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Abstract: Using nano-enhanced phase change material (NePCM) rather than pure PCM significantly
affects the melting/solidification duration and the stored energy, which are two critical design
parameters for latent heat thermal energy storage (LHTES) systems. The present article employs a
hybrid procedure based on the design of experiments (DOE), computational fluid dynamics (CFD),
artificial neural networks (ANNs), multi-objective optimization (MOO), and multi-criteria decision
making (MCDM) to optimize the properties of nano-additives dispersed in a shell and tube LHTES
system containing paraffin wax as a phase change material (PCM). Four important properties of
nano-additives were considered as optimization variables: volume fraction and thermophysical
properties, precisely, specific heat, density, and thermal conductivity. The primary objective was
to simultaneously reduce the melting duration and increase the total stored energy. To this end, a
five-step hybrid optimization process is presented in this paper. In the first step, the DOE technique
is used to design the required simulations for the optimal search of the design space. The second
step simulates the melting process through a CFD approach. The third step, which utilizes ANNs,
presents polynomial models for objective functions in terms of optimization variables. MOO is used
in the fourth step to generate a set of optimal Pareto points. Finally, in the fifth step, selected optimal
points with various features are provided using various MCDM methods. The results indicate that
nearly 97% of the Pareto points in the considered shell and tube LHTES system had a nano-additive
thermal conductivity greater than 180 Wm−1K−1. Furthermore, the density of nano-additives was
observed to be greater than 9950 kgm−3 for approximately 86% of the optimal solutions. Additionally,
approximately 95% of optimal points had a nano-additive specific heat of greater than 795 Jkg−1K−1.

Keywords: thermal energy storage; phase change material; NSGA-II; TOPSIS; ANN; CFD

1. Introduction
1.1. The Importance of TES

In recent decades, the environmental challenges associated with energy production
using nonrenewable resources combined with the increasing consumption of energy have
resulted in a dramatic increase in the use of renewable energy resources. Solar energy
is one of the most attractive energy resources for investment in this regard as its annual
production capacity is several times that of the world’s energy consumption [1,2]. On the
other hand, solar energy is a time-dependent resource that cannot operate continuously
throughout the day. As a result, thermal energy storage (TES) systems are required to
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bridge the gap between energy supply and demand and ensure the performance stability
of solar energy systems. There are three types of thermal energy storage: thermochemical,
latent, and sensible [3]. Latent heat TES has a greater energy storage capacity than sensible
heat TES and is more stable than thermochemical TES [4]. Consequently, LHTES systems
containing PCM have gained popularity in the field of TES; PCM is used in a wide variety of
engineering applications, including energy conservation in buildings [5–7], solar collector
systems [8–10], solar building [11–14], and photovoltaic systems [15–17].

1.2. LHTES Units

Recent years have seen a significant increase in numerical and experimental investiga-
tions of LHTES units with various geometries. Mahdi et al. [18] numerically simulated the
PCM phase change process in a double-pipe helical coiled tube LHTES. They discovered
that their proposed LHTES system melts at a rate approximately 25.7% and 60% slower than
horizontal and vertical straight double-pipe LHTES systems, respectively. Moreover, their
findings indicated that the coil pitch, inlet temperature, and Reynolds number of the heat
transfer fluid (HTF) significantly affect PCM melting behavior. Mahdi et al. [19] conducted
additional research in which they examined the melting performance of a rectangular
LHTES unit numerically and experimentally. Their findings confirmed that partitioning
the LHTES unit into eight equal partitions significantly improves natural convection and
accelerates the melting process by 65%. Motahar [20] investigated the melting heat trans-
fer and solid–liquid interface tracking in a rectangular unit containing n-octadecane as a
PCM. He proposed a multilayer perceptron feedforward neural network for forecasting the
Nusselt number and melt fraction during the melting process using Rayleigh, Fourier, and
Stefan numbers. The observed results established that natural convection is responsible for
a significant portion of the melting process. Mahdi et al. [21] developed a CFD approach to
investigate the thermal efficiency of various tube configurations in a shell and tube LHTES
unit. They examined three HTF tubes in a variety of configurations within the PCM shell.
Their observations revealed that the arc array of tubes at the shell bottom is highly efficient
and reduces the melting time by approximately 76% compared to a standard arrangement.

1.3. PCM Enhancement Techniques

Using various techniques to increase the heat transfer rate has always been one of
the challenges in the design of thermal equipment, which has attracted the attention of
many researchers in different fields of heat transfer and fluid flow [22–39]. One of the most
significant challenges facing TES systems is the low thermal conductivity of pure PCMs,
which significantly reduces their efficiency. Numerous authors have proposed multiple
methods for overcoming this shortcoming. The following are some of the most frequently
used PCM enhancement techniques:

• Utilizing metal foams [40,41];
• Applying a magnetic field [42];
• Using composite PCMs [43–46];
• Installing fins or extended surfaces [47–49];
• Adding nano-additives [50–52].

The dispersion of nano-additives in PCM is a widely accepted technique for increasing
the efficiency of TES systems. By dispersing high thermal conductivity particles such as
metal, metal oxide, and carbon-based nanomaterials into pure PCM, the thermophysical
properties of the material are altered, and a range of positive and negative effects on the
charging/discharging time and energy storage capability of the material is observed. To
this end, Yadav and Sahoo [53] investigated the phase change process in a cylindrical TES
system using alumina (Al2O3)-based NePCM. They considered the effects of total stored
energy, the Nusselt number, the Fourier number, and the Rayleigh number. Their findings
indicated that NePCM with a 0.3% mass fraction of nano-additives could substantially
reduce charging time compared to primary PCM. Chen et al. [54] established an experi-
mental setup to determine the effect of various nano-additives on the performance of solar
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thermal storage. They dispersed three types of metal and metal oxide nano-additives (Cu,
Al2O3, and TiO2) in PCM at varying volume fractions. Their findings demonstrated that
nano-additives could enhance the thermal properties of PCM. Additionally, they stated
that PCM containing 0.1% TiO2 had the lowest viscosity and the best latent heat property.
Kumar et al. [55] investigated the effect of CuO nanoparticles on the thermal efficiency of a
heat sink made of NePCM. According to their experimental results, dispersing 3% of the
nanoparticles in pure PCM increases the viscosity and thermal conductivity of NePCM
by 100% and 150%, respectively. They discovered that adding 0.5% of the nanoparticles
to pure PCM could achieve a temperature reduction of 15◦C for the heat sink. Further-
more, their findings confirmed that when nano-additives were added in concentrations
greater than 0.5%, the thermal efficiency of heat sinks decreased significantly. In another
experiment, Li et al. [56] evaluated PCM’s heat transfer and energy storage properties
containing graphene nanoplatelets (GNP) while charging it in a rectangular cavity. They
discovered that increasing the GNP concentration decreases both heat transfer rate and
thermal storage simultaneously. They claimed that the increase in thermal conductivity
caused by the addition of GNP was insufficient to compensate for PCM’s increase in vis-
cosity, which resulted in a significant decrease in natural convection. They stated that
prior research had grossly underestimated the detrimental effects of increased viscosity
caused by the addition of nanomaterials. Praveen et al. [57] investigated the heat trans-
fer performance of graphene nano-platelets laden microencapsulated PCM (ME/GNP
PCM) in a finned thermal energy storage-based heat sink. They added GNP of 0.5, 1,
and 3 wt% to enhance the heat transfer between the encapsulated PCM. Their results
showed that the GNP in the encapsulated PCM reduced the recovery time of the heat sink.
Ramakrishnan et al. [58] examined the impacts of different carbon additives on the thermal
storage performance of form-stable PCM integrated cementitious composites. They utilized
various high conductive carbon-based additives such as graphite (G), carbon nanotubes
(CNT), and graphene nanoplatelets. Their outcomes confirmed that although G and GNP
additives showed a high thermal conductivity increment, heat transfer performance tests
proved that GNP leads to the highest performance enhancement, and graphite leads to the
least. Singh et al. [59] analyzed the thermal enhancement of a binary eutectic PCM, laden
with different concentrations of COOH-functionalized graphene nanoplatelets (f-GNP)
for a multi-effect solar cooling thermal storage system. They investigated the effects of
doping f-GNP on the conjugate heat transfer inside the PCM and fluid flow of HTF in
a vertical shell and tube type storage system, suitable for the double effect solar cooling
system. Their findings illustrated that the f-GNP dispersions accelerate the heat storage
process, with a maximum decrease of 17.3% in the total melt duration. Mahdi et al. [60]
investigated the melting augmentation in a triplex-tube latent heat energy storage system
using a nanoparticle–metal foam combination. They claimed that dispersing nanoparticles
in the presence of metal foams results in melting time savings of up to 90% depending
on the foam structure and volumetric nanoparticle concentration. They observed that the
melting time decreases as the porosity decreases and/or volume fraction increases. They
recommended using high-porosity metal foam with low volume-fraction nanoparticles
to promote the positive contribution of natural convection during the melting process.
Senobar et al. [61] established an experimental setup to study the charging/discharging
performance of PCM–nanoparticle–metal foam composites. They showed that adding
nanoparticles to PCM enhanced the heat transfer rate by up to 24%. Moreover, PCM–metal
foam revealed a heat transfer rate that was up to 26% faster when compared with pure
PCM. They found that by using metal foam and nanoparticles simultaneously, the heat
transfer rate increased significantly (up to 65% compared to pure PCM).

