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Abstract: The block cyclic reduction method is a finite-step direct method used for solving linear
systems with block tridiagonal coefficient matrices. It iteratively uses transformations to reduce the
number of non-zero blocks in coefficient matrices. With repeated block cyclic reductions, non-zero off-
diagonal blocks in coefficient matrices incrementally leave the diagonal blocks and eventually vanish
after a finite number of block cyclic reductions. In this paper, we focus on the roots of characteristic
polynomials of coefficient matrices that are repeatedly transformed by block cyclic reductions. We
regard each block cyclic reduction as a composition of two types of matrix transformations, and
then attempt to examine changes in the existence range of roots. This is a block extension of the idea
presented in our previous papers on simple cyclic reductions. The property that the roots are not
very scattered is a key to accurately solve linear systems in floating-point arithmetic. We clarify that
block cyclic reductions do not disperse roots, but rather narrow their distribution, if the original
coefficient matrix is symmetric positive or negative definite.

Keywords: block cyclic reduction; block tridiagonal matrix; characteristic polynomial; linear system

1. Introduction

Solving systems of linear equations is one of the most important subjects in numeri-
cal linear algebra. In particular, applied mathematics and engineering often require the
solution of linear systems with tridiagonal coefficient matrices. Solving tridiagonal lin-
ear systems generally involves finding N-dimensional vectors x, such that Ax = b for
given N-by-N tridiagonal matrices A and N-dimensional vectors b. The cyclic reduction
method is a finite-step direct method for computing solutions x [1,2]. The cyclic reduction
method first transforms tridiagonal coefficient matrices A to pentadiagonal matrices with
all subdiagonal (and superdiagonal) entries equal to 0. The right vectors b are, of course,
simultaneously changed. Two non-zero off-diagonals of the coefficient matrices gradually
leave the diagonals in the iterative cyclic reductions, with the coefficient matrices even-
tually being reduced to diagonal matrices. Error analysis of the cyclic reduction method
has been reported in [3], and a variant of the cyclic reduction method has been also pre-
sented, for example, in [4]. The stride reduction method is a generalization of the cyclic
reduction method that can solve problems where A are M-tridiagonal matrices, M is the
bandwidth, and there are two non-zero off-diagonals consisting of (1, M + 1), (2, M + 2),
. . . , (N −M− 1, N) and the (M + 1, 1), (M + 2, 2), . . . , (N, N −M− 1) entries [5]. Each
stride reduction, including cyclic reduction, narrows the distribution of the roots of charac-
teristic polynomials associated with the coefficient matrices if A are symmetric positive
definite [6,7]. This is a desirable property that does not increase the difficulty of solving
systems of linear systems.
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Here, we consider positive integers N1, N2, . . . , Nm satisfying N = N1 + N2 + · · ·+ Nm.
The cyclic reduction method is extended to solve a problem where coefficient matri-
ces A ∈ RN×N are block tridiagonal matrices [2,8] expressed using m square matrices
D1 ∈ RN1×N1 , D2 ∈ RN2×N2 , . . . , Dm ∈ RNm×Nm and 2m − 2 rectangular matrices
E1 ∈ RN1×N2 , E2 ∈ RN2×N3 , . . . , Em−1 ∈ RNm−1×Nm and F1 ∈ RN2×N1 , F2 ∈ RN3×N2 ,
. . . , Fm−1 ∈ RNm×Nm−1 as:

A :=


D1 E1

F1 D2
. . .

. . . . . . Em−1
Fm−1 Dm

. (1)

A block tridiagonal matrix can be regarded as a block matrix obtained by replacing
the diagonal entries in a tridiagonal matrix with square matrices and the subdiagonal
entries with rectangular matrices. This extended method is called the block cyclic reduction
method. The forward stability of iterative block cyclic reductions has been discussed in [9],
but changes in roots of characteristic polynomials of coefficient matrices have not been
studied. Block cyclic reductions do not work well in floating point arithmetic if they greatly
disperse the roots. Thus, the main purpose of this paper is to clarify whether block cyclic
reductions narrow the root distribution like stride reductions.

The remainder of this paper is organized as follows. Section 2 briefly explains the block
cyclic reduction method used for solving block tridiagonal linear systems. Section 3 shows
that block M-tridiagonal matrices can be transformed to block tridiagonal (1-tridiagonal)
matrices without changing the eigenvalues. Then, we interpret the transformation from
M-tridiagonal matrices to 2M-tridiagonal matrices in the block cyclic reduction as a com-
posite transformation of the block tridiagonalization, its inverse, and the transformation
from block tridiagonal to block 2-tridiagonal matrices. In Section 4, we find the relation-
ship between the inverses of block tridiagonal matrices and those of block 2-tridiagonal
matrices. Section 5 looks at the roots of characteristic polynomials of coefficient matrices
transformed by block cyclic reductions compared with those of original coefficient matrices
A in cases where A are block tridiagonal and symmetric positive definite or negative
definite. Section 6 gives two numerical examples for observing coefficient matrices and
the roots of their characteristic polynomials appearing in iterative block cyclic reductions.
Section 7 concludes the paper.

2. Block Cyclic Reduction

In this section, we briefly explain the block cyclic reduction method used for solving
linear systems with block tridiagonal coefficient matrices.

