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1. Introduction

It is well known that in Riemannian geometry the study of geodesics on manifolds plays
an essential role. Hence, it is quite obvious that a family of curves defined on a Riemannian
manifold (M, g) with respect to its geometric structure will reveal more information on
the geometry of the manifold from the point of view of these curves’ properties. A natural
generalization of the geodesics is the magnetic curves. In a physical interpretation, the
trajectory γ of a charged particle moving in a magnetic background (M, g, F) under the
influence of the magnetic field F is called a magnetic curve. In particular, when the
magnetic field vanishes and the charged particle moves only under the influence of gravity,
its trajectory describes a geodesic of the underlying manifold.

The study of magnetic curves originates in the study of motion of a charged particle
under the action of a static magnetic field (time-independent magnetic field) in Euclidean
3-space. In E3 a static magnetic field is a divergence-free vector field V and it defines
the Lorentz force Lγ′ = V × γ′, where × denotes the usual cross-product. The Lorentz
equation (called also the Newton equation) is given by γ′′ = V × γ′. Next, in order not to
take into consideration the orientation of E3, the vector fields can be identified with 2-forms,
and the divergence-free condition for vector fields becomes equivalent to closedness for
2-forms. Hence, we can generalize this result in the following manner.

On a (complete) Riemannian manifold (M, g) of arbitrary dimension n, a closed 2-
form F defines a magnetic field. For the magnetic background (M, g, F), one can define
the Lorentz force φ as a skew-symmetric (1, 1)−type tensor field corresponding to F via
the metric g as: g(φ(X), Y) = F(X, Y), ∀X, Y ∈ X(M). The Lorentz equation becomes
∇γ′γ

′ = φγ′, where ∇ denotes the Levi-Civita connection on M. The solutions γ of the
Lorentz equation are called magnetic curves. As we pointed out before, for a trivial magnetic
field F = 0, the trajectories γ are the geodesics.

An important class of magnetic fields are the uniform magnetic fields on (complete)
Riemannian manifolds, i.e. when the corresponding Lorentz force is parallel, ∇φ = 0. Two
well known examples of uniform magnetic fields are scalar multiples of the Kähler form on
a Kähler manifold and scalar multiples of the volume form on a Riemannian surface, which
are generically called Kähler magnetic fields, and were intensively studied, see e.g., [1] and
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references therein. Knowing the magnetic curves corresponding to uniform magnetic fields
on a (complete) Riemannian manifold (M, g), a natural problem initiated was the study of
magnetic Jacobi fields. More precisely, a vector field W along a magnetic curve γ is called a
Jacobi magnetic field derived from the uniform magnetic field F if it satisfies the following
magnetic Jacobi equation:

D2

ds2 W − R(γ′, W)γ′ − φ(
D
ds

W) = 0,

where R denotes the curvature tensor on M. Again, let us notice that when the magnetic
field is trivial, F = 0, as magnetic curves correspond to geodesics, the magnetic Jacobi
fields are just the usual Jacobi fields. Moreover, in the same manner as Jacobi fields,
also the magnetic Jacobi fields are obtained by a variation of trajectories. In the study of
magnetic Jacobi fields on Kähler manifolds, let us mention the papers of Adachi [1,2], and
Shi [3] for the particular case of magnetic Jacobi fields for surface magnetic fields. On a
Riemannian manifold, the first researchers who investigated the magnetic Jacobi fields
along magnetic curves for uniform magnetic fields were probably Gouda [4] and Paternain
and Paternain [5].

At this point, we would like to recall a nice motivation in order to extend the study
of magnetic Jacobi fields also on almost contact metric manifolds. The motivation origi-
nates again from the three-dimensional case. Let us denote by (M3, g) an oriented three-
dimensional Riemannian manifold endowed with the volume form dvg. The 2-forms
may be identified with the vector fields via the Hodge ? operator. Let us denote by F a
magnetic field on M, by V its corresponding divergence-free vector field, and ω the dual
1-form of V with respect to the metric g. If V is unitary, then (φ, V, ω) is an almost contact
structure on M compatible with the metric g. Hence, the magnetic background (M3, g, F)
may be regarded as an almost contact metric manifold endowed with closed fundamental
2-form [6].

The almost contact metric manifolds include the particular class of quasi-Sasakian
manifolds, which were defined by Blair in his Ph.D. thesis [7] (see also [8] ) as normal
almost contact metric manifolds M2n+1 with closed fundamental 2-form. According to [7],
using the notion of the rank of a quasi-Sasakian manifold, which represents the rank of
the 1-form η, i.e., η has rank = 2p if (dη)p 6= 0 and η ∧ (dη)p = 0, and has rank = 2p + 1
if η ∧ (dη)p 6= 0 and (dη)p+1 = 0, the Sasakian manifolds are quasi-Sasakian manifolds of
rank 2n + 1 and the cosymplectic manifolds are of rank 1.

On one hand, it is worth mentioning that a challenging problem was the study of
magnetic Jacobi fields in Sasakian manifolds (M, ϕ, ξ, η, g). In this case the Lorentz force is
naturally obtained from the contact magnetic field F = −qdη, q ∈ R, and hence φ = qϕ.
We notice that the Lorentz force φ is no longer parallel, and thus the magnetic field is not
uniform. The complete classification of magnetic Jacobi fields along contact magnetic curves
in three-dimensional Sasakian space forms is given in [9], along with explicit examples of
magnetic Jacobi fields on the unit 3-sphere S3, on the Heisenberg group Nil3, and on the
model space of the SL-geometry SL2R. These results were developed further for magnetic
Jacobi fields in Sasakian space forms of dimension greater or equal to 5 [10].

On the other hand, a cosymplectic manifold possesses a closed fundamental 2-from, thus
it defines a magnetic field. Moreover, since the field of endomorphisms ϕ is parallel, i.e., the
Lorentz force is parallel, it follows that we deal with uniform magnetic fields on cosymplectic
manifolds. The magnetic curves on cosymplectic manifolds of arbitrary dimension were
completely classified in [11]. Moreover, in the same paper [11] it was proved that a
reduction result showing that the study of the normal magnetic curves associated to a
contact magnetic field on the cosymplectic manifold M2n(k)×R reduces to their study in
M2(k)×R. Special attention was paid to the product spaces M2(k)×R, in order to unify
the known results in the study of magnetic curves in E3 and in the product symmetric
spaces S2 ×R and H2 ×R.
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The main objective of the present paper is the classification of magnetic Jacobi
fields along magnetic curves derived from uniform magnetic fields on cosymplectic 3-
dimensional manifolds.

