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Abstract: Let a, b and n > 1 be three positive integers such that a and ∑n−1
j=0 bj are relatively prime. In

this paper, we prove that the toric ideal I associated to the submonoid of N generated by {∑n−1
j=0 bj} ∪

{∑n−1
j=0 bj + a ∑i−2

j=0 bj | i = 2, . . . , n} is determinantal. Moreover, we prove that for n > 3, the ideal I
has a unique minimal system of generators if and only if a < b− 1.

Keywords: binomial ideal; semigroup ideal; minimal system of generators; determinantal ideal;
Gröbner basis; indispensability
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1. Introduction

Let k be a field and let A = {a1, . . . , an} be a set of positive integers. It is well known
that the kernel of the k−algebra homomorphism

ϕA : k[x1, . . . , xn]→ k[ta1 , . . . , tan ]; xi 7→ tai , i = 1, . . . , n, (1)

where x1, . . . , xn and t are indeterminates, is a binomial ideal (see [1], or [2] for a more
recent reference). Clearly, ker(ϕA) is the defining ideal of a monomial curve.

Let b be a positive integer and set rb(`) for the `−th repunit number in base b, that is,

rb(`) =
`−1

∑
j=0

bj.

By convention, rb(0) = 0.
The main result in this paper is the explicit determination of a minimal system of

binomial generators of I := ker ϕA for

A = {ai := rb(n) + a rb(i− 1) | i = 1, . . . , n},

where a and n > 1 are positive integers. We prove that I is minimally generated by the
2× 2 minors of the matrix

X :=

(
xb

1 . . . xb
n−1 xb

n

x2 . . . xn xa+1
1

)
, (2)

provided that gcd(a1, . . . , an) = gcd(a, rb(n)) is equal to 1. In this case, as an immediate
consequence, we have that the so-called binomial arithmetical rank of I (see, e.g., [3]) is
equal to (n

2).
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Furthermore, we obtain that the 2× 2−minors of X form a minimal Gröbner basis
with respect to a family of A-graded reverse lexicographical term orders on k[x1, . . . , xn]
(Theorem 1) and, applying ([4], Corollary 14), we conclude that for n > 3, the ideal I has a
unique minimal system of generators if and only if and a < b− 1 (Corollary 2).

The submonoids of N generated by A are studied in detail in [5] as a generalization
of the numerical semigroups introduced by D. Torrão et al. (see [6,7]); in this context,
Corollary 2 provides a minimal presentation of the submonoid of N generated by a1, . . . , an,
providing an original result not considered in Torrão’s Ph.D. thesis.

To achieve our main result (Theorem 1), we first compute the ideal J of the projective
monomial curve defined by the kernel of the k−algebra homomorphism

k[x1, . . . , xn]→ k[trb(0) s, . . . , trb(n−1) s]; xi 7→ trb(i−1) s, i = 1, . . . , n, (3)

where s is also an indeterminate. This intermediate result (Proposition 1) has its own
interest, as it exhibits another family of semigroup ideals that are determinantal and have
unique minimal system of binomial generators (Corollary 1).

Throughout the paper, we keep the notation established in this introduction. Moreover,
as the case n = 2 is trivial and the case n = 3 is well known for any a1, a2 and a3 (see [1]),
we suppose that n > 3 whenever necessary.

The explicit description of minimal systems of binomial generators of monomial
curves, and in a broader context of toric ideals, is a long-established research topic since
J. Herzog, in his celebrated paper [1], characterized the minimal systems of binomial
generators of (all) the monomial curves in affine three-dimensional space. The elegance
of Herzog’s result for the three-dimensional case contrasts with the fact that no explicit
description is known for the general case. Particular advances are just known for low-
dimensional cases (see, e.g., [8] or more recently in [9] and the references therein) or for
special families of monomial curves as presented in this paper; due to its proximity to the
present work, we highlight the article by D.P. Patil [10] as one among many others.

We finally emphasize that, despite of not being the aim this paper, the study of the
defining ideal of monomials curves have its own interest for applications to other areas
such as linear programming (see, e.g., [11]), coding theory (see, e.g., [12] or algebraic
statistics, where the minimal systems of bionomial generators are called Markov bases and
the uniqueness property has special consideration (see [13]).

2. Preliminaries

Let a, b and n be three positive integers such that n > 3. Consider the sequence of
positive integers (ai)i≥1 such that

ai := rb(n) + a rb(i− 1),

for every i ≥ 1.
In this section, we present several lemmas that reflect the arithmetic structure of

the sequence (ai)i≥1. In addition, we present the family of term orders that will be used
throughout the paper.

