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Abstract: A locally irregular graph is a graph in which the end vertices of every edge have distinct
degrees. A locally irregular edge coloring of a graph G is any edge coloring of G such that each of the
colors induces a locally irregular subgraph of G. A graph G is colorable if it allows a locally irregular
edge coloring. The locally irregular chromatic index of a colorable graph G, denoted by χ′irr(G), is
the smallest number of colors used by a locally irregular edge coloring of G. The local irregularity
conjecture claims that all graphs, except odd-length paths, odd-length cycles and a certain class of
cacti are colorable by three colors. As the conjecture is valid for graphs with a large minimum degree
and all non-colorable graphs are vertex disjoint cacti, we study rather sparse graphs. In this paper,
we give a cactus graph B which contradicts this conjecture, i.e., χ′irr(B) = 4. Nevertheless, we show
that the conjecture holds for unicyclic graphs and cacti with vertex disjoint cycles.

Keywords: locally irregular edge coloring; local irregularity conjecture; unicyclic graph; cactus graph

1. Introduction

All graphs mentioned in this paper are considered to be simple and finite. An edge
coloring of a graph is neighbor sum distinguishing if any two neighboring vertices differ in
the sum of the colors of the edges incident to them. This notion was first introduced in [1]
and the following conjecture was proposed there.

Conjecture 1 (1-2-3 Conjecture). Every graph G without isolated edges admits a neighbor-sum-
distinguishing edge coloring with the colors {1, 2, 3}.

This conjecture attracted a lot of interest [2–6] and for a survey we refer the reader to [7].
The best upper bound is that every graph without isolated edges admits a neighbor-sum-
distinguishing edge coloring with five colors [8], but the 1-2-3 Conjecture remains open.

This variant of edge coloring and the 1-2-3 Conjecture motivated the introduction
of similar variants of edge coloring. A locally irregular graph is any graph in which the
two end vertices of every edge differ in degree. A locally irregular k-edge coloring, or k-liec
for short, is any edge coloring of G with k colors such that every color induces a locally
irregular subgraph of G. This variant of edge coloring was introduced in [9]. A third
related edge coloring variant is the neighbor multiset-distinguishing edge coloring, where
neighboring vertices must have assigned distinct multisets of colors on incident edges.
In [10], it was established that every graph without isolated edges admits the neighbor
multiset-distinguishing edge coloring with four colors. Notice that every locally irregular
edge coloring is also a neighbor multiset-distinguishing edge coloring, but the reverse does
not have to hold. In order to see that the reverse does not hold, consider the following
graph with its edge coloring: G is a 2-path abc and edges ab and bc are colored by 1 and
2, respectively. This is obviously not a locally irregular edge coloring but it is a neighbor
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multiset-distinguishing edge coloring as {1}, {1, 2}, {1, 2} are the (multi)sets of colors at
vertices a, b, c, respectively.

In this paper, we focus our attention on locally irregular edge colorings exclusively,
and we say a graph is colorable if it admits such a coloring. The locally irregular chromatic
index of a colorable graph G, denoted by χ′irr(G), is the smallest k, such that G admits a
k-liec. In [9], the family of graphs T has been defined as follows:

• T contains the triangle K3;
• if G is a graph from T, then a graph H obtained from G by identifying a vertex

v ∈ V(G) of degree 2, which belongs to a triangle of G, with an end-vertex of an even
length path or with an end vertex of an odd-length path such that the other end vertex
of that path is identified with a vertex of a triangle, also belongs to T.

Note that every graph G ∈ T has an odd size. A cactus graph is any graph in which
cycles are pairwise edge disjoint. Notice that T is a special family of cacti. Additionally, if
we imagine triangles to be vertices and paths attached to vertices of a triangle as edges, we
might informally say that G has tree-like structure. For the sake of simplicity, we define a
broader family T′ as the family obtained from T by introducing to it all odd-length paths
and all odd-length cycles. Notice that T′ is a subclass of vertex-disjoint cactus graphs.
It was established in [9] that a connected graph G is not colorable if and only if G ∈ T′.
Additionally, the following conjecture on the irregular chromatic index was proposed.