1.4. Shell and Tube LHTES Systems

As previously stated, solar energy is a time-dependent energy source, which means
there is no match between energy supply and demand, and this is a significant disadvan-
tage. In this case, combining solar energy systems and LHTES units may be an effective
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solution. As a result, TES systems can be used to rationalize the use of solar thermal en-
ergy in a variety of applications, including desalination [62], distillation [63], drying [64],
industrial process heat [65], hot water [66], and air conditioning [67]. In most solar energy
applications, a shell-and-tube TES system is used in which the heat transfer fluid (HTF)
flows inside the tube, and the PCM is installed on the shell side. The PCM is subjected to
the melting/solidification process via HTF temperature variations. Adopting techniques
that accelerate the charging/discharging process and increase the amount of stored energy
in shell-and-tube LHTES systems can be highly beneficial. Numerous researchers have
attempted to improve the efficiency of shell-and-tube LHTES systems, and several of these
efforts are summarized below.

Masoumi and Khoshkhoo [68] studied the impacts of simultaneously installing fins
and dispersing nanoparticles on the duration of PCM charging in a horizontal shell-
and-tube TES unit. Their findings indicate that adding 0.39 wt% titanium dioxide (TiO2)
nanoparticles to stearic acid (SA) as PCM serves to reduce charging duration by approxi-
mately 4%, while fins reduce charging duration by 68%. They stated that adding nanoparti-
cles reduces the effectiveness of natural convection as the primary heat transfer mechanism
in PCM charging. Shi et al. [69] simulated the charging/discharging process of PCM in
a shell and multi-tube LHTES system under the influence of magnetic fields as an active
enhancement technique in a numerical study. They discovered that applying a magnetic
field enhanced free convection in molten PCM. Additionally, increasing the magnetic field’s
intensity results in a decrease in charging/discharging time. They claimed that charging
and discharging times were reduced by 80.02% and 53.19%, respectively, in the presence of
a magnetic field. Karami and Kamkari [70] used perforated fins in their empirical work to
attempt to improve the natural convection in vertical shell and tube LHTES systems. They
used lauric acid and water as PCM and HTF, respectively. They contended that perforating
the fins would improve natural convection within the PCM shell. They discovered that
the charging time was 7% shorter for the perforated finned shell and tube unit than for
the original unit with solid fins. Mahdavi et al. [71] investigated the charging and dis-
charging efficiency of a vertical shell and tube LHTES unit through the use of heat pipes
and nano-additives. The heat pipes were used to connect the PCM tank to the HTF. They
dispersed the nanoparticles of four metals and metal oxides in PCM, including Al2O3, Ag,
Cu, and CuO. They demonstrated that the addition of nanoparticles significantly reduced
the charging/discharging time and energy stored in the system. They discovered that a
particular type of nanoparticle effectiveness depends on the system’s number of embedded
heat pipes. Mahood et al. [72] examined the effect of fin arrangement on the thermal
efficiency of a finned shell and tube LHTES system using numerical simulations. They
discovered that increasing the fin length to 0.8 of the shell radius significantly reduced the
charging duration by 50%. Additionally, they confirmed that changing the angle of the fins
from 72◦ to 15◦ increases the melting time by 40%.

1.5. Research Contribution

The total charging/discharging time and the total stored energy are critical design
parameters for LHTES units. The various heat transfer augmentation methods described
in the literature have a major impact on these two factors. For example, while the use of
fins accelerates the phase change process in LHTES systems, it also reduces the total stored
energy, which is a disadvantage [72–74]. Numerous previous studies have recommended
the utilization of nano-additives as an effective technique for increasing the efficiency
of LHTES units. However, it should be noted that the dispersion of nano-additives can
significantly alter the properties of PCMs, such as density, specific heat, latent heat, viscosity,
and thermal conductivity. These substantial differences can result in unpredictable dynamic
and thermal behaviors for various PCMs. Thus, when nano-additives are used in LHTES
systems, their thermophysical properties (thermal conductivity, density, and specific heat
capacity) and concentrations are critical. The importance of this issue, which has been
overlooked in previous research, motivated the current study to investigate the effects
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of the concentration and thermophysical properties of nano-additives on phase change
duration and total stored energy, which are used as basic parameters in the design of
LHTES units. To this end, an optimization-based procedure was required, which begins
with a thorough examination of nano-additives’ effects on the efficiency of the shell and
tube LHTES unit and ends with the principled adoption of optimal solutions.

The present research employed a hybrid approach based on the design of experiments
(DOE), computational fluid dynamics (CFD), artificial neural networks (ANNs), multi-
objective optimization (MOO), and multi-criteria decision making (MCDM) to optimize
the concentrations and properties of nano-additives dispersed in a shell and tube LHTES
unit containing paraffin wax as PCM.

Five steps comprised the proposed hybrid procedure. The first step is to determine the
total number of numerical runs required for the optimal search of the design space using
a DOE technique and the range of optimization variables. The second step simulates the
charging of NePCM in a two-dimensional shell and tube LHTES unit using CFD for samples
provided by DOE in order to determine the effect of optimization variables (thermal
conductivity, density, specific heat, and nano-additive concentrations) on the objective
functions (total charging time and stored energy). The third step, which utilizes ANNs,
presents polynomial models for objective functions in terms of optimization variables.
MOO is applied to the obtained mathematical models in the fourth step to generate a set
of optimal Pareto points. Finally, selected optimal points with various characteristics are
presented using various MCDM methods in the fifth step. Figure 1 depicts the proposed
hybrid procedure’s flowchart in greater detail. The approach presented in this paper as an
effective method for selecting NePCM for shell and tube LHTES systems can pave the way
for multiple researchers, particularly those working on solar energy applications.