We consider the following N-by-N block-band matrix given using m square matrices
D(M)

1 ∈ RN1×N1 , D(M)
2 ∈ RN2×N2 , . . . , D(M)

m ∈ RNm×Nm and 2(m−M) rectangular matrices

E(M)
1 ∈ RN1×N1+M , E(M)

2 ∈ RN2×N2+M , . . . , E(M)
m−M ∈ RNm−M×Nm and F(M)

1 ∈ RN1+M×N1 ,

F(M)
2 ∈ RN2+M×N2 , . . . , F(M)

m−M ∈ RNm×Nm−M as:

A(M) :=



D(M)
1 E(M)

1
. . . . . .

F(M)
1 D(M)

1+M
. . .

. . . . . . . . .
. . . D(M)

m−M E(M)
m−M

. . . . . .

F(M)
m−M D(M)

m


, (2)
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where the superscript in parentheses appearing in A(M) specifies the position of non-zero
off-diagonal bands E(M)

i and F(M)
i . If D(M)

i , E(M)
i , and F(M)

i are all 1-by-1 matrices for

every i, then A(M) is the M-tridiagonal matrix [6] and D(M)
i , E(M)

i , and F(M)
i are the (i, i),

(i, i + M), and (i + M, i) entries of A(M), respectively. Thus, we hereinafter refer to A(M)

as the block M-tridiagonal matrix and D(M)
i , E(M)

i , and F(M)
i as the (i, i), (i, i + M), and

(i + M, i) blocks of A(M), respectively. Note that block 1-tridiagonal matrices are the usual
block tridiagonal matrices. In the case where D(M)

i , E(M)
i , and F(M)

i are not 1-by-1 matrices,

we must pay attention to the number of rows and columns of D(M)
i , E(M)

i , and F(M)
i . For

example, we can compute the matrix product D(M)
1 E(M)

1 but cannot define E(M)
1 D(M)

1 if

N1 6= N1+M, unlike in the case where D(M)
i , E(M)

i , and F(M)
i are all 1-by-1 matrices.

We hereinafter consider the case where D(M)
i are all nonsingular. Here, we prepare an

N-by-N block M-tridiagonal matrix involving non-zero blocks D(M)
i , E(M)

i , and F(M)
i :

T(M) :=

I1 −E(M)
1 (D(M)

1+M)−1

. . . . . .

−F(M)
1 (D(M)

1 )−1 I1+M
. . .

. . . . . . . . .
. . . Im−M −E(M)

m−M(D(M)
m )−1

. . . . . .
−F(M)

m−M(D(M)
m−M)−1 Im



, (3)

where Ii are the Ni-by-Ni identity matrices. The number of rows and columns of Ii,
−E(M)

i (D(M)
i+M)−1, and −F(M)

i (D(M)
i )−1 coincide with those of D(M)

i , E(M)
i , and F(M)

i , re-
spectively. In other words, T(M) has the same block structure as A(M). Then, we can
easily observe that the (i, i + M) and (i + M, i) blocks are all zero and the (i, i + 2M) and
(i + 2M, i) blocks of T(M)A(M) are all non-zero, meaning that T(M)A(M) becomes an N-
by-N block 2M-tridiagonal matrix A(2M), The non-zero blocks D(2M)

i , E(2M)
i , and F(2M)

i

appearing in the (i, i), (i, i + 2M), and (i + 2M, i) blocks are also expressed using D(M)
i ,

E(M)
i , and F(M)

i as:

D(2M)
i := D(M)

i − E(M)
i (D(M)

i+M)−1F(M)
i , i = 1, 2, . . . , M,

D(2M)
i := D(M)

i − F(M)
i−M(D(M)

i−M)−1E(M)
i−M − E(M)

i (D(M)
i+M)−1F(M)

i , i = M + 1, . . . , m−M,

D(2M)
i := D(M)

i − F(M)
i−M(D(M)

i−M)−1E(M)
i−M, i = m−M + 1, m−M + 2, . . . , m,

E(2M)
i := −E(M)

i (D(M)
i+M)−1E(M)

i+M, i = 1, 2, . . . , m− 2M,

F(2M)
i := −F(M)

i+M(D(M)
i+M)−1F(M)

i , i = 1, 2, . . . , m− 2M.

(4)

Thus, by multiplying the block M-tridiagonal linear system A(M)x = b(M) by T(M)

from the left on both sides, we transform it to the block 2M-tridiagonal linear system
A(2M)x = b(2M), where b(2M) := T(M)b(M). This transformation is the block cyclic reduc-
tion [2]. We can again apply the block cyclic reduction to the block 2M-tridiagonal linear
system A(2M)x = b(2M) if the diagonal blocks D(2M)

i in the block 2M-tridiagonal matrix
A(2M) are all nonsingular. The iterative block cyclic reductions therefore cause non-zero
off-diagonal blocks to gradually leave the diagonal blocks, eventually generating linear
systems with block diagonal matrices.
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3. Composite Transformation

In this section, we first show that block M-tridiagonal matrices can be transformed
into block tridiagonal (1-tridiagonal) matrices while preserving the eigenvalues. Next,
we consider the transformation from the block M-tridiagonal matrix A(M) to the block
2M-tridiagonal matrix A(2M) in terms of the transformation from the block tridiagonal
(1-tridiagonal) matrix to the block 2-tridiagonal matrix with two similarity transformations.

