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Abstract: In the previous decennium, considerable applications ofnanoparticles have been developed
in the area of science. Nanoparticles with micropolar fluid suspended in conventional fluids can
increase the heat transfer. Micropolar fluids have attracted much research attention because of their
use in industrial processes. Exotic lubricants, liquid crystal solidification, cooling of a metallic plate in
a bath, extrusion of metals and polymers, drawing of plastic films, manufacturing of glass and paper
sheets, and colloidal suspension solutions are just a few examples. The primary goal of this studywas
to see how radiation and velocity slip affect the mixed convection of sodium alginate nanofluid flow
over a non-isothermal wedge in a saturated porous media.In this communication, theTiwari and
Das model was employed to investigate the micropolarnanofluid flow via mixed convection over
aradiated wedge in a saturated porous medium with the velocity slip condition. Nanoparticles of
silver (Ag) wreused in asodium alginate base fluid. The intended system of governing equations is
converted to a set of ordinary differential equations and then solved applying the finite difference
method. Variousfluid flows, temperatures, and physical quantities of interest were examined. The
effects of radiation on the skin friction are negligible in the case of forced and mixed convection,
whereas radiation increases the skin friction in free convection. It is demonstrated that the pressure
gradient, solid volume fraction, radiation, and slip parameters enhance the Nusselt number, whereas
the micropolar parameter reduces the Nusselt number.

Keywords: mixed convection; micropolar nanofluid; wedge; velocity slip; radiation

1. Introduction

Conventional heat transfer fluids like water andoil are essential because they partici-
pate in many industrial operations, and they increase the thermalaccessibility of hanging
which carries nanoparticles [1]. Although these fluids decrease heat transport capacity,
there isa restriction in heat transport operation. There is a way to increase the thermal
conductivity by suspendingnanoparticles inside the base fluids. The nanofluids introduced
by Choi [2] were a mix of nanoparticles, and thebasefluid was converted intoheat transport
fluids with extraordinary higher accessibility. The nanoparticles utilized in the base fluids
are prefabricated frommetals, non-metals, oxides, or carbides. The shape of nanoparti-
cles may be like disks, rods, spheres, etc. [3], and the base fluidsare generally ethylene
glycol, water or oil. Several studies have proved that nanofluids have higher thermal
conductivities. Recently, a lot of researchers are concerned with the study of nanofluids.
Sing et al. [4] explained the action of unsteady mixed convective flow past an orthogonal
wedge under the effect of incompressible viscid. Makinde and Aziz [5] investigated the
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mixed convective flow of nanofluidsthrough an extension sheet. Patrulescu and Grosan [6]
analyzed the boundary layer of mixed convective nanofluids flowingpast a vertical cone.
Chamkha et al. [7] explained the nanofluid flow by combining convective and radiate
wedges. Gorla et al. [8] analyzed the boundary layer of combined convective flow through
a wedge-filled nanofluid in porous media. Imtiaz and Hayat [9] investigated a mixed
convective flowing for Cassonnanofluid past an extension cylinder.

On the other hand, many researchers have shed light on micropolar fluids because
of their great importance since they describe the quality of the particles suspendedin
the fluid successfully. Micropolar fluids are fluids that have the characteristics of fluids
with non-symmetric strain tensors. Eringen [10,11] introducedthetheory of the micropolar
fluid. This theory presents the microscopic effects because of the micromotion and local
structure of the fluid elements. The idea of lubrication is an essential application for
micropolar fluids. El-Aziz [12] analyzed the unstable combined convective of a micropolar
fluid neighboring the hot orthogonal surface since the viscid dispersion exists. Roy and
Gorla [13] studied the magnetohydrodynamicmixed convectionflow of a micropolar fluid
along with an orthogonal wedge. Adnan [14] explained the combined convection past a
level plate for a micropolar fluid in a boundary-layer flowing situation. Singh [15] studied
the unsteady combined convective flowing of viscid dispersion in a micropolar fluid over
a stretching surface under the impact of thermal radiation.