Conjecture 2 (Local Irregularity Conjecture). For every connected graph G 6∈ T′, it holds that
χ′irr(G) ≤ 3.

Let us mention some of the results related to Conjecture 2. For general graphs it was
first established χ′irr(G) ≤ 328 [11], then it was lowered to χ′irr(G) ≤ 220 [12]. For some
special classes of graphs Conjecture 2 is shown to hold, namely for trees [13], graphs with
minimum degree at least 1010 [14], k-regular graphs where k ≥ 107 [9].

In this paper we will show that every unicyclic graph G which does not belong to
T′ admits a 3-liec, thus establishing that Conjecture 2 holds for unicyclic graphs. We will
further extend this result to cactus graphs with vertex-disjoint cycles. Finally, we will
provide an example of a colorable graph B with χ′irr(B) = 4 showing that Conjecture 2
does not hold in general.

2. Revisiting the Trees

Since a unicyclic graph is obtained from a tree by adding a single edge to it, we
first need to introduce the notation and several important results for trees from [13].
Additionally, we will establish several auxiliary results for trees, which will be useful
throughout the paper.

First, a shrub is any tree rooted at a leaf. The only edge in a shrub G incident to the
root we will call the root edge of G. An almost locally irregular k-edge coloring of a shrub G, or
k-aliec for short, is an edge coloring of G which is either k-liec or a coloring in which only
the root edge is not locally irregular (notice that in this case the root edge is an isolated
edge of its color, i.e., it is not adjacent to any other edge of the same color). A proper k-aliec
is k-aliec which is not a k-liec. The following results for trees were established in [13].

Theorem 1. Every shrub admits a 2-aliec.

Theorem 2. For every colorable tree T, it holds that χ′irr(T) ≤ 3. Moreover, χ′irr(T) ≤ 2 if
∆(T) ≥ 5.

If an edge coloring uses at most three colors, we will denote those colors by a, b, c. A
1-liec (resp. 2-liec, 3-liec) of a graph G will be denoted by φa(G) (resp. φa,b(G), φa,b,c(G)).
A 2-aliec of a shrub G will be denoted by φa,b(G) where a is the color of the root edge
in G. Let a, b, c, d be four colors, if φa,b(G) is a 2-liec of G in colors a and b, then 2-liec
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φc,d(G) of G in colors c and d is obtained from φa,b(G) by replacing colors a and b for c and
d respectively, i.e., φc,d(e) = c if and only if φa,b(e) = a. Particularly, 2-(a)liec φb,a(G) is
called the inversion of the 2-(a)liec φa,b(G), where colors a and b are replaced. Moreover, let
φi

a,b,c be an edge coloring of a graph Gi, for i = 1, . . . , k, and let these graphs be pairwise
edge disjoint, i.e., E(Gi) ∩ E(Gj) = ∅ for any two distinct i and j. For a graph G such that
E(G) = ∪k

i=1E(Gi), by ∑k
i=1 φi

a,b,c we will denote the edge coloring of G such that an edge e
is colored by φi

a,b,c(e) if and only if e ∈ E(Gi).
For any color of the edge coloring φa,b,c, say a, we define the a-degree of a vertex

v ∈ V(G) as the number of edges incident to v which are colored by a. The a-degree of a
vertex v is denoted by da

G(v). Assume that a vertex v ∈ V(G) has k neighbors w1, . . . , wk
such that each vwi is colored by a. Then, the sequence da

G(w1), . . . , da
G(wk) is called the

a-sequence of the vertex v. We usually assume that neighbors of v are denoted so that the
a-sequence is non-increasing.

Throughout the paper we will use the technique of finding a 2-liec for trees introduced
in [13]. Namely, if T is a tree with maximum degree 5 or more, then T admits a 2-liec
according to Theorem 2. Otherwise, if the maximum degree of T is at most 4, let v be a
vertex from T and w1, . . . , wk all the neighbors of v for k ≤ 4. Notice that T consists of
k shrubs Ti starting at v, let Ti denote a shrub with the root edge vwi and let φi

a,b denote
a 2-aliec of Ti which exists according to Theorem 1. Recall that φi

a,b(vwi) = a for every

i ≤ k. The coloring φa,b = ∑k
i=1 φi

a,b is called a shrub-based edge coloring of T. We say that a
shrub-based coloring φa,b is inversion resistant if neither φa,b is a 2-liec of T nor any of the
colorings which can be obtained from φa,b by color inversion in some of the shrubs Ti. Let
us now introduce the following lemma which stems from the technique used in [13].