We consider N-by-Ni matrices:

Pi :=



O
...

O

Ii

O
...

O



1st
block

(i− 1)th
block
ith
block
(i + 1)th
block

mth
block

, i = 1, 2, . . . , m, (5)

where O denotes the zero matrix, whose entries are all 0, and the number of rows in the
1st, 2nd, . . . , mth blocks are equal to those in D(M)

1 , D(M)
2 , . . . , D(M)

m , respectively. Then, it
is obvious that A(M)P1 ∈ RN×N1 , A(M)P2 ∈ RN×N2 , . . . , A(M)Pm ∈ RN×Nm become the 1st,
2nd, . . . , mth block-columns of A(M), respectively. Furthermore, for i = 1, 2, . . . , m, it is
observed that P>1 (A(M)Pi) ∈ RN1×Ni , P>2 (A(M)Pi) ∈ RN2×Ni , . . . , P>m (A(M)Pi) ∈ RNm×Ni

coincide with the 1st, 2nd, . . . , mth block-rows of A(M)Pi, respectively. Thus, we see that
P>j A(M)Pi are the (j, i) blocks of A(M) for i, j = 1, 2, . . . , m—namely:

P>j A(M)Pi =


E(M)

i , j = i−M,
D(M)

i , j = i,
F(M)

i , j = i + M,
O, otherwise.

Here, we introduce N × (Ni + Ni+M + · · · + Ni+qM) matrices Pi := (Pi, Pi+M, . . . ,
Pi+qM) for i = 1, 2, . . . , r, where q and r are the quotient and the remainder after the
division of m by M, respectively. Then, it follows that:

P>i A(M)Pi =


D(M)

i
F(M)

i
O
...

O

 ∈ R(Ni+Ni+M+···+Ni+qM)×Ni , i = 1, 2, . . . , r.

P>i A(M)Pi+kM =



O
...

O
E(M)

i+(k−1)M

D(M)
i+kM

F(M)
i+kM
O
...

O



∈ R(Ni+Ni+M+···+Ni+qM)×Ni+kM ,

i = 1, 2, . . . , r, k = 1, 2, . . . , q− 1,
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P>i A(M)Pi+qM =



O
...

O
E(M)

i+(q−1)M

D(M)
i+qM


∈ R(Ni+Ni+M+···+Ni+qM)×Ni+qM , i = 1, 2, . . . , r.

Thus, by gathering these, we can derive:

P>i A(M)Pi =


D(M)

i E(M)
i

F(M)
i D(M)

i+M
. . .

. . . . . . E(M)
i+(q−1)M

F(M)
i+(q−1)M D(M)

i+qM


∈ R(Ni+Ni+M+···+Ni+qM)×(Ni+Ni+M+···+Ni+qM), i = 1, 2, . . . , r. (6)

Similarly, by letting Pi := (Pi, Pi+M, . . . , Pi+(q−1)M) ∈ RN×(Ni+Ni+M+···+Ni+(q−1)M) for
i = r + 1, r + 2, . . . , M, we obtain:

P>i A(M)Pi =


D(M)

i E(M)
i

F(M)
i D(M)

i+M
. . .

. . . . . . E(M)
i+(q−2)M

F(M)
i+(q−2)M D(M)

i+(q−1)M


∈ R(Ni+Ni+M+···+Ni+(q−1)M)×(Ni+Ni+M+···+Ni+(q−1)M),

i = r + 1, r + 2, . . . , M. (7)

See, also, Figure 1 for an auxiliary example of gathering a block tridiagonal part, as
shown in (6) and (7). Therefore, using the permutation matrix P := ( P1 P2 · · · PM ),
we can complete a block tridiagonalization of A(M) as:

P>A(M)P = diag(Ã(1)
1 , Ã(1)

2 , . . . , Ã(1)
M ), (8)

where Ã(1)
i := P>i A(M)Pi. Here, we may regard diag(Ã(1)

1 , Ã(1)
2 , . . . , Ã(1)

M ) as a block

diagonal matrix in terms of Ã(1)
1 , Ã(1)

2 , . . . , Ã(1)
M . However, we emphasize that Ã(1)

1 , Ã(1)
2 , . . . ,

Ã(1)
M are nothing but auxiliary matrices and are essentially block tridiagonal matrices in

terms of realistic blocks D(M)
i , E(M)

i , and F(M)
i . Furthermore, in the following sections, we

should recognize that (8) is a block tridiagonalization and not a block diagonalization of
A(M). Figure 2 gives a sketch of a block tridiagonalization of A(M). Noting that the P is an
orthogonal matrix—namely, P> = P−1, we can determine that diag(Ã(1)

1 , Ã(1)
2 , . . . , Ã(1)

M )

has the same eigenvalues as A(M). To summarize, we can divide a linear system with
the block M-tridiagonal coefficient matrix A(M) into M linear systems with the block
tridiagonal coefficient matrices Ã(1)

1 , Ã(1)
2 , . . . , Ã(1)

M without the loss of the eigenvalues
of A(M).
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Figure 1. Gathering the block tridiagonal parts of the block M-tridiagonal matrix A(M) with M = 4.