The above literature survey reveals that no effort has been made to explore the impacts
of radiation and velocity slip on mixed convection of sodium alginate of micropolar
nanofluid flow over a non-isothermal wedge in a saturated porous medium. Inthisregard,
an innovative mathematical formulation is established by usinga Ag in sodium alginate-
based micropolarnanofluid. Moreover, the mixed convection, material, and nanoparticle
volume friction phenomena are also measured. Elucidations of micropolar-nanofluid
are documented via graphs. This investigation extends earlier explorations and should
behelpful for micropolar nanofluid studies.

2. Mathematical Model

Here we concentrate on a 2D steady laminar silver-sodium alginate micropolar
nanofluid flow via mixed convection and velocity slip cross a radiative wedge with angle
Ω in a porous medium is shown in Figure 1.
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Figure 1. Flow geometry and physical model for radiative wedge.

It is assumed that x̂ and ŷ are Cartesian coordinates measured along the wedge
surface and normal to it, respectively. It is also consoled that the free stream velocity
û∞(x̂) = cx̂m, where a is constant, and m is the Falkner-Skan power-law parameter with
0 ≤ m = β/(2− β) ≤ 1, since β is Hartree pressure gradient parameter that corresponds
to β = Ψ/Π where Ψ the total wedge angle. It is noted that β = 0 and β = 1 correspond
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to horizontal and vertical walls cases. The temperature at the wedge surface is believed
to be variable T̂w(x) while the ambient temperature has a constant value T̂∞. The flow is
considered to be laminar, and a micropolar nanofluid is assumed to be incompressible,
uniform properties and thermal equilibrium between the in a sodium alginate-based
micropolarnanofluid containing silver (Ag) nanoparticles. The thermophysical properties
of the sodium alginate and Ag are listed in Table 1.

Table 1. Thermo-physical properties of base fluid and nanoparticles [16].

Properties Base Fluid
(Sodium Alginate)

Silver
(Ag)

Density, ρ (kg/m3) 989 10,500
Specific heat, cp (J/kg-K) 4175 235
Thermal conductivity, k (W/m-K) 0.6376 429
Prandtl number, Pr 6.5 -

Using the above hypothesis and the Tiwari and Das model, the simplifying governing
equations of the problem can be written as [7,8]:

∂û
∂x̂

+
∂v̂
∂ŷ

= 0 (1)

û
∂û
∂x̂

+ v̂
∂û
∂ŷ
− û∞

dû∞

dx̂
=

µ̂n f + κ̂

ρ̂n f

∂2û
∂ŷ2 +

κ̂

ρ̂n f

∂N̂
∂ŷ
−

µ̂n f + κ̂

ρ̂n f K̂1(x̂)
(û− ûe) +

g(ρ̂β̂)n f

ρ̂n f
(T̂ − T̂∞) sin

Ω
2

(2)

û
∂N̂
∂x̂

+ v̂
∂N̂
∂ŷ

=
γ̂n f

ρ̂n f J
∂2N̂
∂ŷ2 −

κ̂

ρ̂n f J
(2N̂ +

∂û
∂ŷ

) (3)

û
∂T̂
∂x̂

+ v̂
∂T̂
∂ŷ

= α̂n f
∂2T̂
∂ŷ2 −

1
(ρ̂ĉp)n f

∂q̂r

∂ŷ
(4)

with the boundary conditions:

û = Â(x̂)µ̂n f
∂û
∂ŷ , N̂ = −n ∂û

∂ŷ , v̂ = 0, T̂ = T̂w(x) at ŷ = 0

û→ û∞(x̂), T̂ → T̂∞, N̂ → 0 as ŷ→ ∞
(5)

where û is the velocity along the x̂-axis, and v̂ is the velocity along the ŷ-axis, N is the
angular velocity, T̂ the temperature of the fluid, g is the acceleration, J is the micro-inertia
density, κ̂ is the vortex viscosity, n is constant since 0 ≤ n ≤ 1. If n = 0, the concentration
becomes strong [17]; if n = 1/2, the concentration becomes weak [18], and if n = 1, this
condition is used in the styling of turbulent boundary-layer flowing [19]. Moreover, the
radiative heat flux through the Rosseland approach can be written as:

q̂r = −
4σ̂

3k̂∗
∂T̂4

∂ŷ
, (6)

where k̂∗ and σ̂ are the coefficient of average absorption and the Stefan Boltzmann constant,
respectively. It is presumed that the temperature variations inducedby the flow are small
so that the expression may be considered a linear temperature function. Then, by Taylor’s
expansion of T̂4 concerning T̂∞ and disregarding terms of higher-order, we obtain:

