, n is an integer and takes values from [1, 2, . . . , K]. To generate the
probabilities of customers joining the queue, we used four functions:

• H1(n) ≡ 1, customers always join the queue if it has space;
• Hl(n) = − n−1

K−1 + 1, linear approximation;
• Hh(n) = 1

n , hyperbolic approximation;
• Hg(n) = 1

2n−1 , geometric progression approximation.

Note that the accuracy of predictions obtained using ML methods depends on how
representative is the training dataset. For example, suppose the system’s behavior on a
particular set of input parameters differs significantly from everything observed in the
training dataset. In that case, it will not be possible to obtain an accurate prediction at such
an input. Because of this, we considered wide ranges for all input parameters, and the
training sample was quite large (200,000 records). At the same time, it is crucial to avoid
overfitting since the prediction accuracy also decreases.

The main limitation of our approach to describing input parameters is the use of
the same coefficients of variation and skewness for service times and intervals between
consumers of different types. It is easy to get around it, for example, using the same
functional approach for setting the coefficients of variation and skewness that we used to
set the arrival and service rates of intermediate types of customers. In this case, however,
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the input dimension will increase, and a larger dataset may need to be considered. In
addition, more sophisticated and computationally expensive methods to MMAP fitting
will be needed.

5. Numerical Results

To study the performance of the priority queueing system using the proposed method-
ology, we conducted a series of numerical experiments:

1. Firstly, we analyzed the analytic model complexity and used it to validate the simula-
tion model based on Monte Carlo method.

2. Secondly, we generated a synthetic dataset for training and testing ML models.
3. Finally, we studied the accuracy of models predictions.

We compared customer loss probability, the average number of customers in the
queue, and the average number of customers in the system during the simulation model
validation. These metrics were computed for different values of queue capacity and servers
number. All validations were passed, which showed that the simulation model is correct
and can be safely used in the following experiments.

In the numerical experiments with ML models, we analyzed two characteristics of
the priority systems: response time and loss probability of priority customers. In the
scope of telecommunication networks, these characteristics are essential for verifying QoS
compliance. However, our methodology allows studying any other characteristic, e.g.,
the average system size, number of high-priority customers, or number of busy servers.
Furthermore, we investigated regression and classification problems using ML methods
for both response time and loss probability.

The algorithm for computing stationary distribution of the system states that we
described in Section 3 was implemented in Python language, as well as the simulation
model interface. In addition, we used the C++ language to implement the core of the
simulation model to improve performance. To connect Python interfaces and C++ core, we
used Cython. Also, we used Jupyter Notebook to work with the dataset.

The source code of the project is available on GitLab: https://gitlab.com/lab69/
priority-queues (accessed on 25 October 2021).

5.1. Complexity of the Analytical Model

Before moving on, we studied the bounds of size of the input, where results can be
obtained with the analytical model. Since the number of customers in the analytical model
is always equal to K = 2, we varied the number of servers, the queue capacity, order of
arrival MMAP, and PH service times.

The key metric that defines the problem complexity is the order of the infinitesimal
generator since it defines a linear equation system that needs to be solved to obtain the
characteristic values. Figure 4 shows the dependency between the system generator order
and the number of states in MMAP or PH, queue capacity, and the number of servers.
It can be seen that the generator complexity exponentially grows along with the order
of MMAP and the number of servers. However, it linearly depends on the order of PH
service time distributions and almost linearly on the queue capacity.

In general, for reasonably large input values, the generator is too big to be used
to compute stationary states distribution and performance characteristics. For instance,
Table 1 provides measurements of time required to build the generator matrix depending
on the number of servers. The experiment was conducted on a computer with an Intel Core-
i7 processor and 16 GB of RAM. Although this particular limitation can be circumvented by
using a more efficient matrix representation. The problem remains since the dependence of
the generator order on the number of servers is exponential.

https://gitlab.com/lab69/priority-queues
https://gitlab.com/lab69/priority-queues
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Figure 4. The dependence between the order of the generator matrix and various input parameters.

Table 1. Elapsed time to build the generator matrix.

