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Abstract: A new approach to the construction of difference schemes of any order for the many-body
problem that preserves all its algebraic integrals is proposed herein. We introduced additional
variables, namely distances and reciprocal distances between bodies, and wrote down a system of
differential equations with respect to the coordinates, velocities, and the additional variables. In
this case, the system lost its Hamiltonian form, but all the classical integrals of motion of the many-
body problem under consideration, as well as new integrals describing the relationship between
the coordinates of the bodies and the additional variables are described by linear or quadratic
polynomials in these new variables. Therefore, any symplectic Runge–Kutta scheme preserves these
integrals exactly. The evidence for the proposed approach is given. To illustrate the theory, the results
of numerical experiments for the three-body problem on a plane are presented with the choice of
initial data corresponding to the motion of the bodies along a figure of eight (choreographic test).

Keywords: finite difference method; algebraic integrals of motion; dynamical system; symplectic
Runge–Kutta scheme; midpoint scheme; three-body problem; quadratization of energy

1. Introduction

One of the main continuous models is a dynamic system described by an autonomous
system of ordinary differential equations, that is, a system of equations of the form:

dxi
dt

= fi(x1, . . . , xn), i = 1, 2, . . . n, (1)

where t is an independent variable commonly interpreted as time, x1, . . . , xn are the coor-
dinates of a moving point or several points. In practice, the right-hand sides fi are often
rational or algebraic functions of coordinates x1, . . . , xn or can be reduced to such a form
by a certain change of variables.

The problem of the numerical integration of the dynamical system (1) consists of
finding its solution at the moment of time t = T up to an error value that does not exceed
the given boundary ε > 0. One of the simplest ways to solve this problem is based on using
explicit difference schemes, e.g., Runge–Kutta schemes [1].

A priori estimates of the accuracy exponentially depend on the value of T and there-
fore, in practice, one tries to avoid such estimates when performing calculations for suffi-
ciently long times. Usually, one tries to estimate the error, either by comparing the solutions
obtained with different steps, according to the Richardson method [2,3], or by observing
the change in quantities that should remain constant for the exact solution. If the dynamical
system under consideration has a considerable amount of conservation laws, then one
usually monitors the changes in the algebraic integrals of motion ([4], § 164).
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The idea to construct difference schemes that precisely preserve the integrals of
motion in dynamical systems arose in the late 1980s. In the works of Cooper [5] and
Yu. B. Suris [6,7], a large family of Runge–Kutta schemes was discovered that preserve all
the polynomial first- and second-order integrals of motion as well as on the symplectic
structure in Hamiltonian systems [8,9]. For a number of dynamical systems, this family of
schemes preserves all algebraic integrals. For example, if we exclude the Kovalevskaya case
from consideration, any integral of the rigid body problem with a fixed point is expressed
in terms of the known number of quadratic integrals [10], therefore, symplectic schemes
preserve all algebraic integrals of this system.

However, as has been shown both analytically and in a series of numerical experiments,
symplectic schemes do not exactly preserve higher-order integrals [8]. Nevertheless,
the first finite-difference scheme for the many-body problem [11], preserving all classical
integrals of motion, was proposed in 1992 by Greenspan [12]. He only published his
results in 1995 [13,14], and more recently in the monograph [15]. Independently and in a
somewhat different form, this scheme was proposed in 1995 by Simo and González [16],
as it was mentioned by Graham et al. [17]. Greespan’s scheme is a kind of combination
of the midpoint method and discrete gradient method [18,19] preserving a number of
symmetries of the initial problem [12].

In the 2000s, several general approaches for the construction of difference schemes
were proposed that preserve all algebraic integrals of motion. To our opinion, these meth-
ods can be divided into two large groups: the methods based on the modification of
the Runge–Kutta schemes, and the methods used certain transformations of the origi-
nal differential system. The first group includes the parametric symplectic partitioned
Runge–Kutta method [20,21], in which the Runge–Kutta method is considered with the
order of approximation chosen such that there is a free parameter in the procedure of
determining the Butcher matrix coefficients. This parameter can be chosen to preserve a
chosen quadratic integral.