T̂4 ≈ −3T̂4
∞ + 4T̂3

∞T̂ (7)
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Also, to obtainsimilarity solutions, we consider the values of the following form:

û∞(x̂) = cx̂m, T̂w(x̂) = T̂∞ + bx̂(5m−1)/2, K̂1(x̂) = K1/x̂m−1

J(x̂) =
ν f
c x̂1−m, Â(x̂) = A/x̂(m−1)/2

(8)

ρ̂n f = (1− φ)ρ̂ f + φρ̂s, α̂n f =
k̂n f

(ρ̂ĉp)n f
, (ρ̂ĉp)n f = (1− φ)(ρ̂ĉp) f + φ(ρ̂ĉp)s

µ̂n f =
µ̂ f

(1−φ)2.5 ,
k̂n f

k̂ f
=

(k̂s+2k̂ f )−2φ(k̂ f−k̂s)

(k̂s+2k̂ f )+φ(k̂ f−k̂s)
, γ̂n f = (µ̂n f +

κ̂
2 )J(x̂)

(ρ̂β̂)n f = (1− φ)(ρ̂β̂) f + φ(ρ̂β̂)s

(9)

We define the similarity variables for the Equations (1)–(3) as:

û = cx̂mF′(η), v̂ = − 1
2
√cν f x̂

m−1
2 [(m + 1)F(η) + (m− 1)ηF′(η)]

η = ŷ
√

c
ν f

x̂
m−1

2 , N̂ = cx̂m
√

cx̂m−1

ν f
G(η), θ(η) = T̂−T̂∞

T̂w−T̂∞
.

(10)

In light of Equations (8)–(10), Equations (2)–(5) are transformed into:(
1

(1−φ)2.5 + K
)

F′′′ − 1
Da

(
1

(1−φ)2.5 + K
)
(F′ − 1) +

(
(1− φ) + φ

ρ̂s
ρ̂ f

)(
m+1

2 FF′′ −m(F′2 − 1)
)

+KG′ + λ

(
(1− φ) + φ

(ρ̂β̂)s
(ρ̂β̂) f

)
θ sin Ω

2 = 0
(11)

(
1

(1− φ)2.5 +
K
2

)
G′′ +

(
(1− φ) + φ

ρ̂s

ρ̂ f

)(
m + 1

2
FG′ − 3m− 1

2
F′G

)
− K(2G + F′′ ) = 0, (12)

k̂n f

k̂ f
(1 + Rd)θ

′′ + Pr

(
(1− φ) + φ

(ρ̂cp)s
(ρ̂cp) f

)(
m + 1

2
Fθ′ − 5m− 1

2
F′θ
)
= 0, (13)

F′(0) = δ

(1−φ)2.5 F′′ (0), F(0) = 0, θ(0) = 1, G(0) = −nF′′ (0)

F′(∞) = 0, θ(∞) = 0, G(∞) = 0
(14)

Dimensionless numbers are significant in engineering. They decrease the number of
variables representing a system, minimizing the amount of experimental data needed to
make scalable system correlations from physical occurrences. Their values depend upon
the situation and geometry. These numbersin Equations (11)–(13) are defined as:

Da = K1c
ν f

, δ = Aµ f
√

c
ν f

, K = κ̂
µ̂ f

, λ = Grx
Re5/2

x
, Grx =

gβ f (T̂w−T̂∞)x̂3

ν2
f

,

Rex = x̂û∞(x̂)
ν f

, Rd = 16σ̂∗ T̂3
∞

3k̂∗ k̂ f
, Pr =

(ρ̂ĉp) f

k̂ f

(15)