No. of Servers Time (s)

1 0.027
2 1.184
3 34.485
4 1155.581
5 Not enough RAM

5.2. Validation of the Simulation Model

We used the analytical model to validate the simulation model implementation on
reasonably small input values, where an analytical solution could be obtained. In these
validations, we varied the number of servers and queue capacity and used different
MMAP flows and PH service time distributions. For example, Figure 5 shows the results
of comparing customer’s loss probability, queue size, and the number of customers in
the system.

Figure 5. The results comparison of analytical and simulation models.
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All validations were passed and showed that the simulation model provides numerical
results with high precision. The relative error in the experiment does not exceed 0.5%. How-
ever, to reach high accuracy simulation model had to process about 1,000,000 customers for
each input value, which required a reasonably large amount of time.

Simulation model validation was automated using the PyTest library. Each time
the simulation model code changed, unit tests were executed to compare simulation and
analytical results. This approach allows being sure that any change in the code does not
break the model’s correctness.

5.3. Generation of the Dataset for Machine Learning Algorithms

To train and test ML models, we generated a large dataset with 200,000 random input
vectors, as was described in Section 4. After that, the simulation model was used to get
performance characteristics values for each input record in this dataset. Boundary values
for all input parameters are shown in Table 2.

Table 2. Boundary values for dataset generator.

Parameter Min Value Max Value

Number of customers types 1 5
Number of servers 1 10

Queue capacity 0 10
Arrival rate 0.1 10.0

CV of the arrival distribution 0.1 10.0
Skewness of the arrival distribution - 100.0

Service rate 0.1 10.0
CV of the service time distribution 0.1 10.0

Skewness of the service time distribution - 100.0

Note that the skewness did not have the minimum value. Instead, it was computed
for the selected CV as described in [23].

Figure 6 shows the histograms of different input parameters over the generated dataset.
Most of the parameters are distributed almost uniformly; the only exception is the queue
capacity. We forced the generator to include more samples with big capacity for the systems
with a large number of customers types.

Figure 6. The distribution of input parameters in the ML dataset.

5.4. Prediction of System Response Time

The first performance metric we studied using machine learning methods was the
system response time, i.e., the time the customer spends in the system from arrival to the
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end of the service. Regression models were used to predict the exact response time value.
The classification models answered whether the system response time for the given input
is less than a given threshold.

5.4.1. Regression Problem

We used decision trees, random forests, gradient boosting, and neural networks
in the regression problem for predicting the system response time. To select the optimal
hyperparameters for each algorithm, we used the grid search method. The optimal decision
metric for the trees algorithms was chosen among MSE and MAE, and the max tree depth
varied from 4 to 20. The number of predictors, a parameter specific for random forest and
gradient boosting, was chosen from an array [100, 5000] with step 100. To estimate the
accuracy of the algorithms, we used three metrics: the correlation coefficient, R2-coefficient,
and the mean squared error. Table 3 shows the optimal hyperparameters for tree algorithms.
The optimal metric for each tree algorithm was the mean squared error. The maximum tree
depth was equal to 16 for the random forest algorithm.

Table 3. Hyperparameters for tree algorithms.

Algorithm Metric Max Depth Number of Predictors

Decision tree MSE 10 -
Random forest MSE 16 500

Gradient boosting MSE 12 1000

Figure 7 shows the scatter diagrams for ML algorithms. The decision tree algorithm
demonstrates the largest scatter and error; in some cases, the relative error reaches 20%.
Table 4 shows the metric values for regression models for system response time prediciton.
The random forest algorithm and gradient boosting demonstrate similar results for all
metrics. The best results for all metrics were obtained with the neural networks.

Figure 7. System response time scatter plots for regression algorithms.
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Table 4. Metric values for regression models for system response time.

Algorithm Correlation R2 MSE

Decision tree 0.944 0.891 0.135
Random forest 0.980 0.961 0.047

Gradient boosting 0.980 0.961 0.047
Neural network 0.987 0.973 0.031

We analyzed the dependency between the system response time and the number of
servers, service rate of high priority customers, and queue capacity to validate the models.
In each case, the system response time was computed using the simulation model and each
trained ML model.