Figure 1. Flow chart of the hybrid optimization procedure in the present study.
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2. Problem Description and Optimization Variables

Figure 2 illustrates an overview of a vertically oriented shell and tube LHTES unit
in a solar thermal storage system. As can be seen, the LHTES charging process begins
as the solar collector’s heated HTF flows upward through the inner tube. Heat transfer
from the HTF to the shell increases the temperature of the PCM, which continues until
the PCM is completely melted. To use the stored energy at the appropriate time, the HTF
descends through the inner tube where the thermal energy is transferred to the HTF via a
solidification process that increases the HTF’s temperature.

Figure 2. Schematic of a shell and tube LHTES unit in a solar thermal storage system.

In our research, four basic characteristics of nano-additives were considered as optimiza-
tion variables: concentration and thermophysical properties such as specific heat, density, and
thermal conductivity. The volume fraction of nano-additives (the volumetric concentration of
the nanoparticles in the PCM) is a critical parameter affecting engineering systems’ dynamic
and thermal behavior. Most previous research has demonstrated that increasing the volume
fraction of nano-additives (ϕ) above a certain point reduces the system’s efficiency [75,76]. On
the other hand, the models used to predict the thermophysical properties of NePCM will be
inaccurate for ϕ > 0.05 [74]. As a result, the maximum volume fraction of nano-additives was
set to 0.05. Thermal conductivity, density, and specific heat properties of nano-additives that
are widely utilized in the industry can be used to determine the study range for thermal con-
ductivity, density, and specific heat. The thermophysical properties of common nano-additives
used in engineering systems are summarized in Table 1 [77–83]. Therefore, as per Table 1
and the volume fraction of nano-additives considered, the variation range of optimization
variables is presented in Table 2.

Table 1. Thermophysical properties of widely used nano-additives [77–83].

Nanomaterial Cp (J kg−1 K−1) ρ (kg m−3) k (W m−1 K−1)

Cu 385 8933 400
Ag 235 10,500 429

CuO 531.8 6320 76.5
Al2O3 765 3970 40

Co 420 8900 100
Fe3O4 670 5180 80.4
MoS2 397.2 5060 85–110
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Table 2. Optimization variables and their range of alterations.

Optimization Variables Unit From To

Thermal conductivity (k) (W m−1 K−1) 50 500
Density (ρ) (kg m−3) 4000 10,000

Specific heat (Cp) (J kg−1 K−1) 200 800
Volume fraction (ϕ) - 0.005 0.05

By employing a proper design of experiments method, the design space can be
analyzed optimally. To this end, the well-known D-optimal method [84,85] was used
to minimize calculation costs and extract as much information from the variables’ space
as possible. Through the D-optimal design technique, 45 DOE points were generated and
distributed within the design space. These DOE points are used to populate the CFD model
with input parameters.

3. CFD Modeling
3.1. Assumptions and Boundary Conditions

The following are the assumptions that govern the current problem:

• It is assumed that a fully developed turbulent HTF flow enters the LHTES system.
The following equation provides an estimate of the entrance length required to create
a fully developed turbulence flow [86]:

L
D

= 1.359 Re1/4 (1)

• The inner tube has a wall thickness of 2 mm and is made of aluminum.
• The thermophysical properties of the PCM are temperature-dependent.
• The thermophysical properties of the HTF are considered constant.
• It is assumed that the nano-additives are dispersed homogeneously in the PCM.
• The liquid NePCM flows in the LHTES unit are assumed to be Newtonian, steady-state,

incompressible, and laminar flows.

The boundary and initial conditions can be expressed as follows:

• The Reynolds number and inlet temperature of HTF are set to be 4500
and 363.15 K, respectively.

• The outer surfaces of the LHTES system are considered perfectly insulated
(adiabatic condition).

• A zero gradient boundary condition (outflow) is considered for the HTF outlet.
• A 2D axisymmetric modeling is adopted for the simulation of the LHTES system

(see Figure 2).
• No-slip condition is assumed at the boundary of the walls.
• The initial temperature of the NePCM is set to be 310.15 K (the NePCM is subcooled).

3.2. Thermophysical Properties of NePCM

Paraffin wax was used as a common organic PCM to store thermal energy in this research
as it is one of the most widely used PCMs in mid-temperature TES applications, such as
building air conditioning, solar water distillation, solar collector systems, and electronic
thermal management [87–90]. Paraffin wax has a wide range of applications due to its
desirable properties. This PCM is odorless, chemically inert, non-toxic, and inexpensive [91].
During the phase change process, it has a low volume change and a low vapor content
in melt [92]. Additionally, paraffin wax is non-reactive to most encapsulation materials, is
compatible with almost all materials, has a high latent heat, and exhibits chemical stability over
numerous charging/discharging cycles [93]. However, its primary disadvantage is its low
thermal conductivity, which can be compensated for through enhancement techniques [94].
Furthermore, water is used as an HTF in conventional solar collector systems. Table 3 presents
the thermophysical properties of paraffin wax and water [95,96].
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Table 3. Thermophysical properties of PCM and HTF [95,96].

Properties Unit Paraffin Wax (PCM) Water (HTF)

Specific heat, Cp (J kg−1 K−1) 2890 4182
Density, ρ (kg m−3) 800 998.2

Thermal conductivity, k (W m−1 K−1) 0.12 (l), 0.21 (s) 0.6
Viscosity, µ (kg m−1 s−1) 0.001 × exp(−4.25 + 1790/T) 0.001003

Melting point, Tm (K) 319.15–321.15 -
Latent heat, L (J kg−1) 173400 -

Thermal expansion coefficient, β (K−1) 0.001 -

In most previous studies, the thermophysical properties of nano-enhanced PCMs have
been estimated using analytical models and experimental correlations. Fan et al. [97] tested
several conventional models for predicting the properties of NePCM in their experimental
study on the performance of TES systems. They observed that when the concentration of
nano-additives dispersed in PCM is less than five vol%, conventional models and experi-
mental correlations report an acceptable error compared to the experimental values. Thus,
using simple models based on mixing theory [98] to calculate the properties of NePCM,
such as density, latent heat, thermal expansion, and specific heat, can be considered reliable
over a certain range of nano-additive concentrations. The reduced form of the mixing
model is employed as follows:

ρNePCM = (1− ϕ)ρPCM + ϕρNP (2)(
ρCp

)
NePCM = (1− ϕ)

(
ρCp

)
PCM + ϕ

(
ρCp

)
NP (3)

(ρL)NePCM = (1− ϕ)(ρL)PCM (4)

(ρβ)NePCM = (1− ϕ)(ρβ)PCM (5)

Vajjha et al. [99] proposed a model for estimating the viscosity of NePCM that is
reasonably accurate:

µNePCM = 0.983 e(12.959ϕ)µPCM (6)

The thermal conductivity of NePCM containing uniformly sized, spherical nanoparti-
cles is calculated using the well-known Maxwell model [100]:

kNePCM = kPCM

[
kNP + 2kPCM − 2ϕ (kPCM − kNP)

kNP + 2kPCM + ϕ (kPCM − kNP)

]
(7)

Several previous numerical studies in various fields have used the expressed models
to calculate the thermophysical properties of NePCM [101–106].