Recalling that A(2M) = T(M)A(M), we can decompose P−1 A(2M)P into:

P−1 A(2M)P = (P−1T(M)P)(P−1 A(M)P). (9)

Noting that T(M) has the same block structure as A(M), whose block tridiagonalization
is shown in Section 3, we can immediately derive:

P−1T(M)P = diag(T̃(1)
1 , T̃(1)

2 , . . . , T̃(1)
M ), (10)

where

T̃(1)
j :=

Ij −E(M)
j (D(M)

j+M)−1

−F(M)
j (D(M)

j )−1 Ij+M

. . .
. . . . . . −E(M)

j+(q−1)M(D(M)
j+qM)−1

−F(M)
j+(q−1)M(D(M)

j+(q−1)M)−1 Ij+(q−1)M


,

j = 1, 2, . . . , r, (11)
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T̃(1)
j :=

Ij −E(M)
j (D(M)

j+M)−1

−F(M)
j (D(M)

j )−1 Ij+M

. . .
. . . . . . −E(M)

j+(q−2)M(D(M)
j+(q−1)M)−1

−F(M)
j+(q−2)M(D(M)

j+(q−2)M)−1 Ij+(q−2)M


,

j = r + 1, r + 2, . . . , M.

Combining (8) and (10) with (9), we obtain:

P−1 A(2M)P = diag(T̃(1)
1 Ã(1)

1 , T̃(1)
2 Ã(1)

2 , . . . , T̃(1)
M Ã(1)

M ).

This implies that the transformation from A(M) to A(2M) can also be completed using
three transformations: (1) the block tridiagonalization from A(M) to P−1 A(M)P ; (2) the
transformations from the block 1-tridiagonal matrices Ã(1)

i to the block 2-tridiagonal ma-

trices T̃(1)
i Ã(1)

i ; and (3) the block 2M-tridiagonalization from P−1 A(2M)P to A(2M). See
Figure 3 for the relationships among the block tridiagonal (1-tridiagonal), 2-tridiagonal,
M-tridiagonal, and 2M-tridiagonal matrices.
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Figure 2. A block tridiagonalization of the block M-tridiagonal matrix A(M).
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Figure 3. Coefficient matrices in the block cyclic reduction.

4. Inverses of Block 1-Tridiagonal and 2-Tridiagonal Matrices

In this section, we express the inverse of the block 1-tridiagonal matrix A(1) using
that of the block 2-tridiagonal matrix A(2). This is useful for comparing the roots of the
characteristic polynomials of the block 1-tridiagonal matrix A(1) and the block 2-tridiagonal
matrix A(2) in the next section.

We introduce two auxiliary matrices D := diag(D(1)
1 , D(1)

2 , . . . , D(1)
m ) and A(1)

R :=
RA(1)R, where R := diag((−1)I1, (−1)2 I2, . . . , (−1)m Im) involving the Ni-dimensional
identity matrices Ii. Then, we derive the following lemma for an expression using D and
A(1)

R of transformation matrix T(1).
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Lemma 1. The transformation matrix T(1) can be decomposed using D and A(1)
R into:

T(1) = A(1)
R D−1.

Proof. It is obvious that RA(1) and RA(1)R are both block 1-tridiagonal matrices. It is
easy to check that (RA(1))i,j = ((−1)j A(1))i,j where (·)i,j denotes the (i, j) blocks of a
matrix. Similarly, it turns out that (RA(1)R)i,j = ((−1)iRA(1))i,j. Thus, by noting that

(A(1)
R )i,j = ((−1)i+j A(1))i,j, we can derive:

A(1)
R =


D(1)

1 −E(1)
1

−F(1)
1 D(1)

2
. . .

. . . . . . −E(1)
m−1

−F(1)
m−1 D(1)

m

.

Furthermore, it can easily be observed that T(1)D = AR. Noting that D is nonsingular,
we obtain (1).

Since it is obvious that R−1 = R, it holds that A(1)
R = R−1 A(1)R. This implies that the

eigenvalues of A(1)
R coincide with those of A(1). Thus, A(1)

R is nonsingular if A(1) is nonsin-

gular. From Lemma 1, it immediately follows that det A(2) = (det A(1)
R )(det D−1)(det A(1)).

Therefore, the inverse of A(2) exists if A(1) is nonsingular. The following proposition gives
the relationship of (A(2))−1 to (A(1))−1 and (A(1)

R )−1.

Proposition 1. For the (i, j) blocks ((A(1))−1)i,j and ((A(2))−1)i,j, it holds that:

((A(2))−1)i,j =

{
((A(1))−1)i,j if i + j is even,

O if i + j is odd,

where O denotes the zero matrix whose entries are all 0 as shown previously. Accordingly,

(A(2))−1 =
1
2
((A(1))−1 + (A(1)

R )−1).

Proof. Observing the ith block-row on both sides of the trivial identity (A(1))−1 A(1) = IN ,
we can obtain m matrix equations:

((A(1))−1)i,1D(1)
1 + ((A(1))−1)i,2F(1)

1 = O,

((A(1))−1)i,1E(1)
1 + ((A(1))−1)i,2D(1)

2 + ((A(1))−1)i,3F(1)
2 = O,

...
...

...
...