The structure of the paper is as follows. In the next section we collect some funda-
mental results used in the sequel. Due to the strong connection of our study with the
Euclidean 3-space, and since E3 can be endowed with a cosymplectic structure, we grad-
ually introduce the reader in the study of magnetic Jacobi fields, presenting in Section 3
the results obtained in E3. Section 4 deals with the main definitions on cosymplectic
manifolds and some first results in the study of magnetic Jacobi fields. For example, in
Proposition 2 we show that the conservation law holds true for uniform magnetic fields
in cosymplectic manifolds of arbitrary dimension. Next, Proposition 4 assures that the
characteristic vector field ξ is a magnetic Jacobi field along any normal magnetic curve
in a cosymplectic 3-manifold M3, while Proposition 5 says that ϕγ̇ is a magnetic Jacobi
field along a normal magnetic curve (which is not an integral curve of ξ) if and only if M3

is a cosymplectic space form M3(c) with vanishing sectional curvature c = 0. Section 5
contains the main results, Theorems 2 and 3 obtained in the classification of magnetic
Jacobi fields in 3-dimensional cosymplectic space forms according to the case when ξ is
regarded as magnetic field and when γ̇ ∦ ξ, respectively. Finally, in Section 6, Theorem 4
characterizes magnetic Jacobi fields in the product spaces S2 ×R and H2 ×R.

2. Magnetic Curves and Magnetic Jacobi Fields

There are two approaches in the study of magnetic curves along magnetic fields F on
(complete) Riemannian manifolds (M, g). The first is the one mentioned in the Introduction,
when a magnetic curve is regarded as a solution of the Lorentz equation:

∇γ′γ
′ = φγ′,

where ∇ denotes the Levi-Civita connection on M corresponding to the metric g on the
Riemannian manifold M, and the Lorentz force φ is defined using the magnetic field F as
g(φ·, ·) = F.

Notice that the magnetic curves satisfy the following conservation law, i.e., the mag-
netic curves evolve with constant speed. Unit speed magnetic curves are called normal
magnetic curves.

On the other side, in a variational approach, the magnetic curves are solutions of
a variational problem, i.e., they are the critical points of the Landau-Hall functional LH

(on C∞([a, b])) LH(γ) = E(γ)− q
b∫

a

A(γ′(s))ds, where E(γ) =

b∫
a

1
2

g(γ′(s), γ′(s))ds is the

Dirichlet energy of γ and A is the potential 1-form generating the magnetic field F. A
second variational formula for the integral LH leads to the concept of magnetic Jacobi
field. We say that W is a magnetic Jacobi field along the magnetic curve γ on the magnetic
background (M, g, F), if it satisfies the following second order differential equation:

D2

ds2 W − R(γ̇, W)γ̇− φ

(
D
ds

W
)
− (∇Wφ)γ̇ = 0, (1)

where R denotes the Riemannian curvature tensor of M. See e.g., [1,12].
Analogously to magnetic curves, also Jacobi magnetic fields satisfy a conservation

law, i.e., if∇W L is skew-adjoint with respect to g, then g(∇γ′W, γ′) is constant along γ (see
Lemma 1.2 of [1]). Moreover, we call a magnetic Jacobi field W along a trajectory γ normal
if it satisfies g(∇γ′W, γ′) = 0. The normal magnetic Jacobi fields are obtained naturally by
variations of normal trajectories, see [1].

A first example of a magnetic Jacobi field is the following. On a magnetic curve γ(s)
the velocity vector field γ′(s) is a magnetic Jacobi field along γ(s) (see [4]).
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The major difficulty in explicitly solving the magnetic Jacobi equation consists in the
presence of the last term in (1). When the covariant derivative of the Lorentz force has a
particular concrete expression, we can think about solving the Equation (1). Let us point
out some particular situations. For example:

• in Kähler manifolds (M, g, J) the (Kähler) magnetic fields are uniform, i.e., the Lorentz
force φ = qJ, q ∈ R is parallel,∇φ = 0, and thus, the last term in (1) vanishes (see e.g.,
[2,3]).

• in Sasakian manifolds ∇φ also has a relatively simple expression. If (M, ϕ, ξ, η, g)
is a Sasakian manifold, the Lorentz force is defined by φ = qϕ, where (∇X ϕ)Y =
g(X, Y)ξ − η(Y)X. The classification of nonuniform magnetic Jacobi fields is given in
[9,10].

• in cosymplectic manifolds the magnetic field is again uniform. In the case when the
magnetic field W is uniform, that is the Lorentz force φ = qϕ is parallel, i.e., ∇φ = 0,
we retrieve the equation of a magnetic Jacobi field given by Gouda [12]

D2

ds2 W − R(γ̇, W)γ̇− φ

(
D
ds

W
)
= 0, (2)

where R denotes the Riemannian curvature tensor of the cosymplectic manifold. In
the sequel, this equation is of interest for us. Hence, we solve (2) in order to find all
the magnetic Jacobi fields W in three-dimensional cosymplectic manifolds.

3. Magnetic Jacobi Fields in E3E3E3

In this section we describe first some already obtained results on magnetic curves in
Euclidean 3-space, and second, we study the corresponding magnetic Jacobi fields.

3.1. Magnetic curves in E3

We consider the setting (E3, 〈 , 〉,×), where 〈 , 〉 denotes the scalar product and × is
the usual cross product in the 3-dimensional space R3. As it was mentioned many times
in some previous works on magnetic curves, the 3-dimensional case is very special. In
a generic 3-dimensional Riemannian manifold (M3, g) the 2-forms and the vector fields
may be identified via the Hodge star operator ? and the volume form dvg of M3. Hence,
magnetic fields (corresponding to closed 2-forms) mean divergence free vector fields. Recall
that the Killing vector fields are some important examples of divergence-free vector fields
and they define the so-called Killing magnetic fields. Classically, one can define the cross
product on M3 as g(X×Y, Z) = dvg(X, Y, Z), ∀X, Y ∈ X(M3). If we denote by V a Killing
vector field on M3, then FV = dvg(V, ·, ·) represents the corresponding Killing magnetic
field.