3.3. Governing Equations and Numerical Procedure

Based on assumptions, transient continuity, momentum, and energy equations are
introduced as follows [107]:

∂ρ

∂τ
+∇·

(
ρ
→
V
)
= 0 (8)

ρ
∂
→
V

∂τ
+ ρ

(−−→
V·∇

)→
V = −∇P + µ∇2

→
V + ρ

→
g
(

T − Tre f

)
+
→
S (9)

∂

∂τ
(ρH) +∇·

(
ρ
→
VH

)
= ∇·(k∇T) (10)

where ρ denotes the density, H denotes the enthalpy, k is the thermal conductivity,
→
S is the

momentum source term,
→
V represents the velocity vector,

→
g represents the gravity vector,
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µ denotes the dynamic viscosity of liquid PCM, P denotes the pressure, and Tre f represents
the reference temperature.

The solid–liquid phase change process is simulated and tracked using an enthalpy-
porosity method. Voller and Prakash [108] described this technique as one that does not
require explicitly tracking the phase’s interface. The enthalpy-porosity method has been
used in recent research to improve the accuracy of phase change simulations [109–112].

Source term
→
S in Equation (9) represents the impact of the enthalpy-porosity technique

and is defined by the following equation:

→
S = − (1− λ)2

λ3 + ε
Amushy

→
V (11)

where Amushy denotes a mushy zone constant and estimates the amplitude of damping [113].
Although the mushy zone constant varies between 104 and 107, the traditional value of
105 has been used in most previous studies using conventional PCMs [74,107]. Additionally,
ε by a small constant value of 0.001 is introduced to avoid division by zero. Moreover,
λ is a critical parameter in phase change analysis because it indicates the liquid fraction of
PCM; λ possesses a value between 0 and 1 that is determined by the PCM temperature:

λ =


0 if T < Ts

T−Ts
Tl−Ts

if Ts < T < Tl

1 if T > Tl

(12)

where Tl and Ts are the liquidus and solidus temperatures, respectively.
Natural convection takes precedence over thermal conduction once the melting pro-

cess begins and the liquid level is raised and is recognized as the main heat transfer
mechanism in the TES system [74,107]. Consequently, the well-known Boussinesq approx-
imation is employed to model the influence of natural convection (buoyancy force) as a
melting accelerator mechanism. The Boussinesq model calculates the buoyancy term by
considering density as a function of temperature [114]:

ρ = ρl/(β(T − Tl) + 1) (13)

However, in calculating other density-dependent terms, the density value is
considered constant.

The enthalpy term H in Equation (10) is calculated as follows:

H = ∆H + h (14)

where ∆H and h denote the latent and sensible enthalpy, respectively, and can be obtained as:

h = hre f +
∫ T

Tre f

CpdT (15)

∆H = λL (16)

where hre f is enthalpy at the reference temperature (Tre f ).
The realizable k− ε turbulence model with a standard wall function was selected to

simulate turbulent HTF flow in the inner tube.
The present two-dimensional axisymmetric model was constructed using an ANSYS

Fluent CFD solver through the finite volume method. For pressure–velocity coupling, the
well-known SIMPLE algorithm was utilized. The QUICK scheme is used to discretize
both the energy and momentum equations. Additionally, a second-order implicit transient
formulation is used for increased precision, and the PRESTO pressure discretization scheme
is implemented [115]. Under-relaxation parameters for energy, liquid fraction, momentum,
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and pressure were set to 1.0, 0.9, 0.7, and 0.3 to reduce fluctuations and increase stability
during the solving process.

Moreover, to ensure a convergence of results, the convergence criteria for the momen-
tum and continuity equations were adjusted to 10−4, while the convergence criteria for the
energy equations were adjusted to 10−8. Several runs were conducted as a trial-and-error
strategy to determine the most appropriate time step size for ensuring transient solution
stability; finally, the optimum time step size of 0.1 s was obtained. The number of iterations
per time step was set to 100 to ensure that each time step was convergent.

3.4. Grid Sensitivity Study and CFD Validation

Using ICEM software, the computational domain for the shell and tube LHTES system
was drawn and meshed. The structured meshing technique was applied to generate a
quality grid. Furthermore, greater emphasis was placed on the quality of the grids in
the NePCM zone and near the wall boundaries to perfectly capture gradients. Five grid
designs with 9505, 14,617, 23,213, 36,118, and 50,028 nodes were analyzed to determine
the CFD results’ independence from the grid size. This was accomplished by comparing
the transient liquid fraction and the average temperature of pure PCM across all grids, as
shown in Figure 3. As can be seen, the maximum change in the outcomes was minimal
once the grid size was increased to 36118. The grid sensitivity procedure was repeated
for NePCM cases, and the results were comparable. As a result, the grid structure with
36118 nodes was deemed adequate for examining all cases in the current work. Figure 4
displays the solution domain and selected grid structure in the present research.

The precision and reliability of the developed computational model were evaluated
using the experimental and numerical results of Seddegh et al. [116] and the experimental
data tabulated by Akgun et al. [117]. Both studies used HTF to flow through the inner tube
and paraffin wax to fill the shell space, identical to the current TES system. Seddegh et al. [116]
used visualization to investigate the solid–liquid interface during the PCM charging process
in a vertical cylindrical shell-and-tube LHTES system. They used numerical simulations to
elucidate and expand on their experimental results. Figure 5a compares the present numerical
results to the experimental and numerical data of Seddegh et al. [116] for the transient volume-
average temperature of PCM.

Figure 3. Grid independency study for (a) transient liquid fraction, and (b) transient average temperature.
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Figure 4. Solution domain and its grid structure.

Figure 5. Comparison of transient PCM temperature between present numerical model and (a) numerical and experimental
results of Seddegh et al. [116], (b) experimental data by Akgun et al. [117].

On the other hand, in the study by Akgun et al. [117], the local temperature was
determined using a total of 24 thermocouples located within the PCM shell. The transient
temperature of selected points (T13 and T61) was used to compare the present results to
their experimental data. T13 was located at a radius of 47 mm and a height of 0 mm, while
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T61 was located at a radius of 28 mm and a height of 421 mm, with radial coordinates taken
from the inner pipe’s center. Figure 5b illustrates the details of the findings’ comparisons.

The following statistical criteria, namely mean absolute percentage error (MAPE),
were used to quantify the comparison between the current numerical outcomes and the
findings of [116,117]:

MAPE (%) =

[
1
n

n

∑
i=1

Yi − Xi
Yi

]
× 100 (17)

where Yi and Xi denote previous and present findings, respectively. Table 4 compares the
current results to previous studies that used MAPE criteria. As can be seen, MAPE was less
than 5% in all four comparisons, confirming the validity of the current numerical model
for examining the PCM melting process in shell and tube LHTES systems.

Table 4. Percentage deviation of the present results in comparison with previous studies.

Authors Type of Study MAPE (%)

Seddegh et al. [116] Numerical 3.95
Experimental 3.83

Akgun et al. [117] Experimental (T13) 4.79
Experimental (T61) 4.58

4. Objective Functions

Two critical factors in the scope of TES that have dominated researchers’ efforts in
designing LHTES systems are the duration of energy storage and the amount of stored
energy. Several authors have concentrated on charging/discharging times [118–120], while
others have concentrated on total stored energy [121,122]. Meanwhile, a few authors have
concentrated on optimizing these two factors concurrently [112].

The present study simultaneously evaluated both total stored energy and melting
duration as objective functions during the optimization process. In fact, changes in the
volume fraction and properties of nano-additives as optimization variables have a complex
effect on objective functions. These effects were investigated using CFD simulations, and,
finally, the optimal conditions could be presented through a robust optimization process.
The melting time and total stored energy in the LHTES system were calculated using the
following plan:{

if λvol−avg > 0.999999 then t = tm

Et(tm) = ρNePCM ×Vshell ×
{

LNePCM + Cp NePCM
[
Tavg(tm)− Ti

]} (18)

where λvol−avg denotes the volume-average liquid fraction and tm is melting time. In the
present study, the total stored energy (Et) refers to the total stored energy at tm.