The physical quantities of interest are given by:

C f x = 1
ρ̂n f û2

∞

[
(µ̂n f + κ̂) ∂û

∂ŷ + κ̂N̂
]

ŷ=0
,

Nux = − x̂k̂n f

k̂ f (T̂w−T̂∞)
∂T̂
∂ŷ

∣∣∣
ŷ=0

(16)

In dimensionless form, these quantities can be written as:

C f xRe1/2
x = 1

((1−φ)+φ
ρs
ρ f

)

[
1+(1−φ)2.5(1−n)K

(1−φ)2.5

]
F′′ (0),

NuxRe−1/2
x = − k̂n f

k̂ f
(1 + 4Rd

3 )θ′(0).
(17)



Mathematics 2021, 9, 3232 5 of 12

The thermophysical relations utilized are found in [16].

3. Numerical Technique

The nonlinear ordinary differential Equations (11)–(13) are solved numerically with the
boundary conditions (14) using the Keller-box method, which is one of the most important
strategies for solving parabolic flow equations, particularly boundary layer equations.
These schemes are implicit in second-order precision in both space and time, and they
allow for arbitrary step sizes in both time and space (non-uniform). This makes it practical
and efficient for solving parabolic partial differential equations. This method isexplained by
Cebeci and Bradshaw [20,21]. This method consists of the following four significant steps:

• Reduce Equations (11)–(13) and boundary conditions (14) to a first-order system of
equations by introducing new dependent variables.

• Write the difference equations using central differences.
• Linearize the resulting algebraic equations by Newton’s method and write in a matrix-

vector form.
• Use the block-tridiagonal-elimination technique to solve the linear system of equations.

To solve the system of equations, a uniform grid size ∆η = 0.005 and tolerance of 10−5

are assumed in all simulations. MATLAB 2018a was used for this purpose.

4. Results and Discussion

In this study, mixed convection of micropolar nanofluid flow over a radiative vertical
wedge in a saturated porous medium with velocity slip impactis investigated. Numerical
simulations are performedfor the transformed dimensionless Equations (11)–(13) with
boundary conditions (14) using an implicit finite difference method. The thermophysical
properties of sodium alginate and Ag nanoparticles are reported in Table 1. The numerical
results are validated in Table 2 using available data. The present results are found in good
agreement with the existing data.

Table 2. Comparison of skin friction with available data for several values of m when other parameters
are absent.

m Yih [22] Chamkha et al. [23] Zaib and Haq [24] Present Results

0.05 0.21348 0.21380 0.21380 0.21350
0 0.33206 0.33221 0.33260 0.33207
0.333 0.75745 0.75759 0.75740 0.75745
1 1.23259 1.23271 1.23260 1.23259

The impacts of pertinent parameters on the dimensionless velocity of Newtonian
andmicropolar fluids for a weak concentration (n = 0.5) are presented in Figures 2 and 3 in
the cases of forced, free and mixed convection. Thevariation of dimensionless velocity with
pressure gradient parameter is depicted in Figure 2a for forced convection, in Figure 2b for
mixed convection, and in Figure 2c for free convection. In thecase of forced convection, the
dimensionless velocity increases, inside the hydrodynamic boundary layer, with an increase
in the pressure gradient parameter. The dimensionless velocity converges slowly, and the
hydraulic resistance increases with the pressure gradient parameter for the Newtonian
fluid (K = 0), as shown in Figure 2a. However, due to the higher density of nanoparticles,
the micropolar fluid (K = 2) generates higher resistance to flow than the Newtonian fluid.
The same behavior of the dimensionless velocity can be observed formixed convection in
Figure 2b for both fluids. Due to buoyancy effects, the dimensionless velocity overshoots
close to the surface and then attains ambient velocity, as shown in Figure 2c for both
fluids. The opposite behaviorof the dimensionless velocity can be observed inside the
boundary layer. Again, theboundary layer thickness is found to be more significant for
micropolar fluids.
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Figure 3. Variation of dimensionless velocity with slip parameter and solid volume fraction of nanoparticles for (a) forced
convection, (b) mixed convection, and (c) free convection.