The invariant energy quadratization method (IEQ, recently proposed by
Yang et al. [22,23]) can be considered to be a member of the second group. Based on
this method, for a number of Hamiltonian systems including the two-body problem (Ke-
pler problem), Hong Zhang et al. [24] constructed finite-difference schemes conserving the
energy. The IEQ method suggests finding such a change of variables, after which the energy
becomes a quadratic form, so that the standard simplectic Runge–Kutta schemes, written
for this transformed system, conserve its energy. The procedure admits the increasing
number of unknowns and the loss of the non-Hamiltonian form of equations.

Both the symplectic Runge–Kutta schemes and the Greenspan scheme are implicit.
Therefore, during numerical integration according to these schemes, a system of algebraic
equations is numerically solved at each step. As a result, the integrals are not exactly
preserved, but with a noticeably higher accuracy in comparison with explicit schemes.

To preserve the changes in the integrals at the round-off error level, one can use
difference schemes that do not exactly preserve the integrals but preserve them up to the
terms whose order in the step ∆t is much higher than the order of the scheme itself. These
schemes include the large family of schemes implementing the Hamiltonian boundary
value methods [25]. Within this approach, the energy of a Hamiltonian system is not
exactly conserved, but in any given order of approximation in ∆t ([25], th. 3.4). Moreover,
as shown in a number of numerical experiments with periodic solutions ([25], § 4.4),
the total energy variation fluctuates within the round-off error without a noticeable trend
towards dissipation or anti-dissipation. This circumstance favorably distinguishes this class
of schemes from explicit Runge–Kutta schemes, in which the energy usually monotonically
increases or decreases.

On the other hand, it should be noted that the advantages of symplectic schemes
and various geometric integrators preserving algebraic integrals over other schemes in
numerical integration for long times are not at all so obvious and were the subject of
a number of discussions [26]. The point is that in the case of non-integrable systems,
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while remaining on the integral manifold, we can decline far from the exact solution.
Nevertheless, in the course of searching for numerical methods for integrating dynamical
systems, a very interesting construction was found—a difference scheme of a dynamical
system that preserves all algebraic integrals of motion ([8], § IV). In our opinion, this scheme
is a difference mathematical model of the same phenomenon, the continuous model of
which is the dynamical system.

Attempts have been made for a long time to consider Newton’s equations as difference
equations ([27], ch. 2, § 3), but with the standard discretization, such a representation faces
a violation of the fundamental conservation laws. Implicit difference schemes provide
approximations that satisfy these laws. Moreover, for linear models, the approximate
solution found by conservative schemes also inherits other properties of the exact solution,
including periodicity [28]. The purpose of our research was to develop methods for
construction and investigation by purely algebraic methods of this kind of discrete models
of dynamical systems.

One of the important steps in this direction is the development of methods for con-
structing various conservative difference schemes for the most famous family of dynamical
systems, the many-body problem. Since we have at our disposal a large and well-studied
family of schemes that preserve linear and quadratic integrals, i.e., the symplectic Runge–
Kutta schemes, the simplest way to construct such schemes is to introduce additional
variables with respect to which all algebraic integrals of the many-body problem are ex-
pressed in terms of linear and quadratic integrals. This assumption can be considered as a
development of the invariant energy quadratization method. Bearing in mind the further
study of schemes in computer algebra systems, we, in contrast to Greenspan, immediately
tried to get rid of the radicals in the right-hand sides of the equations.

The introduction of additional variables in the construction of difference schemes is
known as the scalar auxiliary variable approach (SAV), proposed by Jie Shen et al. [29].
In the past, every effort was made to perform replacements that preserve the symplectic
structure of the many-body problem. In particular, when studying the simple collision
of two bodies, the aim was to find not just a regularizing transformation, but a canonical
transformation. Due to this, the famous Weierstrass theorem on simple collisions was
considered to be an obstacle [30]. There is, however, a simple way to find a regularizing
transformation, which was proposed by Burdet [31] and Heggie [32] and is thoroughly
described in the book by Marchal ([11], ch. 6).

One of the delicate features of the IEQ method is the preservation of constraints.
The fact is that when additional variables are introduced, the equations describe the
relation between the coordinates and velocities of bodies, on the one hand and the auxiliary
variables on the other hand. In the IEQ method, these equations are not necessarily
quadratic, so these constraints are not exactly preserved. We argue that it is possible if one
looks at such a change of variables that describes all integrals of motion and all constraint
equations be by quadratic functions. Therefore, in this paper, we sought to present the
solution to the following problem.