5. GMDH-Type Neural Network Modeling

Artificial neural networks (ANNs) are a powerful tool for modeling and forecasting
various highly complex phenomena [123–133]. They are inspired by the biological neural
networks found in the human brain. Even though various ANN types are capable of
modeling a wide variety of systems, their accuracy and efficiency are dependent on the
quantity and quality of available data. Ivakhnenko [134] developed a group method of
data handling (GMDH) polynomial neural networks with a self-organizing algorithm and
a structure similar to feed forward ANNs to make modeling accuracy less dependent on
the quantity of data. In the GMDH method, the modeling process begins with the input
layer, which comprises the input data neurons. Quadratic polynomials connect pairs of
neurons from various layers to form neurons in the middle layers, and a single neuron is
presented as a predicted model of the output data in the output layer. One of the most
remarkable properties of the GMDH algorithm is its self-organizing process in which



Mathematics 2021, 9, 3235 13 of 30

various configurations of pairs of neurons are examined and only those that contribute to
the output model’s efficiency are retained in the middle layers.

The least-squares technique is used to calculate polynomial coefficients in this method [135].
In recent years, the GMDH method has been used in various studies, demonstrating its efficacy
and precision [136–141].

We should assume that input vector x = (x1, x2, . . . xn) and output y are related by a
complex function such as f as follows:

yi = f (xi1, xi2, . . . xin) (i = 1, 2, . . . , M) (19)

The objective of applying the GMDH method is to predict ŷi as a suitable approxi-
mation of yi by training a function such as f̂ in such a way that there is the least possible
difference between ŷi and yi. In mathematical terms:

ŷi = f̂ (xi1, xi2, . . . xin) (i = 1, 2, . . . , M) (20)

M

∑
i=1

[ŷi − yi]
2 → min (21)

Previous researchers have established that using a quadratic form of Kolmogorov–Gabor
polynomials is highly efficient for connecting neurons [112]:

y = G
(
xi, xj

)
= a0 + a1xi + a2xj + a3xixj + a4x2

i + a5x2
j (22)

There were 45 input–output CFD datasets in total, divided into two sections. The first
section, which contained 80% of the datasets, was used for ANN training, while the second
section, which contained 20% of the datasets, evaluated the trained ANN’s performance.
Figure 6 illustrates the structure of the GMDH type of ANN method used to model tm and
Et. As can be seen, both structures have four neurons (optimization variables) in their first
layer, and only one neuron in their final layer (objective function). Both structures consist
of four middle layers.

Figure 6. Evolved GMDH-type ANN structure for (a) tm and (b) Et.

The connection between neurons in predicting the values of tm is provided by the
following polynomials (see Figure 6a):

f11 = a(1,1) + a(1,2)ϕ + a(1,3)Cp + a(1,4)ϕCp + a(1,5)ϕ2 + a(1,6)Cp
2 (23)

f12 = a(2,1) + a(2,2)Cp + a(2,3)k + a(2,4)Cpk + a(2,5)Cp
2 + a(2,6)k

2 (24)
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f13 = a(3,1) + a(3,2)ϕ + a(3,3)ρ + a(3,4)ϕρ + a(3,5)ϕ2 + a(3,6)ρ
2 (25)

f21 = a(4,1) + a(4,2) f11 + a(4,3) f12 + a(4,4) f11 f12 + a(4,5) f 2
11 + a(4,6) f 2

12 (26)

f22 = a(5,1) + a(5,2)ρ + a(5,3) f11 + a(5,4)ρ f11 + a(5,5)ρ
2 + a(5,6) f 2

11 (27)

f23 = a(6,1) + a(6,2) f12 + a(6,3) f13 + a(6,4) f12 f13 + a(6,5) f 2
12 + a(6,6) f 2

13 (28)

f31 = a(7,1) + a(7,2) f22 + a(7,3)ϕ + a(7,4) f22 ϕ + a(7,5) f 2
22 + a(7,6)ϕ2 (29)

f32 = a(8,1) + a(8,2) f22 + a(8,3) f23 + a(8,4) f22 f23 + a(8,5) f 2
22 + a(8,6) f 2

23 (30)

f41 = a(9,1) + a(9,2) f31 + a(9,3) f32 + a(9,4) f31 f32 + a(9,5) f 2
31 + a(9,6) f 2

32 (31)

tm = a(10,1) + a(10,2) f21 + a(10,3) f41 + a(10,4) f21 f41 + a(10,5) f 2
21 + a(10,6) f 2

41 (32)

Moreover, the connection between neurons in predicting the values of Et is provided
by the following polynomials (see Figure 6b):

g11 = b(1,1) + b(1,2)ϕ + b(1,3)k + b(1,4)ϕk + b(1,5)ϕ2 + b(1,6)k
2 (33)

g12 = b(2,1) + b(2,2)Cp + b(2,3)ϕ + b(2,4)Cp ϕ + b(2,5)Cp
2 + b(2,6)ϕ2 (34)

g13 = b(3,1) + b(3,2)ϕ + b(3,3)ρ + b(3,4)ϕρ + b(3,5)ϕ2 + b(3,6)ρ
2 (35)

g14 = b(4,1) + b(4,2)Cp + b(4,3)ρ + b(4,4)Cpρ + b(4,5)Cp
2 + b(4,6)ρ

2 (36)

g15 = b(5,1) + b(5,2)ρ + b(5,3)k + b(5,4)ρk + b(5,5)ρ
2 + b(5,6)k

2 (37)

g21 = b(6,1) + b(6,2)ϕ + b(6,3)g14 + b(6,4)ϕg14 + b(6,5)ϕ2 + b(6,6)g
2
14 (38)

g22 = b(7,1) + b(7,2)g11 + b(7,3)g13 + b(7,4)g11g13 + b(7,5)g
2
11 + b(7,6)g

2
13 (39)

g23 = b(8,1) + b(8,2)g14 + b(8,3)g15 + b(8,4)g14g15 + b(8,5)g
2
14 + b(8,6)g

2
15 (40)

g24 = b(9,1) + b(9,2)g13 + b(9,3)g15 + b(9,4)g13g15 + b(9,5)g
2
13 + b(9,6)g

2
15 (41)

g24 = b(9,1) + b(9,2)g13 + b(9,3)g15 + b(9,4)g13g15 + b(9,5)g
2
13 + b(9,6)g

2
15 (42)

g32 = b(11,1) + b(11,2)g21 + b(11,3)g24 + b(11,4)g21g24 + b(11,5)g
2
21 + b(11,6)g

2
24 (43)

g41 = b(12,1) + b(12,2)g23 + b(12,3)g32 + b(12,4)g23g32 + b(12,5)g
2
23 + b(12,6)g

2
32 (44)

Et = b(13,1) + b(13,2)g31 + b(13,3)g41 + b(13,4)g31g41 + b(13,5)g
2
31 + b(13,6)g

2
41 (45)