Lemma 1. Let T be a tree with ∆(T) ≤ 4 and v a vertex from T of degree k. Let T1, . . . , Tk be all
the shrubs of T rooted at v and let φi

a,b be a 2-aliec of Ti. If φi
a,b is a 2-liec of Ti for every i = 1, . . . , k,

then the shrub-based coloring φa,b = ∑k
i=1 φi

a,b can be inversion resistant in two cases only:

• If dT(v) = 3 and the a-sequence of v by φa,b is 3, 2, 2;
• If dT(v) = 4 and the a-sequence of v by φa,b is 4, 3, 3, 2.

Proof. If dT(v) = 1, then the shrub-based coloring of T equals φ1
a,b, which is 2-liec. If

dT(v) = 2, then φ1
a,b + φ2

b,a would be a 2-liec of T.
If dT(v) = 3, then the a-degree of v by φa,b is 3, and inverting colors in one of the

shrubs would decrease the a-degree of v to 2. Therefore, the a-sequence of v by φa,b
must contain 3 and 2. Considering the two possibilities 4, 3, 2, and 3, 3, 2, we see that
φ1

a,b + φ2
a,b + φ3

b,a would be 2-liec in both of them. The only remaining possibility is 3, 2, 2,
and it is inversion resistant.

Finally, assume dT(v) = 4. By a similar consideration as above, we see that the a-
sequence of v by φa,b must contain 4, 3, and 2. Therefore, we must consider the possibilities
4, 4, 3, 2, then 4, 3, 3, 2, then 4, 3, 2, 2. It is easily seen that only in the case 4, 3, 3, 2, the
shrub-based coloring φa,b is inversion resistant.

A spidey is a tree with radius at most two which consists of a central vertex u of degree
at least 3 and the remaining vertices have degree at most 2 and are at distance at most 2
from u. Notice that every spidey is locally irregular, hence it admits a 1-liec. We say that a
vertex v of a spidey G is a short leg if it is a leaf which is a neighbor of the central vertex
of G.

Lemma 2. Let H be a spidey with a short leg v and let K be a tree. Let G be a graph obtained from
H and K by identifying the vertex v with a vertex from K. Then, G admits a 3-liec such that all
edges of E(H) are colored by a same color.
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Proof. Since H is a spidey, H admits a 1-liec, say φ0
c . Assume first that a tree K is not

colorable, i.e., K is an odd-length path. This implies there exists in K an edge ev incident
with v, such that K − ev is a collection of even paths which, therefore, admits 2-liec φ1

a,b.
The edge coloring φa,b,c of G defined by

φa,b,c(e) =


c if e = ev,
φ1

a,b(e) if e ∈ E(K)\{ev},
φ0

c (e) if e ∈ E(H),

is a 3-liec of G.
Assume now that K is a colorable tree. If K admits a 2-liec φ1

a,b, then φ0
c + φ1

a,b is a
3-liec of G with the desired property. So, we may assume K is a colorable tree which does
not admit a 2-liec. Theorem 2 implies ∆(K) ≤ 4. Let dK(v) = k ≤ 4 and let T1, . . . , Tk be
all the shrubs of K rooted at v. By Theorem 1, each shrub Ti admits a 2-aliec φi

a,b, where
without loss of generality we may assume that φi

a,b is a proper 2-aliec if and only if i ≤ l.
We distinguish the following four cases with respect to l.

Case 1: l ≥ 3. Notice that l ∈ {3, 4} and l ≤ k ≤ 4. If l = 3 and k = 4, then φ1
a,b + φ2

a,b +

φ3
a,b + φ4

b,a would be a 2-liec of K, a contradiction. Otherwise, the shrub-based coloring

φa,b = ∑k
i=1 φi

a,b would be a 2-liec of K, again a contradiction.