Let (x, y, z) be global coordinates on E3; a basis of Killing vector fields is given by three
translational vector fields and three rotational vector fields with respect to the coordinates

axes
{

∂

∂z
,

∂

∂y
,

∂

∂x
, x

∂

∂y
− y

∂

∂x
, y

∂

∂z
− z

∂

∂y
, z

∂

∂x
− x

∂

∂z

}
.

Let γ : I → E3 be a normal magnetic curve, namely a solution of the magnetic equation
(the Lorentz equation):

γ̈(s) = V(s)× γ̇(s), where V(s) = V(γ(s)). (3)

The Lorentz force has the expression:

φ : X(E3)→ X(E3), φX = V × X, ∀X ∈ X(E3). (4)

In order to solve the Lorentz Equation (3), the easiest case is to consider the Killing

vector field V0 =
∂

∂z
. Similar discussions can be made for the other two translational Killing
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vector fields,
∂

∂x
and

∂

∂y
, respectively. Its corresponding magnetic curves were described

for example in [13–15], and it was shown that they are helices with axis
∂

∂z
, parameterized

as
γ(t) = (x0 + a cos t, y0 + a sin t, z0 + bt), (x0, y0, z0) ∈ E3, a, b ∈ R.

A more difficult situation occurs in the study of magnetic curves determined by the

rotational Killing vector field V = x
∂

∂y
− y ∂

∂x . The complete classification of these magnetic

curves was done in [15] (see also [16]) and it consists in: planar curves situated in a vertical
strip, circular helices and a class of curves for which the explicit parametrizations were
provided, involving elliptic integrals. For this reason, in the next subsection we consider

the translational Killing vector field
∂

∂z
.

3.2. Magnetic Jacobi Fields in E3

Let us denote by W a magnetic Jacobi field along the normal magnetic curve γ
corresponding to the Killing vector field V. Then W satisfies:

W ′′(s)−V(s)×W ′(s)− (∇WV)× γ̇(s) = 0. (5)

In the following we consider V = q
∂

∂z
, q ∈ R \ {0}. Notice that ∇XV = 0, ∀X ∈ X(E3).

Recall that the corresponding magnetic curve γ is a helix.
Thus, the magnetic Jacobi Equation (5) becomes:

W ′′(s)− q
∂

∂z
×W ′(s) = 0, (6)

and its solutions are given in the following theorem.

Theorem 1. Let γ(s) be a normal magnetic curve corresponding to the Killing vector field q
∂

∂z
in

E3. Then, the magnetic Jacobi fields along γ are given by one of the following cases:

(i) W(s) = W0 + as
∂

∂z
,

(ii) W(s) = W0 +
sin qs

q
v0 − cos qs φv0 + as

∂

∂z
,

where W0 is a constant vector in R3, v0 is a constant vector orthogonal to
∂

∂z
, and a ∈ R.

Proof. In order to solve (6), we decompose W ′(s) = f (s)
∂

∂z
+ H(s), such that H(s) ⊥ ∂

∂z
.

The Equation (6) becomes:

f ′(s)
∂

∂z
+ H′(s)− q

∂

∂z
× H(s) = 0. (7)

Since H′(s) ⊥ ∂

∂z
and

∂

∂z
× H(s) ⊥ ∂

∂z
, one gets f ′(s) = 0, i.e., f is a constant function, let

us denote it by f (s) = a ∈ R. Now, Equation (7) becomes:

H′(s) = q
∂

∂z
× H(s), (8)

which has two solutions: either H(s) = 0, or H(s) = cos qs v0 + sin qs
1
q

φv0, where v0

is a constant vector orthogonal to
∂

∂z
. First, when H(s) = 0, one gets W ′(s) = a

∂

∂z
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and hence solution (i) from the theorem is found. Second, if H(s) 6= 0, then W ′(s) =

cos qs v0 + sin qs
1
q

φv0 + as
∂

∂z
, which furnishes case (ii) from the theorem, concluding the

proof.

Remark 1. In fact, the constants a ∈ R and W0 ∈ R3 are obtained from the initial conditions. As
examples, we give the following Table 1.

Table 1. Examples of magnetic Jacobi fields in E3.

Initial Conditions Magnetic Jacobi Field W(s)

W(0) = (0, 0, 1), W ′(0) = (0, 0, 0) (0, 0, 1)

W(0) = (0, 0, λ), W ′(0) = (0, 0, 1) (0, 0, s + λ), λ ∈ R

W(0) = (0, 0, 0),

sin qs
q

(cos ψ, sin ψ, 0) +

1− cos qs
q

(− sin ψ, cos ψ, 0).

W ′(0) = (cos ψ, sin ψ, 0), ψ ∈ R

Remark 2. In Theorem 1, the expression of the magnetic trajectory γ is not, seemingly, explicitly
involved. However, the conservation law holds true, it can be proved that the function 〈W ′(s), γ̇〉 is
constant.

On the contrary, if the Killing vector field changes to V = q
(

x
∂

∂y
− y

∂

∂x

)
, then the magnetic

Jacobi equation becomes

W ′′(s)−V(s)×W ′(s)− q
(

∂

∂z
×W(s)

)
× γ̇(s) = 0.

Notice that, in the equation above, the expression of γ appears explicitly. To solve this ODE
in R3 is a real challenge since the expression of γ is quite complicated. See [15]. Nevertheless, if
W is a magnetic Jacobi field with respect to the new background, one can prove that the function
〈W ′(s), γ̇〉 is still constant. As we mentioned before, the conservation law holds true for magnetic
Jacobi fields along trajectories of uniform magnetic fields on Riemannian manifolds. See e.g., [1].

4. Cosymplectic Manifolds
4.1. Fundamentals

On a smooth manifold M, let ϕ be a tensor field of type (1, 1) such that ϕ2 = −I + η⊗ ξ,
where I is the identity, ξ a vector field and η a 1-form on M satisfying the conditions:

ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1.

As a consequence, the dimension of M is odd (= 2n + 1). Then, (M, ϕ, ξ, η) is an
almost contact manifold. Let g be a Riemannian metric on M compatible with the almost
contact structure defined above, that is

g(ϕX, ϕY) = g(X, Y)− η(X)η(Y), ∀X, Y ∈ X(M).

The manifold M is called now an almost contact metric manifold. Note that an almost
contact metric structure on an orientable (2n + 1)−dimensional manifold is a reduction of
the structure group of M to U(n)× 1.