((A(1))−1)i,i−1E(1)
i−1 + ((A(1))−1)i,iD

(1)
i + ((A(1))−1)i,i+1F(1)

i = Ii,
...

...
...

...
((A(1))−1)i,m−2E(1)

m−2 + ((A(1))−1)i,m−1D(1)
m−1 + ((A(1))−1)i,mF(1)

m−1 = O,

((A(1))−1)i,m−1E(1)
m−1 + ((A(1))−1)i,mD(1)

m = O.
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Multiplying both sides of the 1st, 2nd, . . . , mth equations in (4) from the right by
((A(1))−1)1,j, ((A(1))−1)2,j, . . . , ((A(1))−1)m,j, respectively, we can rewrite (4) as:

D̂(1)
1 + F̂(1)

1 = O,
Ê(1)

1 + D̂(1)
2 + F̂(1)

2 = O,
...

...
...

...
Ê(1)

i−1 + D̂(1)
i + F̂(1)

i = ((A(1))−1)i,j,
...

...
...

...
Ê(1)

m−2 + D̂(1)
m−1 + F̂(1)

m−1 = O,

Ê(1)
m−1 + D̂(1)

m = O,

where D̂(1)
k := ((A(1))−1)i,kD(1)

k ((A(1))−1)k,j, Ê(1)
k := ((A(1))−1)i,kE(1)

k ((A(1))−1)k+1,j and

F̂(1)
k := ((A(1))−1)i,k+1F(1)

k ((A(1))−1)k,j. Similarly, by focusing on the jth block column of
both sides of A(1)(A(1))−1 = IN and multiplying the 1st, 2nd, . . . , mth equations from the
left by ((A(1))−1)i,1, ((A(1))−1)i,2, . . . , ((A(1))−1)i,m, respectively, we can derive:

D̂(1)
1 + Ê(1)

1 = O,
F̂(1)

1 + D̂(1)
2 + Ê(1)

2 = O,
...

...
...

...
F̂(1)

j−1 + D̂(1)
j + Ê(1)

j = ((A(1))−1)i,j,
...

...
...

...
F̂(1)

m−2 + D̂(1)
m−1 + Ê(1)

m−1 = O,

F̂(1)
m−1 + D̂(1)

m = O.

Adding the kth equation of (4) to that of (4), multiplying this by (−1)k, and letting
G(1)

k := Ê(1)
k + F̂(1)

k , we can thus obtain:

(−1)k(G(1)
k−1 + 2D̂(1)

k + G(1)
k ) =


(−1)i((A(1))−1)i,j if k = i,

(−1)j((A(1))−1)i,j if k = j,

O otherwise,

where G(1)
0 := O and G(1)

m := O. The summation for k = 1, 2, . . . , m of (4) leads to:

2
m

∑
k=1

(−1)kD̂(1)
k = [(−1)i + (−1)j]((A(1))−1)i,j.

From Lemma 1, we can see that: (A(2))−1 = (A(1)
R D−1 A(1))−1 = (A(1))−1D(A(1)

R )−1.

Since it follows from (A(1)
R )−1 = (RA(1)R)−1 = R(A(1))−1R that ((A(1)

R )−1)k,j = (−1)k+j

((A(1))−1)k,j, we can obtain:

((A(2))−1)i,j =
m

∑
k=1

(−1)k+j((A(1))−1)i,kD(1)
k ((A(1))−1)k,j

=
m

∑
k=1

(−1)k+jD̂(1)
k .
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Consequently, by combining (4) with (4), we can derive:

((A(2))−1)i,j =
1 + (−1)i+j

2
((A(1))−1)i,j,

which implies (1). The matrix identity (A(1)
R )−1 = R(A(1))−1R also gives the relationship

of blocks in (A(1))−1 and (A(1)
R )−1:

((A(1)
R )−1)i,j =

{
((A(1))−1)i,j if i + j is even,

−((A(1))−1)i,j if i + j is odd.

Considering (4) and (4), we then have (1).

Proposition 1 plays a key role in understanding the change in the roots of characteristic
polynomials of coefficient matrices in linear systems after block cyclic reductions.

5. Roots of Characteristic Polynomial Sequence

In this section, we first investigate roots of characteristic polynomials of the block
2-tridiagonal matrix A(2) = T(1)A(1), which is transformed from the block 1-tridiagonal
matrix A(1) in the block cyclic reduction under the assumption that A(1) is symmetric
positive definite.

With the help of Proposition 1, we present a theorem for the roots of characteristic
polynomials of A(1) and A(2).

Theorem 1. Assume that the block tridiagonal matrix A(1) is symmetric positive definite. Then,
for the block 2-tridiagonal matrix A(2) = T(1)A(1), it holds that:

λN(A(1)) ≤ λk(A(2)) ≤ λ1(A(1)), k = 1, 2, . . . , N,

where λk(·) denotes the kth largest root of the characteristic polynomial of a matrix—namely, the
kth largest eigenvalue of a matrix.

Proof. Let u1 ∈ RN be a normalized eigenvector corresponding to λ1((A(1))−1 +(A(1)
R )−1).

Noting that (A(1))−1 and (A(1)
R )−1 are both symmetric and considering the Rayleigh

quotient [10], we can derive:

u>1 (A(1))−1u1 ≤ λ1((A(1))−1),

u>1 (A(1)
R )−1u1 ≤ λ1((A(1)

R )−1) = λ1((A(1))−1).