Case 2: l = 2. If k = 2, then φ1
a,b + φ2

a,b is a 2-liec of K, a contradiction. If k = 3, then
φ1

a,b + φ2
a,b + φ3

b,a is a 2-liec of K, a contradiction. If k = 4, then let w1, . . . , w4 be all the

neighbors of v in K. The shrub-based coloring φa,b = ∑k
i=1 φi

a,b is not a 2-liec only if the
a-degree of w3 or w4 by φa,b is 4. Without loss of generality we may assume that a-degree
of w3 by φa,b is 4, but then φ1

a,b + φ2
a,b + φ3

a,b + φ4
b,a is a 2-liec of K, a contradiction.

Case 3: l = 1. In this case, T1 is the only shrub with a proper 2-aliec φ1
a,b. Let w1 be the

neighbor of v in T1, we define the coloring φ′a,b,c of K as follows

φ′a,b,c(e) =

{
c if e = vw1,
∑k

i=1 φi
a,b(e) if e ∈ E(K)\{vw1}.

Notice that φ′a,b,c is not a liec of K, but φ0
c + φ′a,b,c is a 3-liec of G = H + K with the desired

property that all edges of H are colored by a same color, in this case c.

Case 4: l = 0. Notice that in this case Lemma 1 applies on K and v. Therefore, the only
cases when K does not admit a 2-liec are: i) dK(v) = 3 and the a-sequence of v by the
shrub-based coloring φa,b = ∑k

i=1 φi
a,b is 3, 2, 2, or ii) dK(v) = 4 and the a-sequence of v by

φa,b is 4, 3, 3, 2. In the first case the coloring φ0
c + φ1

c,b + φ2
b,a + φ3

a,b is a 3-liec of G such that
E(H) is colored by the same color c, as it is illustrated in Figure 1. In the other case, the
coloring φ0

c + φ1
a,b + φ2

c,b + φ3
a,b + φ4

b,a is a 3-liec of G such that E(H) is colored by a same
color, as it is illustrated in Figure 2.
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(a) (b)

Figure 1. A graph G = H + K and a vertex v of degree 3 in K : (a) the coloring φ0
c + φ1

a,b + φ2
a,b + φ3

a,b
is not a 3-liec of G; (b) the coloring φ0

c + φ1
c,b + φ2

b,a + φ3
a,b is a 3-liec of G.

(a) (b)

Figure 2. A graph G = H + K and a vertex v of degree 4 in K : (a) the coloring φ0
c + φ1

a,b + φ2
a,b +

φ3
a,b + φ4

a,b is not a 3-liec of G, (b) the coloring φ0
c + φ1

a,b + φ2
c,b + φ3

a,b + φ4
b,a is a 3-liec of G.

3. Unicyclic Graphs

In this section, we will establish Conjecture 2 for unicyclic graphs. It is already known
that there exist colorable unicyclic graphs which do not admit 2-liec, but require three
colors in order for edge coloring to be locally irregular, namely cycles of length 4k + 2,
for k ∈ N. We will show that such cycles are not an isolated family of unicyclic graphs
that require three colors. The main result for unicyclic graphs is established through the
following two lemmas in which we will consider separately cases whether the cycle of G is
a triangle or not.

Lemma 3. Let G be a unicyclic graph with the unique cycle being a triangle. If G 6∈ T′, then
χ′irr(G) ≤ 3.

Proof. Let C = u1u2u3 be the triangle in G, let Ti denote the connected component of
G− E(C) which contains ui. Since G 6∈ T′, there must exist a vertex ui on C such that Ti is
not a pendant even length path, say it is u1. Let G1 = T1 + u1u2 and let G0 = G− E(G1).
First notice that both G0 and G1 are trees and that E(G) = E(G0) ∪ E(G1). Since T1 is
not a pendant path of even length, it follows that G1 is not an odd length path, hence it
is colorable. Let φ1

a,b,c be a 3-liec of G1. Without loss of generality we may assume that
φ1

a,b,c(u1u2) = c. Let H be the subgraph of G1 induced by all edges incident to u1 in G1.
We may assume φ1

a,b,c(e) = c for every e ∈ E(H), namely if dH(u1) = 2 this follows from
the local irregularity of φ1

a,b,c; otherwise, it follows from Lemma 2 applied on H and every
component of G1 − E(H) repeatedly.