The fundamental 2-form Φ on M is defined by:

Φ(X, Y) = g(X, ϕY), ∀X, Y ∈ X(M).



Mathematics 2021, 9, 3220 7 of 18

The almost contact structure is called normal if Nϕ + 2dη ⊗ ξ = 0, where Nϕ is the
Nijenhius tensor defined by:

Nϕ(X, Y) = [ϕX, ϕY]− ϕ[ϕX, Y]− ϕ[X, ϕY] + ϕ2[X, Y], ∀X, Y ∈ X(M).

A normal almost contact structure with dη = 0 and dΦ = 0 is said to be a cosymplectic
structure. The notion of cosymplectic manifold was introduced, independently, by Blair
in his Ph.D. thesis [7] and by Ogiue in [17] using the terminology “cocomplex”. If the
normality condition is missing, the structure is known as almost cosymplectic.

It is known from [8] that the cosymplectic structure is characterized among the almost
contact metric structures, by the parallelism of ϕ, that is∇ϕ = 0, where∇ is the Levi-Civita
connection on M. It follows that η and ξ are also parallel.

Denote by R the Riemannian curvature tensor defined by

RXY = [∇X ,∇Y]−∇[X,Y],

by Ric the Ricci tensor defined by

Ric(Z, Y) = traceg(X 7→ R(X, Y)Z),

and by Q the corresponding Ricci operator, defined by

g(QX, Y) = Ric(X, Y).

If X is a unit vector at p ∈ M, which is orthogonal to ξ(p), we say that X and ϕX
span a ϕ−section. The sectional curvature K(X) of the ϕ−section defined by X is called
the ϕ−sectional curvature defined by X (at p). If K(X) is independent of X and p, we say
that M is of constant ϕ−sectional curvature. A (complete) cosymplectic space form is a
cosymplectic manifold of constant ϕ−sectional curvature.

Let us give now the following example from [18].

Example 1 ([18]). Let M = (M, ḡ, J) be an almost Kähler manifold. Consider a Riemannian
product M = (M×R, g) with g = ḡ + dt2, where t is the global coordinate on R. Then, we can
endow M with an almost cosymplectic structure by setting

ξ =
d
dt

, η = dt, ϕ = J ◦ dπ,

where π : M×R→ M is the projection map and t is the standard coordinate function on R. The
almost cosymplectic manifold M is cosymplectic if and only if M is Kähler. In particular, when M
is a complex space form (i.e. a Kähler manifold of constant holomorphic sectional curvature), M is a
cosymplectic manifold of constant ϕ-holomorphic sectional curvature. The cosymplectic manifolds:

CPn(c)×R, E2n+1 = Cn ×R, CHn(c)×R

are cosymplectic space forms. Here CPn(c) denotes the complex projective n−space of constant
holomorphic sectional curvature c > 0, Cn is the complex Euclidean n−space, and CHn(c) is the
complex hyperbolic n−space of constant holomorphic sectional curvature c < 0.

Let us point out that a cosymplectic manifold can be regarded locally as endowed with
a naturally local product structure of a Kähler manifold and a one-dimensional manifold,
but there are also compact cosymplectic manifolds which are not global products. See
e.g., [19].
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4.2. Curvature

It has been proved that in a cosymplectic space form the curvature tensor can be
expressed as

RXYZ =
c
4

(
g(Y, Z)X− g(X, Z)Y

)
+

c
4

(
g(ϕY, Z)ϕX− g(ϕX, Z)ϕY− 2g(ϕX, Y)ϕZ

)
+

c
4

(
η(Y)g(X, Z)− η(X)g(Y, Z)

)
ξ − c

4
η(Z)

(
η(Y)X− η(X)Y

)
.

(9)

Probably this formula was first obtained by Blair, but it was not published; see also [20].
Remark that the curvature (9) looks very similar to the curvature of a Sasakian space form,

obtained by Ogiue [21]; in the later case the coefficients
c
4

,
c
4

,
c
4

,
c
4

should be replaced

by
c + 3

4
,

c− 1
4

,
c− 1

4
,

c− 1
4

, respectively. Beautiful and easier expressions are given
by Inoguchi [18]. In general, even it is not explicitly mentioned, the dimension of M is
assumed to be ≥ 5. Nevertheless, the formula (9) is valid for dimension ≥ 3 and we will
emphasize this fact here.

The dimension 3. In the study of almost contact metric manifolds, the three-dimensional
case is rather exceptional. Olszak [22] proved a series of special formulas for arbitrary almost
contact metric 3-manifolds. Three of them, that are of our interest,respectively express the
covariant derivative of ϕ and the exterior derivatives dη and dΦ as follows

(∇X ϕ)Y = g(ϕ∇Xξ, Y)ξ − η(Y)ϕ∇Xξ,

dη = η ∧∇ξ η +
1
2

tr(ϕ∇ξ)Φ, dΦ = (div ξ)η ∧Φ.

A normal almost contact 3-manifold is called cosymplectic (or coKähler) if

trace(ϕ∇ξ) = 0 and div ξ = 0.

Further, the Ricci tensor of a cosymplectic 3-manifold is given by

Ric(X, Y) =
r
2

g(X, Y)− r
2

η(X)η(Y), (10)

where r denotes the scalar curvature, i.e., r = trace Ric = trace Q.
It is known that on a Riemannian 3-manifold (M, g), the curvature tensor is described

by the Ricci tensor field Ric and the corresponding Ricci operator Q as follows

RXYZ = Ric(Y, Z)X− Ric(X, Z)Y + g(Y, Z)QX− g(X, Z)QY

− r
2

(
g(Y, Z)X− g(X, Z)Y

)
.

(11)

Combining the two formulas (10) and (11), one obtains the following expression for
the curvature tensor of a cosymplectic 3-manifold

RXYZ =
r
2

(
g(Y, Z)X− g(X, Z)Y

)
+

r
2

η(Z)
(

η(X)Y− η(Y)X
)
+

r
2

(
g(X, Z)η(Y)− g(Y, Z)η(X)

)
ξ.