This equality holds in (5) if and only if u1 is the eigenvector of (A(1))−1 corresponding
to λ1((A(1))−1), while the equality holds in (5) if and only if u1 is also the eigenvector
of (A(1)

R )−1 corresponding to λ1((A(1)
R )−1) = λ1((A(1))−1). The inequalities (5) and (5)

immediately lead to:

u>1 ((A(1))−1 + (A(1)
R )−1)u1 ≤ 2λ1((A(1))−1).

Using Proposition 1, we can rewrite the Rayleigh quotient u>1 ((A(1))−1 + (A(1)
R )−1)u1

as:

u>1 ((A(1))−1 + (A(1)
R )−1)u1 = 2λ1((A(2))−1).

From (5) and (5), we can see that:

λk((A(2))−1) ≤ λ1((A(1))−1), k = 1, 2, . . . , N.
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Similarly, from a comparison of the Rayleigh quotient u>1 ((A(1))−1 + (A(1)
R )−1)u1

with the minimal eigenvalue λN((A(1))−1), it follows that:

λk((A(2))−1) ≥ λN((A(1))−1), k = 1, 2, . . . , N.

Thus, by combining (5) with (5), we can obtain:

λN((A(1))−1) ≤ λk((A(2))−1) ≤ λ1((A(1))−1), k = 1, 2, . . . , N.

Since the eigenvalues of a matrix are the reciprocals of eigenvalues of its inverse
matrix, we therefore have (1).

The following theorem is a specialization of Theorem 1.

Theorem 2. Assume that the block tridiagonal matrix A(1) is symmetric positive definite and that
its eigenvalues are distinct from each other. Furthermore, let the non-zero blocks all be nonsingular
square matrices with the same matrix size. Then, for the block 2-tridiagonal matrix A(2) = T(1)A(1),
it holds that:

λN(A(1)) < λk(A(2)) < λ1(A(1)), k = 1, 2, . . . , N.

Proof. We begin by reconsidering the proof of Theorem 1. The proof of (2) is completed
by proving λ1(A(1)) > λ1(A(2)) and λN(A(1)) < λN(A(2)). The equality in (5) does not
hold if the equality in (5) holds. We recall here that the equality in (5) does not hold if u1 is
not the eigenvector of at least either (A(1))−1 or (A(1)

R )−1 corresponding to λ1((A(1))−1) =

λ1((A(1)
R )−1). Noting that λN(A(1)) = λ1((A(1))−1) and λN(A(2)) = λ1((A(2))−1), we can

thus see that λN(A(1)) < λN(A(2)) if the eigenvector of A(1) corresponding to λN(A(1)) is
not equal to that of A(1)

R corresponding to λN(A(1)
R ) = λN(A(1)). Similarly, the inequality

λ1(A(1)) > λ1(A(2)) holds if the eigenvector of A(1) corresponding to λ1(A(1)) is not equal
to that of A(1)

R corresponding to λ1(A(1)
R ) = λ1(A(1)).

Let us assume here that v1 is the eigenvector of both A(1) and A(1)
R corresponding

to λ1(A(1)) = λ1(A(1)
R )—namely, A(1)v1 = λ1(A(1))v1 and A(1)

R v1 = λ1(A(1))v1. From

A(1)(Rv1) = R(A(1)
R v1), we can then derive:

A(1)(Rv1) = λ1(A(1))(Rv1).

This implies that Rv1 is also the eigenvector of A(1) corresponding to λ1(A(1)). Noting
that A(1) does not have multiple eigenvalues, we can thus obtain v1 = Rv1. Let v1(i) denote
the Ni-dimensional vector in the ith block-rows of v1. Then, by observing that:

v1(1)
v1(2)

...
v1(m)

 =


−I1

I2
. . .

(−1)m Im




v1(1)
v1(2)

...
v1(m)

,

we can specify v1 as:

v1 =



o
v1(2)

o
...

(−1)m−1v1(m− 1)
(−1)mv1(m)


,
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where o denotes the zero vector whose entries are all 0. Thus, by focusing on the 1st, 3rd,
. . . , mth block rows on both sides of A(1)v1 = λ1(A(1))v1 with odd m, we have:

E(1)
1 v1(2) = o,

E(1)>
2 v1(2) + E(1)

3 v1(4) = o,
...

E(1)>
m−3 v1(m− 3) + E(1)

m−2v1(m− 1) = o,

E(1)>
m−1 v1(m− 1) = o.

Since E(1)
1 , E(1)

2 , . . . , E(1)
m−1 are all nonsingular. (5) immediately leads to v1(2) = o,

v1(4) = o, . . . , v1(m− 1) = o. Namely, v1 is the zero vector. This contradicts the assump-
tion that v1 is the eigenvector of both A(1) and A(1)

R corresponding to λ1(A(1)) = λ1(A(1)
R ).

The contradiction is similarly derived in the case where m is even. Therefore, we conclude
that λ1(A(1)) > λ1(A(2)). We also have λN(A(1)) < λN(A(2)) along the same lines as the
above proof.