In the first experiment, the number of servers varied from 1 to 10, while other param-
eters were fixed: K = 3, ca = 5, γa = 50, fa = Fl (linear approximation of arrival rates),
λ1 = 4.0, λK = 5.0, cs = 5, γs = 50, gs = Fl , µ1 = 4.0, µK = 5.0, R = 10, h = 1. Figure 8a
shows the results. In this case, the random forest algorithm demonstrates the most accurate
results, while the neural network prediction is the worst. The maximum error in random
forest prediction arises for the system with a single server.

(a) (b)

(c)

Figure 8. Validation of ML models in the regression problem for the system response time. (a) System
response time depending on the number of servers. (b) System response time depending on the
queue capacity. (c) System response time depending on service rate.

In the second experiment (see Figure 8b)) we varied the queue capacity from 0 up
to 10 and set other parameters to K = 2, ca = 5, γa = 50, fa = Fl , λ1 = 2.0, λK = 1.0,
cs = 5, γs = 50, gs = Fl , µ1 = 1.0, µK = 5.0, N = 1, h = 1. In contrast to the previous
experiment, the neural network gives here the highest accuracy, while the random forest
has the greatest error.

In the third experiment (see Figure 8c) the service rate of the highest priority customers
was varied from 0.01 to 0.3, while the other parameters were fixed: K = 3, N = 5, ca = 5,
γa = 50, fa = Fl , λ1 = 1.0, λK = 1.0, cs = 5, γs = 50, gs = Fl , µ1 = 0.1 µK = 1.0, R = 1,
h = 1. Random forest and gradient boosting has the highest accuracy, while the neural
network gives the worst prediction, especially when the service rate is small.
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5.4.2. Classification Problem

In many practical applications, the exact value of the system response time is not
important. Instead, we may be interested in whether the response time is short enough.
To answer this question, we trained several ML models to classify the priority queueing
systems depending on the expected value of the response time. As a threshold, we assumed
the response time equal one second, i.e., the system belongs to the first class if its response
time is more than one second; otherwise, it belongs to the second class.

In addition to decision trees, random forests, gradient boosting and neural networks,
we used logistic regression [30] as this is the simplest ML method applied to classification
problems. Table 5 shows the results of the accuracy comparison.

Table 5. Comparison of various machine learning methods for the response time classification problem.

Algorithm Precision Recall F1 Score

Logistic regression 0.93 0.90 0.92
Decision tree 0.94 0.95 0.95

Random forest 0.98 0.92 0.95
Gradient boosting 0.98 0.96 0.97
Neural network 0.96 0.96 0.96

The experiment result shows that gradient boosting and neural networks provide the
most precise results. As expected, the logistic regression algorithm is less effective than
any other algorithm being used [31,32].

5.5. Prediction of the Priority Customers Loss

The second metric we studied using ML methods was the probability of losing the
customer with the highest priority. According to the assumptions in Section 4.2.1, the
highest priority customer may be lost in the only case that the queue is full. As in the
response time prediction, both regression and classification problems were considered.

5.5.1. Regression Problem

To solve the regression problem for predicting the loss probability, we used only two
algorithms: a gradient boosting and neural network. Early experiments showed that the
decision tree and random forest give an unacceptably high error. Therefore, we trained
two models and compared the results.

Gradient boosting algorithm and neural network show similar results (see Table 6);
their metrics are practically the same. Figure 9 demonstrates that the neural network has
the same absolute error for all samples. As for gradient boosting, it provides a larger
absolute error when samples values (that is loss probability) are close to zero.

Figure 9. Scatter diagrams for high priority customer loss probability.
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Table 6. Metrics values for ML algorithms of high priority customers loss probability.

Algorithm Correlation R2 MSE

Gradient boosting 0.982 0.964 0.003
Neural network 0.984 0.966 0.003

To validate ML models for loss probability prediction we used the similar validation
datasets as for response time validation. Figure 10a–c show the numerical results.

(a) (b)

(c)

Figure 10. Validation of high priority customers loss probability. (a) Loss probability depending
on the number of servers. (b) Loss probability depending on the service rate. (c) Loss probability
depending on the queue capacity.

5.5.2. Classification Problem

The classification models define whether the probability of losing a priority customer
is greater than 0.1. We used logistic regression, tree algorithms, and neural network
algorithms for classification problems. Results in Table 7 shows that the neural network
provides the best precision.