The effects of the velocity slip parameter and solid volume fraction of nanoparticles on
dimensionless velocity are demonstrated in Figure 3 for forced, mixed, and free convection.
An increase in the slip parameter or solid volume fraction of Ag nanoparticles causes an
increase in the dimensionless velocity, which increases the hydrodynamic boundary layer
thickness.Thus, the dimensionless velocity increases with both the slip velocity and the
solid volume fraction of nanoparticles in each case, as shown in Figure 3a–c. The effects
of relevant parameters on the dimensionless temperature are displayed in Figures 4 and 5
for forced, mixed, and free convection, respectively. The dimensionless temperature
decreases with an increase in the pressure gradient parameter for both Newtonian and
micropolarnanofluid in each case. Consequently, the thermal boundary layer thickness
as well as the thermal resistance decrease, as shown in Figure 4a–c. Due to the higher
thermal conductivity of the nanoparticles, thermal boundary layers converge quickly for
micropolarnanofluid (K = 2) in each case. The velocity slip and solid volume fraction of
nanoparticles have a negligible effect on the dimensionless temperature for both fluids, as
shown in Figure 5a–c for each type of convection heat transfer.
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Figure 4. Variation of dimensionless temperature with pressure gradient parameter for (a) forced
convection, (b) mixed convection, and (c) free convection.
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Figure 5. Variation of dimensionless temperature with slip parameter and solid volume fraction of
nanoparticles for (a) forced convection, (b) mixed convection, and (c) free convection.

The effects of the pressure gradient parameter on the dimensionless microrotation
are displayed in Figure 6a–c for Newtonian and micropolarnanofluid. As expected, for
Newtonian fluid, the microrotation velocity is zero in all cases. The microrotation velocity
shoots down in the negative direction close to the surface and recovers to satisfy the
boundary condition. This happens in each case, and the maximum value of the shooting
value depends upon the Richardson number.
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Figure 6. Variation of dimensionless microrotation with pressure gradient parameter for (a) forced convection, (b) mixed
convection, and (c) free convection.
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The effects of slip velocity and solid volume fraction on the microrotation velocity
are illustrated in Figure 7a–c for a micropolar nanofluid with weak concentration. The
microrotation velocity is minimum at the surface and increases up to the boundary layer.
For the pure micropolar fluid, the microrotation velocity is the least and enhances with the
solid volume fraction of nanoparticles. The velocity slip parameter also helps in enhancing
the microrotation velocity inside the boundary layer. In free convection, the boundary layer
thickness decreases due to the weak concentration of the micropolar nanofluid.
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Figure 7. Variation of dimensionless microrotation with slip parameter and solid volume fraction of
nanoparticles for (a) forced convection, (b) mixed convection, and (c) free convection.

The variation of skin friction with pertinent parameters is demonstrated in Figures 8 and 9
for Newtonian and micropolarnanofluid with weak concentrations. Figure 8a–c reveal
that the skin friction is smaller for Newtonian fluids than micropolar nanofluid. The skin
friction increases with the pressure gradient and micropolar parameters. However, the
slip velocity parameter helps in reducing skin friction. For the special case of a flat plate
(m = 0), the skin friction is lowest in the case of forced convection and increases with an
increase in the Richardson number. Figure 9a–c depict the variation of skin friction with
radiation and solid volume fraction of nanoparticles for different values of Darcy number.
It is shown that Darcy number and radiation have no appreciable effect on the skin friction
for the forced and mixed convection process (Figure 9a,b). However, in the case of free
convection, skin friction increases with the radiation parameter.
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Figure 8. Variation of skin friction with pressure gradient and slip parameters for (a) forced convection, (b) mixed convection,
and (c) free convection. [n = 0.5, Ω = π/6, Rd = 0.5, Da = 100].
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Figure 9. Variation of skin friction with Rd, Da, and ϕ for (a) forced convection, (b) mixed convection, and (c) free convection.
[n = 0.5, Ω = π/6, K = 2, m = 1].