Problem 1. For the n-body problem (2), we constructed another system containing additional
variables and having the following properties:

1. It possesses a sufficient number of algebraic integrals of motion in order to express additional
variables in terms of the coordinates of the bodies;

2. With some choice of constant values in these integrals, its solutions coincide with those of the
original system;

3. It has integrals of motion, which, if one takes into account the relationship between additional
variables and the coordinates of the bodies, are transformed into 10 classical integrals of the
many-body problem;

4. All integrals of motion of the system are quadratic in the coordinates and velocities of bodies,
as well as in additional variables.
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In Section 2, by introducing additional variables, we dispose of radicals in differen-
tial equations; in Section 3, the many-body problem is reduced to a dynamical system
with rational right-hand sides and quadratic integrals. This result is formulated as two
Theorems 1 and 2, published and proven here for the first time. Section 4 for this system
contains the simplest symplectic Runge–Kutta scheme—the midpoint scheme; Section 5
presents the results of numerical experiments, for which we chose a choreographic test.

2. Rationalization of the n-Body Problem

The classical problem of n bodies consists of finding solutions to an autonomous
system of ordinary differential equations:

mi~̈ri =
n

∑
j=1

γ
mimj

r3
ij

(
~rj −~ri

)
, i = 1, . . . , n. (2)

Here,~ri is the radius vector of the i-th body, mi is its masses, rij is the distance between
the i-th and j-th bodies, and γ is the gravitational constant.

Let us for brevity denote the components of the velocity of the i-the body as ẋi = ui,
ẏi = vi, and żi = w and combine them in vector ~vi. This problem has 10 classical integrals
of motion.

1. The momentum conservation (three scalar integrals):

n

∑
i=1

mi~vi = const,

2. The angular momentum conservation (three scalar integrals):

n

∑
i=1

mi~vi ×~ri = const,

3. The center-of-mass inertial motion (three scalar integrals):

n

∑
i=1

mi~ri − t
n

∑
i=1

mi~vi = const,

4. The energy conservation (one scalar integral):

n

∑
i=1

mi
2
|~vi|2 − γ ∑

i,j

mimj

rij
= const.

Bruns ([4], § 164) proved that every algebraic integral of motion in this system is
expressed algebraically in terms of the above 10 classical integrals.

First of all, let us eliminate irrationality by introducing the new variables rij related to
the coordinates by equation:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = 0.

Differentiating this relation with respect to t, we obtain:

rij ṙij = (xi − xj)(ui − uj) + (yi − yj)(vi − vj) + (zi − zj)(wi − wj)

or:
rij ṙij = (~ri −~rj) · (~vi −~vj).
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Let us rewrite the differential system (2) of 3n second-order equations into the system
of the first-order equations in the variables:

x1, . . . , zn, u1, . . . , wn, r12, . . . , rn−1,n.

This system consists of three coupled subsystems:

~̇ri = ~vi, i = 1, . . . , n, (3)

mi~̇vi =
n

∑
j=1

γ
mimj

r3
ij

(
~rj −~ri

)
, i = 1, . . . , n, (4)

ṙij =
1
rij

(~ri −~rj) · (~vi −~vj), i, j = 1, . . . , n; i 6= j. (5)

Every solution to the many-body problem (2) satisfies this system, however, in general,
the converse is not true. Not every solution to (3)–(5) satisfies the relation:

r2
ij = (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2,

and, thus, the systems (2) and (3)–(5) have distinct solution sets. Therefore, generally
speaking, the new system may have fewer integrals than the original. However, in the
given case, we can prove that the new system inherits the set of classical integrals of the
many-body problem (2).

Theorem 1. Systems (3)–(5) has 10 classical integrals of the problem (2) and additionally, the
integrals:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = const.

Proof. To check the conservation of expressions indicated in the theorem, we will calculate
the derivations of these expressions.