Let us now consider the graph G0 and notice that it is a shrub rooted at u1 with
the root edge u1u3. By Theorem 1 there exists a 2-aliec φ0

a,b of G0. If φ0
a,b is a 2-liec, then
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φa,b,c = φ0
a,b + φ1

a,b,c is a 3-liec of G. Additionally, if φ0
a,b is a proper 2-aliec of G0, then

G1 + u1u3 is colorable and let φ2
a,b,c be a 3-liec of G1 + u1u3 such that φ2

a,b,c(e) = c for every
edge e ∈ E(H) ∪ {u1u3} by Lemma 2. We define the edge coloring φa,b,c of G as follows

φa,b,c(e) =

{
φ0

a,b(e) if e ∈ E(G0)\{u1u3},
φ1

a,b,c(e) if e ∈ E(G1).

It is easily seen that φa,b,c is a 3-liec of G.

Let us now consider unicyclic graphs with larger cycles.

Lemma 4. Let G be a unicyclic graph with the unique cycle being of length at least four. If G 6∈ T′,
then χ′irr(G) ≤ 3.

Proof. If G is a cycle, then G 6∈ T′ implies that G is an even-length cycle and hence admits
a 3-liec. So, we may assume G is not a cycle, i.e., at least one vertex from the cycle of G is
of degree at least three. Denote the cycle in G by C = u1u2 · · · ug with g ≥ 4. Without loss
of generality we may assume that u1 is the vertex with maximum degree among vertices
from C. We distinguish the following two cases with respect to dG(u1).

Case 1: dG(u1) ≥ 4. Let E1 denote the set of all edges incident to u1 in G except the edge
u1u2 and let H denote the subgraph of G induced by E1. The assumption dG(u1) ≥ 4
implies dH(u1) ≥ 3, so H is a spidey in which every leg is short. Let G0 be the connected
component of G − E1 which contains u2 and let G1 = G − E(G0). Let G′1, . . . , G′k be all
connected components of G1 − E(H). Each G′i is a tree, so Lemma 2 can be applied to H
and K = G′i , for every i = 1, . . . , k. We conclude that there exists a 3-liec φ1

a,b,c of G1 such
that φ1

a,b,c(e) = c for every e ∈ E(H). On the other hand, G0 is a shrub rooted at u1 with the
root edge u1u2, so G0 admits 2-aliec φ0

a,b according to Theorem 1.
If φ0

a,b is a 2-liec of G0, then φa,b,c = φ0
a,b + φ1

a,b,c is a 3-liec of G. Additionally, if φ0
a,b is a

proper 2-aliec of G0, then G1 + u1u2 is colorable and let φ2
a,b,c be a 3-liec of G1 + u1u2 such

that φ2
a,b,c = c for every edge e ∈ E(H) ∪ {u1u2} by Lemma 2. We define the edge coloring

φa,b,c of G as follows

φa,b,c(e) =

{
φ0

a,b(e) if e ∈ E(G0)\{u1u2},
φ1

a,b,c(e) if e ∈ E(G1).

It is easily seen that thus defined φa,b,c is a 3-liec of G.

Case 2: dG(u1) = 3. Let E1 be the set of all edges incident to u1 in G and H a subgraph
of G induced by E1. Let G0 be the connected component of G− E1 which contains u2 and
let G1 = G− E(G0). Similarly as in the previous case, there exists a 3-liec φ1

a,b,c of G1 such
that φa,b,c(e) = c for every e ∈ E(H). Notice that dG(u2) ∈ {2, 3}, since u1 is the vertex
with maximum degree among vertices from C. Now we distinguish two possibilities with
regard to dG(u2).