(12)
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If the sectional curvature is a constant c, then we have the expression for the curvature
tensor of a cosymplectic 3-dimensional space form

RXYZ = c
(

g(Y, Z)X− g(X, Z)Y
)

+cη(Z)
(

η(X)Y− η(Y)X
)
+ c
(

g(X, Z)η(Y)− g(Y, Z)η(X)
)

ξ.
(13)

It is straightforward to show that the formula (13) leads to the same result as (9),
despite the fact that the two expressions look very different. To prove this, we need a
ϕ-basis {ξ, e, ϕe}, where e ∈ ker η is unitary. No matter which formula we use, one gets

Re ϕee = −cϕe

Re ϕe ϕe = ce

Re ϕeξ = 0

Re ξ e = 0

Re ξ ϕe = 0

Re ξ ξ = 0

Rϕe ξe = 0

Rϕe ξ ϕe = 0

Rϕe ξξ = 0.

As R is C∞(M) trilinear, the two expressions must coincide.

4.3. First Results

Let (M, ϕ, ξ, η, g) be a cosymplectic manifold. We denote by∇ the Levi-Civita connec-
tion associated to the metric g. We consider γ : I → M a normal contact magnetic curve
parametrized by its arc length s satisfying the following differential equation

D
ds

γ̇ = φγ̇,

where φ represents the Lorentz force. We take

φ = qϕ, (14)

where q ∈ R is the strength (the charge) of the magnetic field. Moreover, the magnetic field is
defined as F = −qΦ, where

Φ(X, Y) = g(X, ϕY). (15)

The following property of the magnetic curves in cosymplectic manifolds holds
according to [11].

Remark 3. Every contact magnetic curve in a cosymplectic manifold is slant, that is, the angle θ
between γ̇(s) and ξ(γ(s)) is constant (i.e., independent of s).

In Proposition 1 of [11] the authors provide the list of all normal magnetic curves
corresponding to the contact magnetic field F, as follows:

(a) geodesics, obtained as integral curves of ξ;
(b) Legendre ϕ−circles of curvature κ1 = |q|;
(c) ϕ−helices of order 3, with curvatures κ1 = |q| sin θ, κ2 = |q cos θ| and such that

sgn(τ01) = −sgn(q), where θ 6= π
2 is the constant contact angle of γ.

In the case when the ambient is cosymplectic, the (1,1)- type tensor field is parallel,
namely ∇ϕ = 0, equivalently, the Lorentz force is parallel, and therefore the magnetic
field is uniform. As we mentioned in Section 2, in this case we retrieve the equation of a
magnetic Jacobi field given by (2).

Replacing (14) in (2), the magnetic Jacobi equation writes as:

JF(W) :=
D2

ds2 W + R(W, γ̇)γ̇− qϕ
D
ds

W = 0. (16)

Let us point out the following known fact.
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Proposition 1. On an arbitrary Riemannian manifold (M, g) endowed with a magnetic field, the
(unit) speed vector γ̇ is always a magnetic Jacobi field along the magnetic curve γ.

The next result may be interpreted as a conservation law.

Proposition 2. Let W be a magnetic Jacobi field along the contact magnetic curve γ in a cosym-
plectic manifold of arbitrary dimension. Then, the function g( D

ds W(s), γ̇(s)) is constant.

Proof. We have

d
dt g( D

ds W(s), γ̇(s)) = g( D2

ds2 W(s), γ̇(s)) + g( D
ds W(s), D

ds γ̇(s))

= g(qϕ D
ds W(s) + R(γ̇(s), W(s))γ̇(s), γ̇(s)) + g( D

ds W(s), qϕγ̇(s))

= 0.

Hence the function g( D
ds W(s), γ̇(s)) is constant.

If the constant obtained in Proposition 2 is zero, the magnetic Jacobi field along γ is
called normal. See e.g., [1]. Furthermore, we can state the following result.

Proposition 3. Let W1 and W2 be two magnetic Jacobi fields along the contact magnetic curve γ
in a cosymplectic manifold of arbitrary dimension. Then, the function

g
(

D
ds

W1(s), W2(s)
)
− g
(

D
ds

W2(s), W1(s)
)
+ qg(W1(s), ϕW2(s))

is constant.

Proof. Similar computations should be done as in the proof of Proposition 2.

As a matter of fact, the conclusion of Proposition 2 follows from Proposition 3 consid-
ering Proposition 1.

Proposition 4. The characteristic vector field ξ of a cosymplectic manifold M3 is a magnetic Jacobi
field along any normal contact magnetic curve.

Proof. In order to prove the proposition, we should check if ξ verifies (2). Replacing W by
ξ, the magnetic Jacobi Equation (2) becomes:

JF(ξ) = ∇γ̇∇γ̇ξ + R(ξ, γ̇)γ̇− qϕ∇γ̇ξ = 0. (17)

Since, on one side ∇γ̇ξ = 0, and on the other side, by straightforward computations,
one can show that R(ξ, γ̇)γ̇ = 0, the magnetic Jacobi equation is satisfied by ξ, concluding
the proof.

Let us turn our attention now on the cosymplectic manifolds of dimension 3.

Proposition 5. Let γ be a contact magnetic curve on the cosymplectic three dimensional manifold
M3, such that γ is not an integral curve of ξ. Then, ϕγ̇ is a magnetic Jacobi field along γ if and
only if M3 is a cosymplectic space form M3(c) with c = 0.

Proof. We replace W by ϕγ̇ and we compute the operator JF for ϕγ̇:

JF(ϕγ̇) = ∇γ̇∇γ̇(ϕγ̇) + R(ϕγ̇, γ̇)γ̇− qϕ∇γ̇(ϕγ̇). (18)
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Using the cosymplectic structure and the Lorentz equation, by straightforward com-
putations one can compute

∇γ̇(ϕγ̇) = ϕ∇γ̇γ̇ = q(−γ̇ + cos θξ),

and subsequently

∇γ̇∇γ̇(ϕγ̇) = q(−∇γ̇γ̇ + cos θ∇γ̇ξ) = −q2 ϕγ̇.

Here θ is the contact angle, that is cos θ = η(γ̇). Computing also the curvature, we
obtain

R(ϕγ̇, γ̇)γ̇ =
r
2

sin2 θϕγ̇.

Hence, the magnetic Jacobi operator is given by:

JF(ϕγ̇) =
r
2

sin2 θϕγ̇. (19)

Notice that ϕγ̇ is an eigenvector of the operator JF with the corresponding eigenvalue
r
2

sin2 θ. Thus, ϕγ̇ is a magnetic Jacobi field along γ if and only if JF(ϕγ̇) = 0. Equivalently,
one of the next cases takes place:

• either γ̇‖ξ (hence γ̇ = ±ξ since γ̇ and ξ are unitary), equivalently to θ = 0 or π;
• or, γ̇ and ξ are linearly independent (equivalently sin θ 6= 0), case when r = 0.