• The momentum conservation:

d
dt

n

∑
i=1

mi~vi =
n

∑
i=1

mi~̇vi =
n

∑
i=1

n

∑
j=1

γ
mimj

r3
ij

(
~rj −~ri

)
= 0. (6)

• The angular momentum conservation:

d
dt

n

∑
i=1

mi~vi ×~ri =
n

∑
i=1

mi~̇vi ×~ri =
n

∑
i=1

n

∑
j=1

γ
mimj

r3
ij

(
~rj −~ri

)
×~ri = 0. (7)

• The center-of-mass inertial motion:

d
dt

n

∑
i=1

mi~ri − t
n

∑
i=1

mi~vi =
n

∑
i=1

mi~vi −
n

∑
i=1

mi~vi = 0. (8)

• The energy conservation:

d
dt

n

∑
i=1

mi
2
(u2

i + v2
i + w2

i ) =
n

∑
i=1

mi~vi · ~̇vi =
n

∑
i=1

n

∑
j=1

γ
mimj

r3
ij

~vi ·
(
~rj −~ri

)
= γ ∑

ij

mimj

r3
ij

(
~vi ·

(
~rj −~ri

)
+~vj ·

(
~ri −~rj

))
= γ ∑

ij

mimj

r3
ij

(
~vi −~vj

)
·
(
~rj −~ri

)
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and, due to (5):

d
dt ∑

i,j

mimj

rij
= −∑

i,j

mimj

r2
ij

ṙij = −∑
i,j

mimj

r3
ij

(~ri −~rj) · (~vi −~vj).

• The additional conservation laws:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = const (9)

follow from Equation (5), since the derivative:

d
dt

(
r2

ij − (xi − xj)
2 − (yi − yj)

2 − (zi − zj)
2
)

is equal to:
2rij ṙij − 2(~ri −~rj)(~vi −~j) = 0.

Now, we have an autonomous system with a rational right-hand side, all integrals of
which are quadratic polynomials, except the following rational expression:

n

∑
i=1

mi
2
(u2

i + v2
i + w2

i )− γ ∑
i,j

mimj

rij
= const,

which corresponds to the energy conservation.

3. System with Quadratic Polynomial Integrals

To dispose of the denominators in the energy conservation law, we introduce new
additional variables ρij such that:

rijρij = 1.

Note that again this relation is a quadratic polynomial which allows us to obtain a
quadratic polynomial integral instead of the rational one.

Differentiating this relation with respect to t, we obtain:

rijρ̇ij + ρij ṙij = 0

or:
ρ̇ij = −

ρij

r2
ij
(~ri −~rj) · (~vi −~vj).

Now, we rewrite the system (3)–(5) as the system of first-order equations with respect
to the extended set of unknowns:

x1, . . . , zn, u1, . . . , wn, r12, . . . , rn−1,n, ρ12, . . . , ρn−1,n.

Now, we obtain the system of four coupled subsystems:

~̇ri = ~vi, i = 1, . . . , n (10)

mi~̇vi =
n

∑
j=1

γ
mimjρij

r2
ij

(
~rj −~ri

)
, i = 1, . . . , n (11)

ṙij =
1
rij

(~ri −~rj) · (~vi −~vj), i, j = 1, . . . , n; i 6= j (12)

ρ̇ij = −
ρij

r2
ij
(~ri −~rj) · (~vi −~vj), i, j = 1, . . . , n; i 6= j. (13)
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As well as the system (3)–(5), the dynamical system system (10)–(13) inherits the
conservation laws of (2).

Theorem 2. The system (10)–(13) has 10 classical integrals of the many-body problem (2), namely:

• The momentum conservation:
n

∑
i=1

mi~vi = const,

• The angular momentum conservation:

n

∑
i=1

mi~vi ×~ri = const,

• The center-of-mass inertial motion:

n

∑
i=1

mi~ri − t
n

∑
i=1

mi~vi = const,

• The energy conservation in the form:

n

∑
i=1

mi
2
(u2

i + v2
i + w2

i )− γ ∑
i,j

mimjρij = const,

and the additional integrals:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = const

and:
rijρi,j = const, i 6= j. (14)

Proof. In perfect analogy to the proof of Theorem 1, we perform explicit differentiation
and simplify the obtained expressions. For Equations (6)–(9), it is done exactly as the proof
of Theorem 1. Since now the energy conservation has a slightly different form, we present
the relevant computation:

d
dt

n

∑
i=1

mi
2
(u2

i + v2
i + w2

i ) =
n

∑
i=1

mi~vi · ~̇vi =
n

∑
i=1

n

∑
j=1

γ
mimjρij

r2
ij

~vi ·
(
~rj −~ri

)
= γ ∑

ij

mimjρij

r2
ij

(
~vi ·

(
~rj −~ri

)
+~vj ·

(
~ri −~rj

))
= γ ∑

ij

mimjρij

r2
ij

(
~vi −~vj

)
·
(
~rj −~ri

)
and in view of (13):

d
dt ∑

i,j
mimjρij = −∑

i,j

mimjρij

r2
ij

(~ri −~rj) · (~vi −~vj).