If dG(u2) = 2, then G0 is a shrub rooted in u2 with the root edge u2u3. According to
Theorem 1, there exists a 2-aliec φ0

a,b of G0. If φ0
a,b is 2-liec of G0, then φa,b,c = φ0

a,b + φ1
a,b,c is

a 3-liec of G. Otherwise, φa,b,c defined by

φa,b,c(e) =


c if e = u2u3,
φ0

a,b(e) if e ∈ E(G0)\{u2u3},
φ1

a,b,c(e) if e ∈ E(G1),

is a 3-liec of G.
If dG(u2) = 3, then consider G0 to be a tree rooted at u2 which consists of two shrubs

G′0 and G′′0 , the first with the root edge u2u3 and the other with the root edge u2v2, where
v2 is the only neighbor of u2 which does not belong to the cycle C. Theorem 1 implies that
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there exist 2 aliecs φ′a,b and φ′′a,b of G′0 and G′′0 , respectively. If both φ′a,b and φ′′a,b are a 2-liec
of the respective shrub, then φa,b,c = φ′a,b + φ′′b,a + φ1

a,b,c is a 3-liec of G. If both φ′a,b and φ′′a,b
are a proper 2-aliec of the respective shrub, then φa,b,c = φ′a,b + φ′′a,b + φ1

a,b,c is a 3-liec of G.
The only remaining possibility is that precisely one of φ′a,b and φ′′a,b, say φ′a,b, is a proper
2-aliec of the respective shrub. In this case we define the coloring φ0

a,b,c of G0 as follows

φ0
a,b,c(e) =


c if e = u2u3,
φ′a,b(e) if e ∈ E(G′0)\{u2u3},
φ′′a,b(e) if e ∈ E(G′′0 ).

Since |V(C)| ≥ 4, it is easily seen that φa,b,c = φ0
a,b,c + φ1

a,b,c is a 3-liec of G.

The previous two lemmas yield the following result.

Theorem 3. Let G be a unicyclic graph. If G 6∈ T′, then χ′irr(G) ≤ 3.

A natural question that arises is whether the bound χ′irr(G) ≤ 3 is tight, i.e., are
there colorable unicyclic graphs which are not 2-colorable. The family of cycles of length
4k + 2 are such graphs, but this family is not an isolated case, there exist other unicyclic
graphs which require three colors, for example, the graph from Figure 3. One can assure
infinitely many such graphs, for example, by taking longer threads of suitable parity in the
given graph.

Figure 3. A colorable unicyclic graph distinct from cycle which requires 3 colors for locally irregular
edge coloring.

4. Cacti with Vertex Disjoint Cycles

In this section, we will extend the result from the previous section to cacti with vertex
disjoint cycles. We will also show that the result does not extend to all cacti by providing
an example of a cactus graph with four cycles which is colorable, but requires 4 colors for a
locally irregular edge coloring. This establishes that Conjecture 2 does not hold in general.
We first need to introduce several useful notions in order to deal with cacti.

Let G be a cactus graph with at least two cycles, let C be a cycle in G and let u be a
vertex from C. We say that u is a root vertex of C if the connected component of G− E(C)
which contains u is a cyclic graph. A cycle C of G is a proper end cycle if G−V(C) contains
at most one cyclic connected component. Every cactus graph with vertex disjoint cycles
contains at least two proper end cycles, given it is not a unicyclic graph.

Theorem 4. Let G be a cactus graph with vertex disjoint cycles. If G 6∈ T′, then χ′irr(G) ≤ 3.

Proof. The proof is by induction on the number of cycles in G. If G is a unicyclic graph,
then the claim holds by Theorem 3. Assume that the claim holds for all cacti with fewer
than p cycles, where p ≥ 2. Let G be a cactus graph with p cycles. We will show that G
admits a 3-liec and this will establish the claim of the theorem. Let C be a proper end cycle
of G, u1 the root vertex of C, and v the only neighbor of u1 which belongs to the cyclic
component of G− E(C). Denote the other neighbors of u1 by u2, . . . , uk so that u2 and u3
belong to the cycle C. In what follows, we distinguish two cases.
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Case 1: dG(u1) = 3. Let G1 be the connected component G− u1v which does not contain v
and let G0 = G− E(G1). Let G′0 = G0 + u1u2 and G′1 = G1 − u1u2.