The scalar curvature of M3 is constant, and so, the ϕ-sectional curvature of M3 is a

constant c, with c =
r
2
= 0.

This ends the proof.

5. Magnetic Jacobi Fields in Three-Dimensional Cosymplectic Space Forms

We first investigate magnetic Jacobi fields along the integral curves of ξ (first item
in Proposition 1 of [11]). Since magnetic Jacobi fields are natural generalization of Jacobi
fields (along geodesics), we would like to emphasize a link between Jacobi fields along the
Reeb vector field and Ricci solitons on K-contact manifolds. See e.g., Theorem 3.1 of [23].

1 The characteristic vector field ξ as magnetic field: γ̇(s) = ξ(s).

Theorem 2. Let γ be an integral curve of ξ in a cosymplectic manifold (M3, ϕ, ξ, η, g) endowed
with F = −qΦ, the magnetic field of strength q defined by the fundamental 2-form Φ. The magnetic
Jacobi field along γ is given:

either by W(s) = W0(s) + ( f0 + f1s)ξ(γ(s)) + sin qsv0(s)− cos qsϕv0(s),

or by W(s) = W0(s) + ( f0 + f1s)ξ(γ(s)),
(20)

where v0(s) is a vector field parallel along γ(s) lying in the contact distribution ker η and W0 is a
linear combination, with constant coefficients, of v0(s) and ϕv0(s), and f0, f1 ∈ R.

Proof. Since R(·, ·)ξ = 0, the magnetic Jacobi Equation (16) can be written as

∇ξ∇ξW − qϕ∇ξW = 0. (21)

In the sequel we adopt the same strategy as in [9] (or as in [24]). We can take an
orthonormal basis parallel along γ of the following form: {ξ(γ(s)), E(s), ϕE(s)}, where
E(s) ∈ ker η(γ(s)). We decompose

W(s) = f (s)ξ(γ(s)) + a(s)E(s) + b(s)ϕE(s), (22)
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where f , a, b are smooth functions on I. As ξ, E, ϕE are parallel,

∇ξW(s) = f ′(s)ξ + a′(s)E(s) + b′(s)ϕE(s), (23)

∇ξ∇ξW(s) = f ′′(s)ξ + a′′(s)E(s) + b′′(s)ϕE(s), (24)

ϕ∇ξW(s) = a′(s)ϕE(s)− b′(s)E(s). (25)

Thus, equation (21) becomes:

f ′′(s)ξ + a′′(s)E(s) + b′′(s)ϕE(s)− q(a′(s)ϕE(s)− b′(s)E(s)) = 0

and the following system of ODEs is obtained
f ′′(s) = 0,
a′′(s) + qb′(s) = 0,
b′′(s)− qa′(s) = 0,

(26)

having the solutions

f (s) = f0 + f1s,

a(s) = a0 +
1
q
(c1 sin qs− c2 cos qs),

b(s) = b0 −
1
q
(c1 cos qs + c2 sin qs), f0, f1, a0, b0, c1, c2 ∈ R.

(27)

Thus, W(s) = W0(s) + ( f0 + f1s)ξ +
sin qs

q
(c1E(s) − c2 ϕE(s)) − cos qs

q
(c1 ϕE(s) +

c2E(s)). Let c2
1 + c2

2 6= 0. Denoting v0(s) =
1
q
(
c1E(s) − c2 ϕE(s)

)
∈ ker η a vector field

parallel along γ(s), and subsequently ϕv0(s) =
1
q
(
c1 ϕE(s) + c2E(s)

)
, we get the first ex-

pression in (20) for the magnetic Jacobi field W. The vector field W0(s) = a0E(s) + b0 ϕE(s)
(along γ(s)) is parallel and it can be expressed as a linear combination of v0(s) and ϕv0(s).
If the constants c1 and c2 both vanish, then a(s) = a0, b(s) = b0 and W is given by the
second expression in (20), W(s) = W0(s) + ( f0 + f1s)ξ, where W0(s) is a linear combination
of v0(s) and ϕv0(s) with v0(s) = E(s). This ends the proof.

2 The case when γ̇(s) ∦ ξ; in particular, γ can be a Legendre curve, γ̇ ⊥ ξ.

Theorem 3. Let γ be a normal contact magnetic curve in the cosymplectic space form
(M3(c), ϕ, ξ, η, g) endowed with the magnetic field F = −qΦ. Then, the magnetic Jacobi field W
along γ derived from the uniform magnetic field F is given by:

W(s) = A(s)γ̇(s) + B(s)ϕγ̇(s) + C(s)ξ(s),

where A, B, C ∈ C∞(I) have the following expressions:

q2 + c sin2 θ = 0 :


A(s) = −q2c0

s3

6
+ c1q

s2

2
+ (c0 + c2q)s + c3,

B(s) = −qc0
s2

2
+ c1s + c2,

C(s) = q2 cos θc0
s3

3
− q cos θc1

s2

2
+ (c4 − c2q cos θ)s + c5.

(28)
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q2 + c sin2 θ := k2 > 0 :


A(s) =

qc1

k
sin ks− qc2

k
cos ks +

c0c sin2 θ

k2 s + c3,

B(s) = c1 cos ks + c2 sin ks− qc0

k2 ,

C(s) = − q cos θ

k
(c1 sin ks− c2 cos ks) + c4s + c5.

(29)

q2 + c sin2 θ := −k2 < 0 :


A(s) =

qc1

k
sinh ks +

qc2

k
cosh ks− c0c sin2 θ

k2 s + c3,

B(s) = c1 cosh ks + c2 sinh ks +
qc0

k2 ,

C(s) = − q cos θ

k
(c1 sinh ks + c2 cosh ks) + c4s + c5.

(30)

In all the three cases, ci ∈ R, i = 0, 5, and k is a real positive constant. Moreover, q ∈ R
denotes the strength of the magnetic field, Φ is the fundamental 2-from, θ is the contact angle and c
denotes the sectional curvature of M.

Proof. In the sequel, we will develop two approaches.

A We will proceed as in case 1 , that is we use an orthonormal basis {ξ, E, ϕE} parallel
along γ. Notice that ξ is parallel along γ. This can be obtained if we consider
E(0) ⊥ ξ(γ(0)) and after that take E(s) parallel along γ.