The variation of Nusselt number with slip and micropolar parameters is shown in
Figure 10a for forced convection, in Figure 10b for mixed convection, and in Figure 10c for
free convection. The range of Nusselt numbers includes Newtonian to micropolar fluids
for two values of pressure gradient parameter. Both velocity slip and pressure gradient
parameters help in enhancing the Nusselt number for each fluid. It is important to note
that the Nusselt numbers for Newtonian fluids are the highest and decrease with the
micropolar parameter. Variation of the Nusselt number with radiation and solid volume
fraction of nanoparticles illustrated in Figure 11 for different values of the Darcy number.
As expected, the Nusselt numbers increase with both radiation and solid volume fraction of
nanoparticles. Due to the higher thermal conductivity of nanoparticles, the dimensionless
heat transfer rate increases. Like nanoparticles, radiation also helps in the enhancement
of the heat transfer rate of the micropolarnanofluid. The viscous effects increase with an
increase in the Darcy number in a porous medium. Consequently, the thermal boundary
layer thickness decreases, and the Nusselt number increases.
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Figure 10. Variation of Nusselt number with pressure gradient and slip parameters for (a) forced convection, (b) mixed
convection, and (c) free convection. [n = 0.5, Ω = π/6, Rd = 0.5, Da = 100].
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5. Final Conclusions

In this study, mixed convection of micropolar nanofluid is investigated along with a
non-isothermal radiativewedge with velocity slip flow. The effects of radiation and other
pertinent parameters on the mixed convection of micropolar nanofluid are investigated. The
dimensionless governing equations are solved numerically using the Keller-box method.
The main conclusions are:

• An increase in the slip parameter or solid volume fraction of Ag nanoparticles causes
an increase in the dimensionless velocity.

• The velocity slip and solid volume fraction of nanoparticles have a negligible effect on
the dimensionless temperature.

• The dimensionless temperature decreases with an increase in the pressure gradient
parameter.

• The velocity slip parameter also helps in enhancing the microrotation velocity inside
the boundary layer.

• The skin friction is smaller for Newtonian fluids than micropolar nanofluids.
• The skin friction increases with the pressure gradient and micropolar parameters.
• Darcy number and radiation have no appreciable effect on the skin friction for the

forced and mixed convection process
• Both velocity slip and pressure gradient parameters help in enhancing the Nusselt

number for each fluid.
• The Nusselt numbers for Newtonian fluids are highest and decrease with the microp-

olar parameters.
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Nomenclature

A Slip factor
C f skin friction coefficient
Cp specific heat at constant pressure
Da Darcy number
f stream function
g acceleration due to gravity
Grx Grashof number
K micropolar parameter
K1 premeability of porous medium
k thermal conductivity
m Falkner-Skan power-law parameter
Nu Nusselt number
Pr Prandtl number
qr radiative heat flux
qw wall heat flux
Rex Reynolds number
Rd radiation parameter
n, C constants
T̂w wall temperature
T̂∞ temperature of the ambient nanofluid
û, v̂ velocity components along x̂ and ŷ—directions, respectively
x̂ and ŷ are Cartesian coordinates measured along the wedge surface and normal to it
j microinertia density
N angular velocity
α thermal diffusivity
β̂ thermal expansion coefficient
β Hartree pressure gradient parameter
φ nanoparticle volume fraction
η similarity variable
δ velocity slip parameter
λ mixed convection parameter
µ dynamic viscosity
κ vortex viscosity
υ kinematic viscosity
θ dimensionless temperature
ρ density
τw skin friction or shear stress
ψ stream function
Ω angle of the wedge
J the micro-inertia density
k̂∗ the coefficient of average absorption.
σ̂ the Stefan Boltzmann constant.
Subscripts
n f nanofluid
f base fluid
s solid particle
w wall
∞ infinity
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