The polynomial coefficients of Equations (23)–(45) are presented as follows:

aij =



2225.920 54.5596 0.0030145 0.00837900 3.005900000 0
2233.820 1.29026 −0.163197 0 −0.00125000 0
2240.070 61.3933 0.0005340 0 2.634000000 −0.00000033
−8.63467 0.27930 0.7108720 0.00029700 0 −0.00029000
−214.157 0.03035 1.0968600 −0.0000132 −0.00000014 0
−653.074 0.53067 0.9990580 0 −0.00010735 0
−53482.7 49.4599 −3758.910 1.70323000 −0.0197700 −66.1202000
−27.9120 2.68367 −1.665840 0.03560660 −0.01814310 −0.01746600
119.8590 6.52388 5.6211600 −0.5343500 0.266148000 0.268221000
136.4800 0.20537 0.6866230 −0.0229692 0.011439800 0.011550500


(46)
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bij =



250450.00 0 0 0 0 0.0088655000
252778.00 3.320330 −2639.03 3.77663000 −0.00404965 10.347300000
253021.00 −2409.62 0 0.25373600 5.46272 0
246188.00 0 0 0.00139090 −0.00002026 0
245110.00 0.833744 0 −0.0005260 0 0.0130842000
214983.00 −90674.0 0.303584 0.35822500 0 −0.000000604
−4651310 4.553740 33.21790 −0.0000165 0 −0.000056208
−8697300 −10.0891 80.19490 0 0.000021862 −0.000159130
−2795600 40.08080 −16.7195 0 −0.00007826 0.0000335500
5046630.0 −40.0336 0 0.00007469 0.000044475 −0.000035796
−110866.0 1.055410 0.839947 0.00000026 −0.00000023 −0.000001836
47210.800 −0.53187 1.158050 0 0.000001055 −0.000000315
1694.4500 0.094288 0.892340 −0.0000022 0.000000917 0.0000012989



(47)

The ANN predicted values of tm and Et were compared to the CFD results for the
testing and training datasets in Figure 7. As can be seen, the GMDH method predicted
CFD data exceptionally accurately. Two statistical criteria were employed to precisely
evaluate the predicted models: the squared correlation coefficient (R2) and the root mean
squared error (RMSE). If Yi,ANN is the predicted value and Yi,CFD is the actual value of the
ith observation, RMSE and R2 are as follows [136]:

RMSE =

√
1
n

n

∑
i=1

(Yi,ANN −Yi,CFD)
2 (48)

R2 = 1−
n

∑
i=1

(Yi,ANN −Yi,CFD)
2

Y2
i,CFD

(49)

Figure 7. Comparison of CFD and predicted ANN values for (a) tm and (b) Et.
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The RMSE and R2 values for the testing and training datasets are shown in Table 5. As can
be seen from the statistical criteria used, ANN models performed the best in predicting CFD
datasets. As a result, the obtained models can be confidently used in the optimization process.

Table 5. Amount of RMSE and R2 for tm and Et.

Objective Functions
Training Datasets Testing Datasets

RMSE R2 RMSE R2

tm 1.4587 0.999898 2.7828 0.999409
Et 4.9103 0.999998 10.301 0.999992

A key practical application of shell-and-tube LHTES units is in solar thermal energy
storage systems. The PCM melting temperature and boundary conditions of the present
CFD model are within the scope of solar LHTES units. An examination of statistical criteria
shows that the studies around solar LHTES units have used methods to model experimental
and numerical datasets that do not afford acceptable accuracy. Therefore, proposing high-
precision models (according to Table 5) based on a GMDH-type neural network for the
melting process in shell-and-tube LHTES units can provide deep insights into the design
of solar-based TES systems. The two modeled factors can present a favorable view of the
energy storage behaviors of NePCMs in LHTES systems.

6. Multi-Objective Optimization

The optimal conditions for the optimization variables should result in a shorter melting
time and an increase in the amount of energy stored in the LHTES system. Due to the complexity
of the objective functions’ behavior in the presence of varying nano-additive properties, it is
necessary to specify conditions for the variables used to optimize the objective functions.
For this purpose, the Pareto-optimal procedure is applied. A set of solutions (Pareto front)
is presented as the optimal points in this procedure. All optimal Pareto points are equally
desirable, and the designer’s strategy determines their selection. The Pareto front for the current
optimization problem was calculated using the well-known TOPSIS algorithm [142]. Numerous
designers prioritize this algorithm when solving multi-objective optimization problems, and its
efficiency has been compared to that of other methods in various fields [143–147]. The NSGA-II
optimization process is summarized in Figure 8.

Figure 8. Schematics of multi-objective optimization process.
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The two-objective optimization problem in this work can be formulated as follows:

Minimalize : tm = f1
(

ϕ, kNP, CpNP, ρNP
)

Maximize : Et = f2
(

ϕ, kNP, CpNP, ρNP
)

Subject to :


0.005 ≤ ϕ ≤ 0.05
50 ≤ kNP ≤ 500

200 ≤ CpNP ≤ 800
4000 ≤ ρNP ≤ 10000

(50)

Figure 9 illustrates a comparison of Pareto front values with CFD results. As can be
seen, when ANN and MOO were combined, the optimal set of solutions could be found in
comparison to the original CFD data.
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Figures 10 and 11 show the optimal variation of melting time and stored energy in terms
of optimization variables for all optimal points. As depicted in Figures 10a and 11a, for all
Pareto points in the range of 0.5–4.9%, ϕ was uniformly distributed. In other words, the
simultaneous optimization of tm and Et is not restricted to specific values and can be achieved
by adding any volume fraction of nano-additives. However, as shown in Figures 10a and 11a,
phase change time and stored energy increased as the volume fraction of nano-additives
increased. This means that if the melting duration is more critical, a lower concentration of
nano-additives should be used; however, if the stored energy is more critical, the volume
fraction of nano-additives should be increased. The volume fraction trend described above
was not observed for the thermophysical properties. According to Figures 10a and 11a,
approximately 97% of optimal points lay within the range 180 ≤ kNP ≤ 480. By increasing
the thermal conductivity of nano-additives, the probability of being one of the optimal
solutions increased to the point where more than half of the total Pareto points were in the
range 315 ≤ kNP ≤ 480. In general, increasing the thermal conductivity of nano-additives
can reduce phase change time and stored energy in the TES system.
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heat and density.
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Figure 11. Optimal variation of total stored energy (Et) with respect to (a) volume fraction and thermal conductivity,
(b) specific heat and density.

Figures 10b and 11b show a similar trend for the density and specific heat of nano-
additives, indicating that the congestion of the optimal points within a specific range of
ρNP and Cp NP is high and implying the optimal range of these properties for selecting
the appropriate nano-additives. As can be seen, all optimal solutions had ρNP values
between 9740 and 9990. No optimal point exists when ρNP < 9740. As a result, it is
essential to note that, when studying TES systems containing paraffin wax, the density
of dispersed nano-additives should not be less than a particular value; this reduces the
system’s performance. Around 86% of the optimal points lay between 9950 < ρNP < 9990,
indicating that the dispersion of high-density nano-additives has a beneficial effect on
the paraffin wax melting process. The trend described above was more pronounced for
Cp NP. This means that, for approximately 95% of the optimal points Cp NP, the values
exceeded 795. Consequently, TES systems can significantly benefit from the addition of
nano-additives with high specific heat.
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The results of the Pareto front show that the dispersion of nanoparticles (especially
with a high concentration) in paraffin wax does not have a favorable effect on the phase
change time. On the one hand, raising the volume fraction of nanoparticles enhances the
thermal conductivity of NePCM and, on the other hand, increases the viscosity of NePCM.
Growing the viscosity of NePCM diminishes the impact of natural convection as the primary
mechanism of heat transfer in the PCM melting process. In fact, increasing the nanoparticles
concentration has a two-way impact. On the one hand, it raises the conduction heat transfer;
on the other hand, it causes a decrease in convection heat transfer, which subsequently
increases the phase change time. To clarify this point, it should be noted that using pure PCM
takes 2245 s for complete melting. This is while in the presence of nanoparticles; therefore
more time is needed for the charging process. In addition, increasing the concentration of
nanoparticles affects the amount of total stored energy. As mentioned, the total thermal energy
stored in LHTES systems includes latent and sensible heat energy. According to Equation (4),
by increasing the volume fraction of nanoparticles, the amount of latent energy decreases,
however, on the other hand, due to the high density of nanoparticles, the amount of sensible
energy improves. By raising the volume fraction of nanoparticles, the increment in the sensible
energy overcomes the reduction in latent heat energy, and these interactions increase the total
stored energy in the TES system. As confirmation of this viewpoint, it can be stated that the
total amount of stored energy in the case of pure PCM is 251111 Joule. However, in all optimal
Pareto points, a higher amount of total thermal stored energy is observed.