The validity of the conservation law (14) follows from Equations (12) and (13):

d
dt

rijρij = ṙijρij + rijρ̇ij =
ρij

rij
(~ri −~rj) · (~vi −~vj)− rij

ρij

r2
ij
(~ri −~rj) · (~vi −~vj) = 0.

Since the differential equations of the considered system were derived by differentiat-
ing relations (9) and (14), the appearance of the above additional integrals is obvious.
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In general, it is not possible to state that the system (10)–(13) has no other algebraic
integrals, functionally independent of those listed above. However, a solution to the
many-body problem satisfies the extended system (10)–(13) so that any algebraic integral
of motion of the extended system remains constant on the solutions of the many-body
problem. By the Bruns theorem ([4], § 164) on a manifold:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = 0, rijρij = 1, i 6= j,

such an integral is algebraically expressed in terms of the classical integrals.
According to Theorem 2, the autonomous differential system (10)–(13) containing

n(n− 1) additional variables rij and ρij has the following properties:

• It has the quadratic integrals of motion:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = const

and:
rijρij = const,

which allows to express the additional variables rij and ρij in terms of the coordinates
of the bodies.

• If the constants in these integrals are chosen in such a way that:

r2
ij − (xi − xj)

2 − (yi − yj)
2 − (zi − zj)

2 = 0

and:
rijρij = 1,

then the solutions to the system coincide with those to the initial one (2).
• The new system has quadratic integrals of motion, which, taking into account the

relationship between additional variables and the coordinates of the bodies, turn into
10 classical integrals of the many-body problem.

Thus, the constructed system possesses all the properties listed in Problem 1.

4. Conservative Schemes for N Body Problem

Since all classical integrals of the many-body problem, as well as the additional
integrals, are quadratic in their variables, any symplectic Runge–Kutta difference scheme,
including the simplest midpoint one, that is:

x̂− x = f
(

x̂ + x
2

)
∆t, (15)

preserves all these integrals by Cooper’s theorem ([8], § IV.2.1). In particular, the midpoint
scheme written for the system (10)–(13) exactly preserves all its algebraic integrals and
is invariant under permutations of bodies and time reversal. Below we will refer to this
scheme as the midpoint scheme with additional variables. It is not difficult to create
high-order schemes which preserve all integrals of motion in the many-body problem,
which is one of major advantages of the proposed approach to constructing conservative
difference schemes.

The autonomous system of differential Equations (10)–(13) preserves the symmetry of
the original problem with respect to permutations of bodies and time reversal. As noted
above, the midpoint scheme is invariant under these symmetries.

At each step of the scheme, new values will be determined not only for the coordinates
and velocities, but also for the auxiliary quantities rij and ρij. If at the initial moment only
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the coordinates and velocities of the bodies were specified and the auxiliary variables were
defined by the equalities:

rij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, ρij =

1
rij

,

then these equalities are exactly preserved (up to the signs of the radicals) due to the fact
that the auxiliary integrals (9) and (14) are quadratic and exactly preserved under the action
of the midpoint scheme. Therefore, the quantities rij and ρij remain the distances between
bodies and the inverse distances between bodies.

5. Choreographic Test

We now want to illustrate the above considerations with a numerical example using
Sage [33]. For simplicity, we consider the dimensionless problem of the motion of three
bodies of equal mass with mi = γ = 1 on a plane. In 1993, Chris Moore discovered, as part
of a numerical experiment, a new partial periodic solution of the three-body problem,
in which three bodies write out the eight [34]; later, Chenciner and Montgomery [35,36],
justified this fact. The initial conditions are known only approximately. We will use
the values numerically found by Carles Simó and given in the paper by Chenciner and
Montgomery [35].

We calculated the approximate solution of this initial-value problem using the mid-
point scheme with additional variables and compared it with the solutions obtained
by other schemes without introducing additional variables. All calculations were per-
formed in the computer algebra system Sage [33], using the code which is available at
http://malykhmd.neocities.org (accessed on 8 December 2021). As is well known, in the
solution found by the explicit fourth-order Runge–Kutta scheme, the energy H changes
and in a monotonic and noticeable way, as can be seen in Figure 1. Thus, the change in
energy was the center of our attention.