Suppose first that G′0 is colorable. Then, it admits a 3-liec φ0
a,b,c where the edges u1u2

and u1v must be colored by a same color, say color c. Notice that G′1 is a shrub rooted at u1
with the root edge u1u3. By Theorem 1, G′1 admits a 2-aliec φ1

a,b. If φ1
a,b is a 2-liec of G′1, then

φ0
a,b,c + φ1

a,b is a 3-liec of G. Otherwise, if φ1
a,b is a proper 2-aliec of G1, then the restriction

of φ1
a,b to G′′1 = G′1 − u1u3 is a 2-liec of that graph. Notice that G′′0 = G′0 + u1u3 does not

belong to T′, so it is colorable and by induction hypothesis it admits a 3-liec φ′′a,b,c in which
edges u1u2 and u1u3 must be colored by a same color (say color c) since dG(u1) = 3. Now,
we infer that

φa,b,c(e) =

{
φ1

a,b(e) if e ∈ E(G′′1 ),
φ′′a,b,c(e) if e ∈ E(G′′0 ),

is a 3-liec of G.
Suppose now that G′0 is not colorable. Assume first G1 is not colorable. Notice that G1

is a unicyclic graph, so if the cycle of G1 is a triangle, then the assumption that G′0 and G1
are not colorable would imply G ∈ T, a contradiction. Otherwise, if G1 is a unicyclic graph
on a larger cycle, then it is not colorable only if it is an odd-length cycle. In this case let w be
the only neighbor of u3 distinct from u1, let G′′0 = G′0 + {u1u3, u3w} and G′′1 = G− E(G′′0 ).
Notice that by induction hypothesis G′′0 is colorable and admits a 3-liec φ0

a,b,c for which
we may assume φ0

a,b,c(u3w) = a and φ0
a,b,c(u1u2) ∈ {a, b}. Additionally, notice that G′′1 is

an even length path, so it admits a 2-liec φ1
b,c where we may assume that the edge of G′′1

incident to u2 is colored by c. Then φ0
a,b,c + φ1

b,c is a 3-liec of G.
Suppose now that G1 is colorable. Since G′0 is not colorable, the edge u1u2 of G′0

must belong to an even length path hanging at a vertex of a triangle in G′0, so the graph
G0 = G′0− u1u2 contains an odd-length path hanging at a vertex of a triangle, which means
G0 6∈ T′, so it is colorable. Therefore, by induction hypothesis G0 admits a 3-liec φ0

a,b,c. Since
u1 is a leaf in G0, we may assume that φ0

a,b,c(u1v) = c. By Theorem 3, G1 admits 3-liec φ1
a,b,c.

Since the degree of u1 in G1 equals two, we may assume that the colors of edges u1u2 and
u1u3 are from {a, b}. Therefore, φ0

a,b,c + φ1
a,b,c is a 3-liec of G.

Case 2: dG(u1) ≥ 4. Let H be the subgraph of G induced by the set of all edges incident
to u1 in G. Denote the connected components of G − E(H) in the following way, let G′0
be the component which contains v and G′1 the component which contains u2 and u3.
Additionally, let G1 = G′1 + u1u2 and G0 = G′0 + u1v. We may assume G0 is colorable, as
otherwise G would contain a proper end cycle which is a triangle with the root vertex of
degree 3, which would reduce to the previous case. Let G2 = G− (E(G0) ∪ E(G1) ∪ E(H))
and H′ = H − {u1u2, u1v}.

Suppose first that the tree H′+ G2 is not colorable. This implies that it is an odd-length
path. Notice that H′ + G2, as a shrub rooted at u3, admits a proper 2-aliec φ2

a,b, and since it
is proper we have φ2

a,b(u1u4) = b. Since G0 is colorable, by induction hypothesis it admits a
3-liec φ0

a,b,c, where we may assume φ0
a,b,c(u1v) = a. Since G1 is a shrub rooted at u1 with the

root edge u1u2, it admits a 2-aliec φ1
a,b. If φ1

a,b is a proper 2-aliec of G1, then

φa,b,c(e) =
{

c if e = u1u2 or u1u3,
(φ0

a,b,c + φ1
a,b + φ2

a,b)(e) if e ∈ E(G)\{u1u2, u1u3},

is a 3-liec of G. Otherwise, if φ1
a,b is a 2-liec of G1, then let us consider the graph G′′0 =