Table 7. Comparison of ML algorithms for classiification priority systems by loss probability value.

Algorithm Precision Recall F1 Score

Logistic regression 0.86 0.85 0.86
Decision tree 0.87 0.89 0.88

Random forest 0.93 0.94 0.93
Gradient boosting 0.95 0.95 0.95
Neural network 0.97 0.98 0.97

5.6. Analysis of Elapsed Time

To use machine learning algorithms, they need to be trained, which takes a significant
amount of time. For example, Table 8 shows the time it took to train on a dataset with
200,000 records of decision tree algorithms, random forests, gradient boosting, and artificial
neural networks.
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Table 8. Learning time for regression ML models.

Model Time (s)

Decision tree 5× 10−5

Random forest 556
Gradient boosting 1086
Neural network 1201

Neural network training takes about 1200 s for 1000 epochs. The batch size equals
8192, the average time for epoch is about 1 s.

Table 9 shows the typical time that is required for estimation of system response time
by analytical model, Monte Carlo method, and trained ML algorithms. For MMAP and
PH distributions of reasonably small size, it took about 35 s to compute response time
using the analytic method. In the same case, the Monte-Carlo method is ten times more
efficient than the analytics algorithm. It is worth noting that the complexity of the analytical
model grows exponentially, so in general, the simulation model is the only way to estimate
the performance characteristics of the systems of arbitrary size.

Table 9. Time elapsed for prediction of response time.

Algorithm Time (s)

Analytics 35
Simulation model 2

Decision tree 2× 10−7

Random forest 6.8× 10−5

Gradient boosting 1.6× 10−5

Neural network 2.1× 10−6

At the same time, the performance of ML algorithms is more than 105 times better
than the simulation model. Thus, while we needed to spend a significant amount of time
generating a synthetic dataset and training machine learning algorithms, this time is fully
compensated by the gain from the trained algorithms if estimates need to be obtained a
very large number of distinct input vectors.

6. Conclusions

In this paper, we investigated the multi-server priority queueing system with corre-
lated arrival MMAP flow of arbitrary number K of types of customers and finite queue.
The type of the customer defines its priority, service time distribution, and the probability
that the customer will join the queue when all servers are busy. Such systems are practically
not studied in the literature. We presented an analytical solution for the system with
two types of customers, calculated stationary distribution of the system states, and main
performance measures, including average system size, the average number of priority
customers, customer loss probability, and the number of busy servers.

The analytical model has a very high computational complexity, exponentially depen-
dent on the number of servers and order of MMAP. Thus, in the numerical experiment, we
could compute the model characteristics for systems with only four servers, while adding
one more server led to memory overrun. Another limitation of the analytical model is that
it supports only two classes of customers. To overcome these limitations, we described
a new methodology for the fast estimation of system characteristics using a combination
of simulation modeling (based on the Monte Carlo method) and machine learning. We
conducted numerical experiments, showing that the proposed methodology allows es-
timating characteristics with high precision, up to 96–98%. Furthermore, estimation on
the given input with a trained ML model requires several orders of magnitude less time
than the barebone Monte Carlo method. As for machine learning methods, random forest
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and gradient boosting showed similar results in regression and classification problems for
priority packets response time and loss probabilities.

The proposed methodology provides means for using the priority queueing system
model in complex optimization problems, appearing in the design and implementation of
modern telecommunication networks, where the traffic is essentially heterogeneous.

We plan to improve the algorithm’s performance for queueing system characteristics
computation by using more advanced numerical techniques and sparse matrices. This idea
is based on the observation that the generators are block matrices with lots of zeros. While
this improvement can not solve the problem of exponential growth of the state space, it
may help expand the area where the precise solution may be found. We also plan to explore
the possibilities of using machine learning methods to solve other problems of queuing
theory that cannot be solved using traditional methods. Finally, we are also working on the
development of methods for applying the proposed model to estimate the characteristics of
real technical telecommunication systems. The results of these researches will be presented
in future papers.
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Appendix A. Calculation of Matrices Pi(·), Ai(·, ·), and Li(·, ·)
1. Calculate the matrices τ(k)(S), k ∈ {0, . . . , M− 1}, which are obtained by removing

the first k rows and the first k columns from the matrix S.
2. Calculate the matrices Tj = τ(M−2−j)(S), j ∈ {1, . . . , M− 2}.
3. Calculate the matrices L(w)

i (Tj) using the following recurrence formulas:



Mathematics 2021, 9, 3236 25 of 27

L(0)
i (Tj) = (N − i)tj

rj ,1
, i ∈ {0, . . . , N − 1}, j ∈ {1, . . . , M− 2},

L(w)
i (Tj) =



(N − i)tj
rj−w,1 I O · · · O

L(w−1)
N−1 (Tj) (N − i− 1)tj

rj−w,1 I · · · O

O L(w−1)
N−2 (Tj) · · · O

...
...

. . .
...

O O · · · tj
rj−w,1 I

O O · · · L(w−1)
i (Tj)


,

w ∈ {1, . . . , rj − 2}, i ∈ {0, . . . , N − 1}, j ∈ {1, . . . , M− 2},

where tj
k,l is the (k, l)-th element of Tj and rj is the number of rows in Tj.

4. Calculate the matrices U(w)
i (Tj) using the following recurrence formulas:

U(0)
i (Tj) = tj

1,rj
, i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 2},

U(w)
i (Tj) =


tj
1,rj−w I U(w−1)

N (Tj) O · · · O O

O tj
1,rj−w I U(w−1)

N−1 (Tj) · · · O O
...

...
...

. . .
...

...
O O O · · · tj

1,rj−w I U(w−1)
i (Tj)

,

w ∈ {1, . . . , rj − 2}, i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 2}.

5. Calculate the matrices Li(N, Tj) = L
(rj−2)
i (Tj), i ∈ {0, . . . , N − 1}, and Ui(N, Tj) =

iU
(rj−2)
i (Tj), i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 2}.

6. Calculate the matrices A(w)
i using the following recurrence formulas:

A(0)
i =



0 iSM−1,M 0 · · · 0 0
SM,M−1 0 (i− 1)SM−1,M · · · 0 0

0 2SM,M−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 SM−1,M
0 0 0 · · · iSM,M−1 0


,

i ∈ {1, . . . , N},

A(j)
i =



O
iUN (N,Tj)

N O · · · O O

LN−1(N, Tj) A(j−1)
1

(i−1)UN−1(N,Tj)

N−1 · · · O O

O LN−2(N, Tj) A(j−1)
2 · · · O O

...
...

...
. . .

...
...

O O O · · · A(j−1)
i−1

UN−i+1(N,Tj)

N−i+1

O O O · · · LN−i(N, Tj) A(j−1)
i


,

i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 2}.

7. Calculate the Ai(N, S) as A0(N, S) = O1×1, Ai(N, S) = A(M−2)
i , i ∈ {1, . . . , N}.

8. When calculating the matrices Li(N, S̃), we go to step 3, where we ignore the matrices
Tj and instead consider one matrix S̃. We also replace M by M̃ = M + 1, since the
order of the matrix S̃ is one more than the dimension of the matrix S.
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The required matrices Li(N, S̃) are calculated as follows: Li(N, S̃) = L(M−1)
i (S̃), i ∈

{0, . . . , N − 1}, LN(N, S̃) = O1×1. Here, the superscript already means that M is the
order of the original matrix S.

9. Calculate the matrices P(j)
i of dimension (i + 1)× (i + 2) using the following recursive

formulas:

P(0)
i =


βM−1 βM 0 · · · 0 0

0 βM−1 βM · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · βM−1 βM

, i ∈ {1, . . . , N − 1},

P(j)
i =



βM−j−1 z(j) 0 0 · · · 0 0

0T βM−j−1 I P(j−1)
1 O · · · O O

0T O βM−j−1 I P(j−1)
2 · · · O O

...
...

...
...

. . .
...

...
0T O O O · · · βM−j−1 I P(j−1)

i


,

j ∈ {1, . . . , M− 2}, i ∈ {1, . . . , N − 1},

where vectors z(j) = (βM−j, βM−j+1, . . . , βM), j ∈ {1, . . . , M− 2}.
10. Calculate the matrices Pi(β) as P0(β) = β, Pi(β) = P(M−2)

i , i ∈ {1, . . . , N − 1}.
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