Computing
d
ds

g(E(s), ξ(γ(s))) = g(∇γ̇E, ξ) + g(E,∇γ̇ξ) = 0, it follows that

g(E(s), ξ(γ(s))) is constant, thus E(s) ∈ ker η(γ(s)). Next, ϕE(s) is parallel along γ
and orthogonal to ξ. If E(0) is unitary, then E(s) is also unitary. Indeed, computing
d
ds

g(E(s), E(s)) = 2g(∇γ̇E, E) = 0, we conclude with g(E(s), E(s)) is constant.

Let us decompose

W(s) = f (s)ξ(γ(s)) + a(s)E(s) + b(s)ϕE(s). (31)

Recall the magnetic Jacobi equation from (16)

∇γ̇∇γ̇W + R(W, γ̇)γ̇− qϕ∇γ̇W = 0, (32)

in order to replace the expression of W given by (31). One can compute each term in (32)
as follows:

∇γ̇W = f ′(s)ξ + a′(s)E(s) + b′(s)ϕE(s),

∇γ̇∇γ̇W = f ′′(s)ξ + a′′(s)E(s) + b′′(s)ϕE(s),

ϕ∇γ̇W = a′(s)ϕE(s)− b′(s)E(s),

and the curvature

R(W, γ̇)γ̇ =
r
2

sin2 θW +
r
2
(−g(W, γ̇) + η(W) cos θ)γ̇ +

r
2
(cos θg(W, γ̇)− η(W))ξ,

where r denotes the scalar curvature and θ is the constant angle. Next, we decompose γ̇ in
the basis {ξ, E, ϕE} as:

γ̇(s) = cos θξ(s) + sin θ(cos(qs + α0)E(s) + sin(qs + α0)ϕE(s)). (33)

This fact is a direct consequence of the Lorentz equation for the normal magnetic
curve γ, that is, it follows by straightforward computations from the equation ∇γ̇γ̇ = qϕγ̇.
In the expression above α0 ∈ R.
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Solving the magnetic Jacobi Equation (32) becomes now equivalent to solving the next
ODEs system:
f ′′(s) = 0

a′′(s) +
r
2

sin2 θ
(

a(s) sin2(qs + α0)− b(s) sin(qs + α0) cos(qs + α0)
)
+ qb′(s) = 0

b′′(s) +
r
2

sin2 θ
(

b(s) cos2(qs + α0)− a(s) sin(qs + α0) cos(qs + α0)
)
− qa′(s) = 0.

(34)

Immediately, the solution of the first equation in (34) is

f (s) = f0 + f1s, f0, f1 ∈ R. (35)

Next, we should find the expressions of a(s) and b(s). Adding the second equa-
tion multiplied by cos(qs + α0) and the third equation multiplied by sin(qs + α0) one

gets
d
ds

(
a′(s) cos(qs + α0) + b′(s) sin(qs + α0)

)
= 0. So, there exists λ ∈ R such that

a′(s) cos(qs + α0) + b′(s) sin(qs + α0) = λ. Thus, we have{
a′(s) = λ cos(qs + α0) + ρ(s) sin(qs + α0)

b′(s) = λ sin(qs + α0)− ρ(s) cos(qs + α0),
(36)

for a certain ρ ∈ C∞(I). Now, returning to (34), one gets

ρ′(s) +
r
2

sin2 θ
(

a(s) sin(qs + α0)− b(s) cos(qs + α0)
)
= 0. (37)

At this point it is time to ask r = constant, i.e., M is a cosymplectic space form with

c =
r
2

. Taking successive derivatives in (37), after some straightforward computations,
we get

ρ′′′(s) + (q2 + c sin2 θ)ρ′(s) + qcλ sin2 θ = 0. (38)

Denote µ := q2 + c sin2 θ. The solutions of (38) depend on the sign of µ.
Let us consider the easiest case when µ = 0, i.e., q2 = −c sin2 θ, meaning that c < 0.

The Equation (38) becomes ρ′′′(s) = −qcλ sin2 θ = λq3. If λ 6= 0, then ρ(s) is a third order

polynomial in s, be it ρ(s) =
λq3

6
s3 + c2s2 + c1s + c0. The functions a and b are given by

a(s) = T(s) cos(qs + α0) + U(s) sin(qs + α0),
b(s) = T(s) sin(qs + α0)−U(s) cos(qs + α0),

(39)

where T(s) = − q2λ

6
s3 − c2

q
s2 +

(
λ− c1

q

)
s +

2c2 − c0q2

q3 is a third order polynomial and

U(s) =
qλ

2
s2 +

2c2

q2 s +
c1

q2 is a second order polynomial, with c2, c1, c0 ∈ R.

As one can notice, the solution are not so easy to be formulated explicitly, and in the
case µ 6= 0 things are getting even more tricky. For this reason, we attack the system of
ODEs (34) in a different approach, using the basis {γ̇, ϕγ̇, ξ}.
B We will proceed in the following using the basis {γ̇, ϕγ̇, ξ} (see also [9]). Let us

decompose

W(s) = A(s)γ̇(s) + B(s)ϕγ̇(s) + C(s)ξ(s), A, B, C ∈ C∞(I). (40)
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As in the previous case, we can compute

∇γ̇W = (A′(s)− qB(s))γ̇(s) + (B′(s) + qA(s))ϕγ̇ + (C′(s) + q cos θB(s))ξ,

∇γ̇∇γ̇W = (A′′(s)− 2qB′(s)− q2 A(s))γ̇ + (B′′(s) + 2qA′(s)− q2B(s))ϕγ̇

+(C′′(s) + 2q cos θB′(s) + q2 cos θA(s))ξ,

qϕ∇γ̇W = −q(B′(s) + qA(s))γ̇ + q(A′(s)− qB(s))ϕγ̇ + q(B′(s) + qA(s)) cos θξ,

R(W, γ̇)γ̇ = B(s)c sin2 θϕγ̇.

Now, the magnetic Jacobi Equation (32) becomes equivalent to the following system
of ODEs 

A′′(s)− qB′(s) = 0,
B′′(s) + qA′(s) + cB(s) sin2 θ = 0,
C′′(s) + q cos θB′(s) = 0.