7. Multi-Criteria Decision Making

The NSGA-II algorithm was used to determine Pareto optimal points. Pareto points
are a collection of all optimal solutions that do not overlap but remain superior to all other
solutions in the problem space. This means that, in the current problem with two objective
functions, changing the optimal solution does not improve both objective functions simul-
taneously but instead alters their importance to one another, which is where the designer
can use MCDM techniques to select the desired optimal points from numerous Pareto front
solutions. The well-known TOPSIS [148] and VIKOR [149] methods are employed for this
purpose. These two methods work based on the exact mechanism of aggregation func-
tion (closeness to the ideal point). However, the criteria are normalized by two different
techniques. The TOPSIS method uses Euclidean normalization while the VIKOR method
employs linear normalization [149]. Numerous previous studies have utilized these two
techniques and demonstrated their efficacy and effectiveness [32,150–152]. The following
describes the process of decision making using the TOPSIS and VIKOR methods:

7.1. TOPSIS

The process of ranking alternatives using the TOPSIS method can be summarized in
the following six steps [112]:

1. Forming the decision-making matrix (xij)m×n where m and n are the numbers of
alternatives and criteria, respectively.

2. Normalizing the decision-making matrix utilizing the Euclidian technique:

R = (rij)m×n, rij =
xij√

∑m
k=1 x2

kj

i = 1, 2, . . . , m j = 1, 2, . . . , n (51)

3. Computing the weighted normalization of (xij)m×n:

Sij = rij·wj, i = 1, 2, . . . , m j = 1, 2, . . . , n (52)

4. Obtaining the best and worst alternatives for objectives with positive (J+) and negative
(J−) effects:

Abest =
{ 〈

min
(
tij
∣∣i = 1, 2, . . . , m

) ∣∣j ∈ J−
〉

,
〈
max

(
tij
∣∣i = 1, 2, . . . , m

) ∣∣j ∈ J+
〉}
≡
{

tbj

∣∣∣j = 1, 2, . . . , n
}

(53)
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Aworst =
{ 〈

max
(
tij
∣∣i = 1, 2, . . . , m

) ∣∣j ∈ J−
〉

,
〈
min

(
tij
∣∣i = 1, 2, . . . , m

) ∣∣j ∈ J+
〉}
≡
{

twj
∣∣j = 1, 2, . . . , n

}
(54)

where
J+ = {j = 1, 2, . . . , n|j}, J− = {j = 1, 2, . . . , n|j} (55)

5 Computing the alternative Euclidean distance for the best and worst alternatives:

Di,best =

√√√√ n

∑
j=1

(
tij − tbj

)2
, Di,worst =

√√√√ n

∑
j=1

(
tij − twj

)2, i = 1, 2, . . . , m (56)

6 Ranking the alternatives from 0 to 1 as follows:

Si,worst =
Di,worst

Di,best + Di,worst
, 0 ≤ Si,worst ≤ 1, i = 1, 2, . . . , m (57)

The alternative with the highest Si,worst value reaches the best rank in the TOPSIS method.

7.2. VIKOR

The alternatives’ ranking process by the VIKOR technique can be described as follows [112]:

1. Forming the decision-making matrix (xij)m×n
2. Obtaining the best and worst alternatives for all criteria.

For objectives with positive impact:

f ∗j = max
[
(xij)

∣∣i = 1, 2, . . . , m
]
, j = 1, 2, . . . , n (58)

f ∗j = max
[
(xij)

∣∣i = 1, 2, . . . , m
]
, j = 1, 2, . . . , n (59)

For objectives with negative impact:

f ∗j = min
[
(xij)

∣∣i = 1, 2, . . . , m
]
, j = 1, 2, . . . , n (60)

f−j = max
[
(xij)

∣∣i = 1, 2, . . . , m
]
, j = 1, 2, . . . , n (61)

1. Computing the regret measure ( Ri) and utility measure ( Si):

Si =
n

∑
j=1

wj·
f ∗j − xij

f ∗j − f−j
, j = 1, 2, . . . , n, i = 1, 2, . . . , m (62)

Ri = max

[
wj·

f ∗j − xij

f ∗j − f−j

]
, j = 1, 2, . . . , n, i = 1, 2, . . . , m (63)

2. Computing the VIKOR index (Qi):

Qi = v· Si − S∗

S− − S∗
+ (1− v)· Ri − R∗

R− − R∗
, i = 1, 2, . . . , m (64)

where
S∗ = min[Si|i = 1, 2, . . . , m], S− = max[Si|i = 1, 2, . . . , m] (65)

R∗ = min[Si|i = 1, 2, . . . , m], R− = max[Si|i = 1, 2, . . . , m] (66)

The value of v is set to 0.5 to create a moderate strategy between regret and utility measures.
In the VIKOR method, the alternative with the lowest Qi value achieves the best rank.
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7.3. Selection of Optimal Points

If wt and wE denote the importance (weight) of the tm and Et, respectively, there are
three strategies for selecting the desired points:

• Single criteria (wt = 0 or wE = 0);
• Balanced weights (wt = wE);
• Unbalanced weights (wt > wE or wt < wE).

Table 6 summarizes the optimal points determined using the strategies above for the
TOPSIS and VIKOR methods. As shown, the TOPSIS method provides points A-C for
various weights. Points D-F are suggested by the VIKOR method. Additionally, G and H
points demonstrate single-criteria decision making for tm and Et, respectively.

Table 6. Comparison of the selected optimal points.

DM Methods Points
Weight Input Variables Objectives

wt wE ϕ (%) kNP ρNP Cp NP tm(s) Et(j)

TOPSIS
A 0.50 0.50 0.561 311.50 9839.86 796.60 2258.26 253,890.7
B 0.75 0.25 0.507 222.90 9836.27 777.63 2254.30 253,765.7
C 0.25 0.75 0.822 463.07 9988.85 797.94 2275.79 254,306.3

VIKOR
D 0.50 0.50 2.578 339.19 9984.34 797.84 2394.01 256,906.3
E 0.75 0.25 0.540 316.79 9897.01 796.32 2256.81 253,871.9
F 0.25 0.75 4.656 187.24 9983.85 797.95 2563.21 259,981.6

Single-criteria (tm) G 1 0 0.501 75.010 9738.90 324.50 2251.14 252,633.3

Single-criteria (Et) H 0 1 4.897 417.46 9845.12 799.33 2584.94 260,094.8

Moreover, for further clarity, Figure 12 illustrates the location of the selected points on
the Pareto front. As can be seen, the proposed points for the same weights by the TOPSIS
and VIKOR techniques are not identical. For example, when wt = wE = 0.5, the TOPSIS
method recommends point A, whereas the VIKOR method recommends point B, which is a
significant difference. This trend is stronger when wt = 0.25 and wE = 0.75. The question
now is which method is the superior option. The deviation index (DI) can be used to address
this question [153]. This index, calculated as follows [154], assigns a value to alternatives
based on their position relative to the ideal and non-ideal solutions (see Figure 12).