We recall here that the transformation A(2M) = T(M)A(M) from the block M-tridiagonal
matrix A(M) to the block 2M-tridiagonal matrix A(2M) can be regarded as a compos-
ite transformation of the transformations from the block tridiagonal matrices to the
block 2-tridiagonal matrices and two similarity transformations. By combining this with
Theorems 1 and 2, we can derive the following theorem concerning the roots of the charac-
teristic polynomials of A(M) and A(2M) = T(M)A(M).

Theorem 3. Assume that the block M-tridiagonal matrix A(M) is symmetric positive definite,
where M = 1, 2, . . . . Then, for the block 2M-tridiagonal matrix A(2M) = T(M)A(M), it holds that:

λN(A(M)) ≤ λk(A(2M)) ≤ λ1(A(M)), k = 1, 2, . . . , N.

Furthermore, let the roots of the characteristic polynomials of A(M) be distinct from each other,
the non-zero blocks all be nonsingular square matrices, and their matrix sizes all be the same. Then,
it holds that:

λN(A(M)) < λk(A(2M)) < λ1(A(M)), k = 1, 2, . . . , N.

It is obvious that A(2) = T(1)A(1), A(4) = T(2)A(2), . . . are symmetric if the block
tridiagonal matrix A(1) = A is also symmetric in the original linear system Ax = b. From
Theorem 3, we can recursively see that A(2), A(4), . . . are positive definite if the original
coefficient matrix A(1) = A is also positive definite. We then conclude that:

· · · ≤ λ1(A(2M))

λN(A(2M))
≤ λ1(A(M))

λN(A(M))
≤ · · · ≤ λ1(A(2))

λN(A(2))
≤ λ1(A(1))

λN(A(1))
,

or

· · · < λ1(A(2M))

λN(A(2M))
<

λ1(A(M))

λN(A(M))
< · · · < λ1(A(2))

λN(A(2))
<

λ1(A(1))

λN(A(1))
,

as long as the block cyclic reductions are repeated. The discussion in this section can easily
be changed for the case where the original coefficient matrix A(1) = A is negative definite.

6. Numerical Examples

In this section, we give two examples for observing changes in coefficient matrices
in the iterative block cyclic reductions for block tridiagonal linear systems A(1)x = b and
numerically verifying Theorems 1 and 2 with respect to the roots of the characteristic poly-
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nomials of coefficient matrices. The numerical illustration was carried out on a computer;
OS: Mac OS Monterey (ver. 12.0.1), CPU: 2.4 GHz Intel Core i9. For this, we employed the
MATLAB software (R2021a). Computed values are given in floating-point arithmetic.

We first consider the case where A(1) is the 9-by-9 symmetric block tridiagonal and pos-
itive definite matrix with λ1(A(1)) ≈ 11.3465, λ9(A(1)) ≈ 0.9931, and λ1(A(1))/λ9(A(1)) ≈
11.3465/0.9931 ≈ 11.4253:

A(1) =



2 1 0 0 1 0 0 0 0
1 3 1 0 0 1 0 0 0
0 1 4 1 0 0 1 0 0
0 0 1 5 0 1 0 0 0
1 0 0 0 6 1 0 1 0
0 1 0 1 1 7 1 0 1
0 0 1 0 0 1 8 0 1
0 0 0 0 1 0 0 9 1
0 0 0 0 0 1 1 1 10


,

where the values of λ1(A(1)), λ9(A(1)) and λ1(A(1))/λ9(A(1)) are computed using the
MATLAB function eig and rounded to 4 digits after the decimal point. The diagonal
blocks are all symmetric and their matrix sizes are distinct from one another. Since the
determinants of the (1, 1), (2, 2), and (3, 3) blocks are, respectively, 85, 322, and 89, the
diagonal blocks are all nonsingular. The non-zero subdiagonal (and superdiagonal) blocks
are not square matrices, but the transposes of the (1, 2) and (2, 3) blocks coincide with
those of the (2, 1) and (3, 2) blocks, respectively. After the 1st block cyclic reduction, A(1) is
transformed to the symmetric block 2-tridiagonal matrix:

A(2) =



1.8292 1.0248 −0.0031 0.0248 0 0 0 −0.1708 0.0217
1.0248 2.8509 1.0186 −0.1491 0 0 0 0.0248 −0.1304
−0.0031 1.0186 3.8727 1.0186 0 0 0 −0.0031 −0.1087

0.0248 −0.1491 1.0186 4.8509 0 0 0 0.0248 −0.1304
0 0 0 0 5.2759 1.2465 −0.0476 0 0
0 0 0 0 1.2465 6.1930 1.0753 0 0
0 0 0 0 −0.0476 1.0753 7.6048 0 0

−0.1708 0.0248 −0.0031 0.0248 0 0 0 8.8292 1.0217
0.0217 −0.1304 −0.1087 −0.1304 0 0 0 1.0217 9.7609


, (8)

where all non-zero entries are rounded to 4 digits after the decimal point. Using the
MATLAB function eig, we can see that λ1(A(2)) ≈ 10.4242 and λ9(A(2)) ≈ 1.0440. Thus,
λ1(A(2))/λ9(A(2)) ≈ 9.9849 < λ1(A(1))/λ9(A(1)). It is also easy to check that the diagonal
blocks of A(2) are all nonsingular. This implies that a block cyclic reduction can again be
applied to the linear system with the coefficient matrix A(2). The 2nd block cyclic reduction
then simplifies A(2) as the block diagonal matrix:

A =



1.8257 1.0259 −0.0027 0.0259 0 0 0 0 0
1.0259 2.8490 1.0171 −0.1510 0 0 0 0 0
−0.0027 1.0171 3.8715 1.0171 0 0 0 0 0

0.0259 −0.1510 1.0171 4.8490 0 0 0 0 0
0 0 0 0 5.2759 1.2465 −0.0476 0 0
0 0 0 0 1.2465 6.1930 1.0753 0 0
0 0 0 0 −0.0476 1.0753 7.6048 0 0
0 0 0 0 0 0 0 8.8052 1.0321
0 0 0 0 0 0 0 1.0321 9.7475


. (9)

The MATLAB function eig immediately returns λ1(A) ≈ 10.4109 and λ9(A) ≈ 1.0445.
Therefore, λ1(A)/λ9(A) ≈ 9.9674 < λ1(A(2))/λ9(A(2)).
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Next, we deal with the case where A(1) is the 9-by-9 symmetric block tridiagonal and neg-
ative definite matrix with λ1(A(1)) = −1.172, λ9(A(1)) = −6.828 and λ1(A(1))/λ9(A(1)) ≈
6.828/1.172 ≈ 5.826,

A(1) =



−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4


. (10)

This is an example matrix appearing in the discretization of Poisson’s equation [11]. It is
different from the 1st example matrix in that all the blocks have the same matrix size. It is
obvious that the non-zero blocks are all 3-by-3 nonsingular. A block cyclic reduction then
transforms A(1) into the symmetric block 2-tridiagonal matrix:

A(2) =



−3.7321 1.0714 0.0179 0 0 0 0.2679 0.0714 0.0179
1.0714 −3.7143 1.0714 0 0 0 0.0714 0.2857 0.0714
0.0179 1.0714 −3.7321 0 0 0 0.0179 0.0714 0.2679

0 0 0 −3.4643 1.1429 0.0357 0 0 0
0 0 0 1.1429 −3.4286 1.1429 0 0 0
0 0 0 0.0357 1.1429 −3.4643 0 0 0

0.2679 0.0714 0.0179 0 0 0 −3.7321 1.0714 0.0179
0.0714 0.2857 0.0714 0 0 0 1.0714 −3.7143 1.0714
0.0179 0.0714 0.2679 0 0 0 0.0179 1.0714 −3.7321


, (11)

where λ1(A(2)) = −1.8123, λ9(A(2)) = −5.4142, and λ1(A(2))/λ9(A(2)) ≈ 2.9875. Since
the non-zero blocks in A(2) are all nonsingular, we can simplify A(2) as the block diago-
nal matrix:

A =



−3.7052 1.0932 0.0282 0 0 0 0 0 0
1.0932 −3.6770 1.0932 0 0 0 0 0 0
0.0282 1.0932 −3.7052 0 0 0 0 0 0

0 0 0 −3.4643 1.1429 0.0357 0 0 0
0 0 0 1.1429 −3.4286 1.1429 0 0 0
0 0 0 0.0357 1.1429 −3.4643 0 0 0
0 0 0 0 0 0 −3.7052 1.0932 0.0282
0 0 0 0 0 0 1.0932 −3.6770 1.0932
0 0 0 0 0 0 0.0282 1.0932 −3.7052


, (12)

with λ1(A) = −1.8123, λ9(A) = −5.2230, and λ1(A)/λ9(A) = 2.8820. Thus, it can
numerically be observed that: λ1(A(1))/λ9(A(1)) > λ1(A(2))/λ9(A(2)) > λ1(A)/λ9(A).

7. Concluding Remarks

This paper focused on coefficient matrices in linear systems obtained from block
iterative cyclic reductions. We showed that block M-tridiagonal coefficient matrices can
be transformed to block tridiagonal matrices without changing the eigenvalues. We inter-
preted transformations from block M-tridiagonal matrices to block 2M-tridiagonal matrices
as composite transformations of the block tridiagonalizations, with their inverses and trans-
formations from block tridiagonal matrices to block 2-tridiagonal matrices appearing in the
first step of the block cyclic reduction method. We then used this interpretation to consider
the other steps of the block cyclic reduction method. We found a relationship between
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the inverses of block tridiagonal matrices and block 2-tridiagonal matrices in the first step,
which helped us to clarify the main results of this paper—i.e., the first step narrows the
distribution of roots of characteristic polynomials associated with coefficient matrices, and
the other steps also do this if the original coefficient matrices are symmetric positive or
negative definite. This property suggests that each block cyclic reduction does not make
it difficult to solve a linear system with a symmetric positive or negative definite block
tridiagonal matrix, which will be useful for dividing a large-scale linear system into several
small-scale ones.

A remarkable point of our approach is, as a result, useful regardless of whether co-
efficient matrices are tridiagonal or block tridiagonal. However, the coefficient matrices
are currently limited to be symmetric positive or negative definite. For example, in the
nonsymmetric Toeplitz case [12], our approach cannot grasp root distribution of the char-
acteristic polynomial. Future work thus involves developing our approach so that root
distribution can be examined in the cases of various coefficient matrices.
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