G0 + u1u3. It is colorable by the same argument as G0, so it admits a 3-liec φ′′a,b,c in which
u1u3 and u1v must be colored by a same color, say c. Then

φa,b,c(e) =

{
φ′′a,b,c(e) if e ∈ E(G′′0 ),
(φ1

a,b + φ2
a,b)(e) if e ∈ E(G)\E(G′′0 ),
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is a 3-liec of G.
Suppose now that H′ + G2 is a colorable tree, so it admits a 3-liec φ2

a,b,c. We may
assume that φ2

a,b,c(e) = c for every e ∈ E(H′), as this follows either from dH′(u1) = 2 or
from Lemma 2 applied to H′ as a spidey and every connected component of G2 as K. As
for G0, recall that it is colorable, so by induction hypothesis, it has a 3-liec φ0

a,b,c. Since u1 is
a leaf in G0, we may assume φ0

a,b,c(u1v) = a. Let us now consider the graph G1. Recal that it
is a shrub rooted at u1 with the root edge u1u2. Hence, by Theorem 1 the graph G1 admits
a 2-aliec φ1

a,b. If φ1
a,b is a 2-liec of G1, then φ0

a,b,c + φ1
b,a + φ2

a,b,c is a 3-liec of G. Otherwise,
we define H′′ = H′ + u1u2, and notice that H′′ is a spidey. According to Lemma 2, the
graph G′′2 = H′′ + G2 admits a 3-liec φ′′a,b,c such that φ′′a,b,c(e) = c for every e ∈ E(H′′). We
conclude that

φa,b,c(e) =

{
φ′′a,b,c(e) if e ∈ E(G′′2 ),
(φ0

a,b,c + φ1
a,b)(e) if e ∈ E(G)\E(G′′2 ),

is a 3-liec of G.

Let us now consider the so called bow-tie graph B shown in Figure 4. This is a cactus
graph with four cycles, but in which cycles are not vertex disjoint. This graph is colorable
and admits the 4-liec shown in Figure 4, but it does not admit a k-liec for k ≤ 3 since the
two end vertices of the cut edge must have the degree three in the color of that edge. Hence,
for the bow-tie graph B it holds that χ′irr(B) = 4. We conclude that Conjecture 2 does not
hold in general.

Figure 4. The bow-tie graph B and a 4-liec of it.

The consideration of the bow-tie graph gives rise to the following questions: are there
any other graphs for which Conjecture 2 does not hold, do all colorable cacti admit a 4-liec,
what is the thight upper bound on χ′irr(G) of general graphs? We believe the following
conjecture holds, which is a weaker form of the Local Irregularity Conjecture.

Conjecture 3. Every connected graph G which does not belong to T′ satisfies χ′irr(G) ≤ 4.

5. Concluding Remarks

It was established in [9] that a graph does not admit a locally irregular edge coloring
if and only if it belongs to the family T′. Additionally, it was further conjectured that all
other graphs admit a locally irregular 3-edge coloring, see Conjecture 2. As the conjecture
is valid for graphs with large minimum degree and all non-colorable graphs are vertex
disjoint cacti, we took direction to study cacti.

In this paper we first consider trees to obtain an auxiliary result, then we considered
unicyclic graphs and we established that every unicyclic graph G 6∈ T′ admits a locally
irregular 3-edge coloring as Conjecture 2 claims. Moreover, we have remarked that the
bound 3 is tight also on a family of unicyclic graphs, distinct from cycles of the length
4k + 2, for which it was previously known.

We further extended the result to cacti with vertex disjoint cycles, showing that
Conjecture 2 also holds for this class of graphs. Then we gave the so called bow-tie graph B
in which cycles are not vertex disjoint, which is colorable and admits a 4-liec, but it does not
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admit a locally irregular 3-edge coloring. This graph is a counterexample for Conjecture 2.
So the conjecture does not hold in general, but possibly this is a lonely counterexample.
We concluded the paper by conjecturing that all colorable graphs admits a locally irregular
4-edge coloring.
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