D+ =
√
(Etn − Etn ,ideal)

2 + (tmn − tmn ,ideal)
2 (67)

D− =
√
(Etn − Etn ,non−ideal)

2 + (tmn − tmn ,non−ideal)
2 (68)

DI =
D+

(D+) + (D−)
(69)

where tmn and Etn represent Euclidian, non-dimensioned tm and Et, respectively.
According to Equations (67)–(69), the solution closer to the ideal point and farther

away from the non-ideal point has a lower DI value and is, therefore, more appropriate.
The DI values for the TOPSIS and VIKOR methods are shown in Table 7. As can be seen,
when the objective weights are wt = 0.75 and wE = 0.25, the VIKOR method provides a
superior solution; however, for other objective weights, the TOPSIS method’s proposed
solution takes precedence.
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Table 7. Deviation index for MCDM methods.

Weight of Objectives Deviation Index (DI)

wt wE TOPSIS VIKOR

0.50 0.50 0.15186 0.42798
0.75 0.25 0.15212 0.15133
0.25 0.75 0.16134 0.8122

In order to ensure the accuracy of the combined optimization process in this study,
selected points A-H were numerically re-simulated. Table 8 shows that the maximum
error of optimization outcomes with CFD results were less than 0.5%, indicating that the
combined optimization process has acceptable precision.

Table 8. Re-evaluation of the selected solutions using CFD.

Points
tm (s) Et (j)

NSGA-II CFD Error (%) NSGA-II CFD Error (%)

A 2258.26 2255.34 0.13 253,890.7 253,850.2 0.016
B 2254.30 2250.21 0.18 253,765.7 253,720.4 0.018
C 2275.79 2269.17 0.29 254,306.3 254,241.8 0.025
D 2394.01 2389.87 0.17 256,906.3 256,840.7 0.026
E 2256.81 2254.91 0.08 253,871.9 253,770.1 0.040
F 2563.21 2557.44 0.23 259,981.6 259,901.9 0.031
G 2251.14 2250.65 0.02 252,633.3 252,545.3 0.035
H 2584.94 2587.73 0.11 260,094.8 260,001.5 0.036

It should be noted that the weight of the objective functions to select the suitable
solution from the Pareto points (MCDM process) can depend on various issues such as
environmental conditions, designer strategy, time and frequency of system operation, and
other constraints. Consider a solar energy storage system. If this system is limited in time
and number of phase change cycles, an enormous weight should be assigned to tm. On the
other hand, if the time and number of cycles are not restricted, the amount of stored energy
should be prioritized, i.e., more weight should be assigned to Et.
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8. Conclusions

One of the primary concerns of heat transfer engineers has been the application of
phase change materials containing nano-additives with optimal properties that increase
stored energy and decrease phase change time in TES systems. The present paper employs
a combined procedure based on the design of experiments (DOE), computational fluid
dynamics (CFD), artificial neural networks (ANN), multi-objective optimization (MOO),
and multi-criteria decision making (MCDM) to optimize the properties of nano-additives
dispersed in a shell and tube LHTES system containing paraffin wax as a phase change
material (PCM).

Five steps comprise the proposed hybrid procedure. The first step is to determine the
total number of numerical runs required to conduct an optimal search of the design space
using a DOE technique. The second step employs the CFD method to analyze the melting
process in the shell and tube LHTES system. In the third step, polynomial models for objective
functions are presented in terms of optimization variables using the GMDH method. MOO
is used in the fourth step to generate a set of optimal Pareto points. Finally, in the fifth step,
various MCDM methods are used to introduce optimal points with various characteristics.

The following summarizes the optimal variation of objective functions:

• ϕ is uniformly distributed for all Pareto optimal points in the range of 0.5–4.9%.
• By increasing ϕ in optimal solution, the melting time and stored energy are enhanced.
• Approximately 97% of optimal points lie within the range 180 ≤ kNP ≤ 480. Thus, the

addition of nanoparticles with high thermal conductivity can increase the efficiency of
TES systems.

• Around 86% of the optimal points lie between 9950 < ρNP < 9990, indicating that the
dispersion of high-density nano-additives has a beneficial effect on the paraffin wax
melting process.

• Approximately 95% of optimal points have Cp NP values greater than 795. Conse-
quently, TES systems can benefit significantly from the addition of nano-additives
with high specific heat.

Proper validation should be performed at each stage of the hybrid technique to ensure
the accuracy of the final solutions. In fact, ensuring the high accuracy of CFD, ANN,
MOO, and MCDM methods is exceptionally significant and can guarantee the reliability of
optimal solutions. However, the sequence of the various steps is also very effective in the
output results, in addition to accuracy. This means that removing DOE from the hybrid
technique causes the problem space to be inadequately explored, resulting in a decrease in
the efficiency of GMDH output models. Furthermore, the low precision of the CFD results
and improper settings of GMDH and NSGA-II schemes cause inaccuracies in the final
output of the problem. In future work, by applying the present technique, the geometric
characteristics of a shell-and-tube LHTES unit will be optimized.

Author Contributions: Conceptualization, M.A., M.A.A. and M.R.S.; methodology, M.A. and M.A.A.;
software, M.A. and M.A.A.; validation, M.A. and M.A.A.; formal analysis, M.A. and M.A.A.; inves-
tigation, M.R.S.; resources, M.A. and M.A.A.; visualization, M.A. and M.A.A.; data curation, M.A.
and M.A.A.; writing—original draft preparation, M.R.S.; writing—review and editing, M.A. and
M.A.A.; supervision, M.R.S.; project administration, M.R.S.; funding acquisition, M.A. and M.A.A.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
(IFPIP: 1584-829-1442) and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 3235 24 of 30

Nomenclature

Amushy mushy zone parameter (kg m−3 s−1)
Cp specific heat (J kg−1 K−1)
g gravity acceleration (m s−2)
H enthalpy (J kg−1)
h sensible enthalpy (J kg−1)
k thermal conductivity (W m−1 K−1)
L latent heat of fusion (J kg−1)
P pressure (pa)
Re Reynolds number (-)
r radial coordinates (m)
→
S momentum source term (pa m−1)
t time (s)
T temperature (K)
→
V velocity vector (m3)
x axial coordinates (m)
Subscripts
avg average
l liquid
m melting
NePCM nano-enhanced phase change material
NP nano-particles
PCM phase change material
ref reference
s solid
Greek symbols
β coefficient of thermal expansion (K−1)
λ liquid fraction (-)
ϕ nano-additives’ volume fraction (%)
µ dynamic viscosity (kg m−1 s−1)
ρ density (kg m−3)

Abbreviations

ANN Artificial Neural Network
CFD Computational Fluid Dynamics
DI Deviation Index
FVM Finite Volume Method
GMDH Group Method of Data Handling
HTF Heat Transfer Fluid
LHTES Latent Heat Thermal Energy Storage
MAPE Mean Absolute Percentage Error
MCDM Multi-Criteria Decision Making
NePCM Nano-Enhanced Phase Change Material
NSGA-II Non-Dominated Sorting Genetic Algorithm
PCM Phase Change Material
RMSE Root Mean Squared Error
TES Thermal Energy Storage
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