0 20 40 60 80 100

t

−1.292

−1.291

−1.290

−1.289

−1.288

H

Figure 1. Choreographic test, step dt = 0.01. Dependence of energy H on time for the approximate
solutions found using the midpoint scheme (blue) and the rk4 scheme (red).

The midpoint scheme is implicit, so at each step, one has to solve a system of nonlinear
equations. We used the simple iteration method with a fixed number of iterations and a
step of ∆t = 0.01, which is approximately equal to 0.06 of the exact solution period [35].
To eliminate the effect of round-off errors, we assigned 103 bits to decimals. As shown
in Figure 2, already at ten iterations, the energy increment is within the ±2× 10−15 limit.
At the same time, in the solution found by the midpoint scheme without introducing
additional variables, the energy fluctuates in the limit from 0 to 8× 10−5. Of course, we
increased the number of iterations and made sure that the figures did not change. Thus,
we did manage to modify the midpoint scheme so that energy was conserved.

http://malykhmd.neocities.org
http://malykhmd.neocities.org
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2 4 6 8 10

t

−2e−15

−1e−15

1e−15

2e−15

H

2 4 6 8 10

t

1e−5

2e−5

3e−5

4e−5

5e−5

6e−5

7e−5

8e−5

H

Figure 2. Choreographic test, step dt = 0.01, 10 iterations. Dependence of energy increment ∆H
on time for approximate solution found by midpoint scheme with (above) and without (below)
auxiliary variables.

6. Conclusions and Discussion

The major result of our work is Theorem 2: by introducing additional variables,
the many-body problem can be reduced to a dynamical system with a rational right-hand
side, all algebraic integrals of which are expressed in terms of quadratic and linear ones.
Thus, both classical dynamical systems—the gyroscope rotation problem and the many-
body problem—belong to the same type of dynamical systems. A natural application of this
theorem is the possibility of constructing difference schemes of an arbitrary approximation
order that exactly preserve all algebraic integrals on the basis of well-studied symplectic
Runge–Kutta schemes.

The midpoint scheme is an example of such a scheme when it is applied to (10)–(13). It
should be emphasized that, in this way, we can construct high-order schemes that preserve
all integrals of motion in the many-body problem. The key problem with the application of
these schemes in practice, of course, is their implicitness, which can be overcome by both
numerical and numerical–analytical methods. Obviously, errors in solving a nonlinear
system of algebraic equations describing one step in a scheme can completely level out all
the advantages of the proposed scheme [37]. Therefore, in our opinion, this issue requires
further study, including numerical experiments. The numerical example given above is
only intended to illustrate theoretical results.

However, we believe that the conservative difference schemes constructed above for
the many-body problem will not only make it possible to carry out calculations for large
times, but will also make it possible to qualitatively investigate the properties of solutions
of the many-body problem by the finite difference method.

It should also be noted that when comparing the schemes, the focus of the researchers’
attention was always on the quantitative proximity of the exact and approximate solutions,
while the question of preserving the qualitative properties of the exact solution remained
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insufficiently studied, although the tempting possibility to “determine the nature of the
dynamic process using only rough calculations with a large grid pitch” according to the
symplectic scheme was noted in [38]. Meanwhile, for a linear oscillator, the simplest Runge–
Kutta symplectic scheme, the midpoint scheme, allows not only the accurate preservation
of the energy integral, but also to obtain an exact periodic approximate solution and closed
polygons as an analogue of closed phase trajectories of the continuous model [28].

In other words, after discretization, a model is obtained that inherits almost all the
algebraic and qualitative properties of a continuous model. In the theory of partial differ-
ential equations, discretizations inheriting certain properties of differential equations and
operations on the dependent variables included in them are called mimetic (i.e., imitative)
or compatible [39,40]. Therefore, we find it appropriate to consider the construction of
conservative difference schemes in the context of the more general and more important
issue of constructing mimetic difference schemes for the many-body problem, of course,
clarifying the concept itself.

We would like to refrain from predicting the usefulness of these schemes for the
numerical integration of the many-body problem. It is important for us that the midpoint
scheme gives a discrete model of the many-body problem that preserves all integrals. We
plan to study its algebraic properties hoping to repeat the results obtained earlier for linear
models [28]. Lagrange’s case was considered in our talk at CASC’2020 [41].
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