(41)

The first equation yields A′(s) = qB(s) + c0, for a certain c0 ∈ R. Replacing into the
second equation of (41) we get

B′′(s) + µB(s) + qc0 = 0, (42)

where we denoted µ := q2 + c sin2 θ as previously.
We need to distinguish some cases:
Case I. µ = 0: The solution of (42) is given by a second order polynomial as in formula

(28). Next, the other two solutions of (41) are also polynomials, of degree three, as given
in (28).

Case II. µ > 0: Let us denote µ = k2 (k > 0). The solutions of (41) are given by (29).
Case III. µ < 0: Let us denote µ = −k2 (k > 0). The solutions of (41) are given by (30),

concluding the proof.

6. Jacobi Magnetic Fields on S2 ×RS2 ×RS2 ×R and H2 ×RH2 ×RH2 ×R
The motivation of this section has roots in the classification theorem given by Perrone

in Theorem 4.1 of [25]. Let (M, ϕ, ξ, η, g) be a simply connected homogeneous almost cosymplectic
3-manifold. Then, either M is a Lie group G equipped with a left invariant almost cosymplectic
structure, or a Riemannian product of type N×R, where N is a simply connected Kähler surface of
constant curvature.

Let N = N2(c̄) be one of the two two-dimensional manifolds S2 or H2 where c̄ = ±1
is the (constant) sectional curvature. Let (M3, g) be the Riemannian product manifold
M3 = N × R, with the metric g = ḡ + dt2, where ḡ is the metric on N and t is the
global coordinate on R. Since N has a natural Kähler structure, one can naturally define a
cosymplectic structure (ϕ, ξ, η, g) on M as follows

ϕX = JX, ϕ
∂

∂t
= 0, ξ =

∂

∂t
, η = dt,

where J is the complex structure on N and X is tangent to N. See for more details [26].
Let γ : I → M, γ(s) = (γ̄(s), t(s)) be a curve on the product manifold M = N ×R

parametrized by the arc length, i.e., ḡ(γ̄′(s), γ̄′(s)) + t′(s)2 = 1. We exclude the case when
γ is the characteristic flow, i.e., when γ̇(s) = ξ(γ(s)). This ensures that γ̄ does not reduce
to a point (on N). Suppose that γ is a (normal) contact magnetic curve on the cosymplectic
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manifold M, that is γ satisfies the Lorentz equation∇γ̇γ̇ = qϕγ̇, where∇ is the Levi-Civita
connection of g and q is the strength. We can write this equation as{

∇γ̄′ γ̄
′ = qJγ̄′,

t′′(s) = 0,
(43)

where ∇ is the Levi-Civita connection of ḡ. This shows that γ̄ is a (Kähler) magnetic curve
on N, not necessary normal.

Due to the homogeneity of M we can consider t(0) = 0. Hence t(s) = s cos θ, where θ
is the constant angle between γ̇(s) and ξ(γ(s)), called the contact angle of γ. See e.g., [11].

A vector field W(s) along γ may be expressed as W(s) = (W(s), a(s)), where W is a
vector field along γ̄ on N. We prove the following result.

Theorem 4. Let W(s) = (W(s), a(s)) be a magnetic Jacobi field along the normal contact mag-
netic curve γ(s) = (γ̄(s), t(s)) in the product manifold M3 = N × R, where N denotes the
2-sphere S2 or the hyperbolic plane H2. Then W is a magnetic Jacobi field along γ̄ on N and a is an
affine function. The converse also holds.

Proof. We need to analyze all terms in the magnetic Jacobi equation

D2

ds2 W(s)− R(γ̇(s), W(s))γ̇(s)− qϕ
D
ds

W(s) = 0.

We have

D2

ds2 W(s) =
(D2

ds2 W(s), a′′(s)
)

and ϕ
(D

ds
W(s)

)
=
(

J
D
ds

W(s), 0
)
.

Since M is a product manifold, the curvature tensors R and R are respectively related
by the following relations

R(X, Y)Z = R(X, Y)Z, R(X, Y)
∂

∂t
= 0, R

(
X,

∂

∂t

)
Z = 0, R

(
X,

∂

∂t

)
∂

∂t
= 0,

where X, Y, Z are tangent to N. It follows that the magnetic Jacobi equation is equivalent
to the following system

D2

ds2 W(s)− R(γ̄′(s), W(s))γ̄′(s)− qJ
D
ds

W(s) = 0,

a′′(s) = 0.

(44)

The first equation means that W is a magnetic Jacobi field on N along γ̄, while the
second equation says that a is an affine function.

In the following we will sketch how W can be obtained. We mention here two (from a
series of some) papers of Adachi [1,27].

If γ̄ = 0 the curve γ is an integral curve of ξ and hence the contact angle is 0 or π. In
such a case

D
ds

W(s) = (0, a′(s)),

where W(s) = (W(s), a(s)) as before. This means that one has no condition for W(s).
Suppose that γ̄(s) 6= 0. Then we can decompose W(s) in the basis {γ̄′(s), Jγ̄′(s)}

W(s) = α(s)γ̄′(s) + β(s)Jγ̄′(s),
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where α and β are smooth functions of s. We can compute successively

D
ds

W(s) =
(
α′(s)− qβ(s)

)
γ̄′(s) +

(
β′(s) + qα(s)

)
Jγ̄′(s),

D2

ds2 W(s) =
(
α′′(s)− 2qβ′(s)− q2α(s)

)
γ̄′(s) +

(
β′′(s) + 2qα′(s)− q2β(s)

)
Jγ̄′(s),

R(γ̄(s), W(s))γ̄′(s) = −ηc̄ sin2 θ Jγ̄′(s).

The first equation in (44) becomes(
α′′(s)− qβ′(s)

)
γ̄′(s) +

(
β′′(s) + qα′(s) + βc̄ sin2 θ

)
Jγ̄′(s) = 0,

which implies

α′′(s) = qβ′(s)

β′′(s) + qα′(s) + βc̄ sin2 θ = 0.
(45)

Remark that the first equation in (45) is a consequence of the fact that ḡ( D
ds W(s), γ̄′(s))

is a constant. A first integration in this equation leads to

α′(s) = qβ(s) + λ0, (46)

with λ0 ∈ R. Replacing in the second equation of (45) we obtain the following second
order differential equation in β

β′′(s) + (q2 + c̄ sin2 θ)β(s) + qλ0 = 0. (47)

The Equation (47) can be solved taking into consideration the sign of q2 + c̄ sin2 θ.
See e.g., Equation (42). Then, with β obtained from (47) we easily obtain the function α
from (46).
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