Lemma 1. The following equality holds: an+k = ak + a bk−1 a1, for all k ≥ 1. In particular,
an+1 = (1 + a) rb(n).

Proof. It suffices to observe that rb(n + k − 1) = rb(k − 1) + bk−1 rb(n), for all k ≥ 1,
and, consequently, that an+k = rb(n) + +a rb(n + k− 1) = a1 + a rb(n + k− 1) = a1 + a
(rb(k − 1) + bk−1rb(n)) = ak + a bk−1 a1, for all k ≥ 1. Finally, as a1 = rb(n), the last
statement is straightforward

Notice that, by Lemma 1, the set A = {a1, . . . , an} is a system of generators of the
submonoid of N generated by the sequence (ai)i≥1.
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Lemma 2. For each pair of positive integers j and k, it holds that

b aj + aj+k = b aj+k−1 + aj+1.

Proof. As aj+k = a1 + a rb(j + k− 1) = a1 + a (rb(j− 1) + bj−1 rb(k)) = aj + a bj−1 rb(k),
we conclude that

b aj + aj+k = b aj + aj + a bj−1 rb(k) =

= b aj + aj + a bj−1 (b rb(k− 1) + 1) =

= b (aj + a bj−1 rb(k− 1)) + aj + a bj−1 =

= b aj+k−1 + (a1 + a rb(j− 1)) + a bj−1 =

= b aj+k−1 + aj+1,

as claimed.

Let ≺i be the term order on k[x1, . . . , xn] defined by the following matrix

M :=



a1 . . . ai ai+1 ai+2 . . . an
0 −1 0 0 . . . 0

. . . ...
...

...
−1 0 0 0 . . . 0
0 . . . 0 0 0 −1
...

...
... . . .

0 0 0 −1 0


.

We observe that ≺i is the A-graded reverse lexicographical term order on k[x1, . . . , xn]
induced by xi ≺i xi−1 ≺i . . . ≺i x1 ≺i xn ≺i . . . ≺i xi+1; in particular, xi is the smallest
variable for ≺i.

Lemma 3. If j ∈ {1, . . . , n− 2} and k ∈ {j + 1, . . . , n− 1}, then

xb
j xk+1 ≺i xj+1xb

k

if and only if i ≤ j or k + 1 ≤ i.

Proof. By Lemma 2, b aj + ak+1 = aj+1 + b ak, so we just need to decide what the variable
xj, xj+1, xk or xk+1 is cheapest for the order defined by the last n − 1 rows of M. As
j < j + 1 ≤ k < k + 1, according to the definition of ≺i, the variable xk+1 is cheaper than
the other three when j ≤ i or k + 1 ≤ i; thus, xb

j xk+1 ≺i xj+1xb
k in these cases. Conversely, if

j + 1 ≤ i ≤ k, then either xk or xj+1 is cheaper than the others if k = i or k 6= i, respectively.
Therefore xb

j xk+1 �i xj+1xb
k when j + 1 ≤ i ≤ k, and we are done.

3. Gröbner Bases and Minimal Generators for J

We keep the notation of the Introduction and Section 2.
Let I2(Y) be the ideal of k[x1, . . . , xn] generated by the 2× 2−minors of

Y :=

(
xb

1 xb
2 . . . xb

n−1

x2 x3 . . . xn

)
.

Let G(i)1 ,G(i)2 and G(i)3 be defined as follows:

G(i)1 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {i, . . . , n− 2}, k ∈ {j + 1, . . . , n− 1}
}

,



Mathematics 2021, 9, 3204 4 of 11

G(i)2 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {1, . . . , i− 2}, k ∈ {j + 1, . . . , i− 1}
}

,

G(i)3 =
{

xb
j xk+1 − xj+1xb

k | j ∈ {1, . . . , i− 1}, k ∈ {i, . . . , n− 1}
}

and let G(i)Y be equal to G(i)1 ∪ G
(i)
2 ∪ G

(i)
3 .

Notice that, by Lemma 3, the underlined monomials are the leading terms with respect
to ≺i of the corresponding binomials.

Proposition 1. With the above notation, the set G(i)Y is the reduced Gröbner basis of I2(Y) with

respect to ≺i. In particular, the cardinality of G(i)Y is (n−1
2 ).

Proof. First, let us see that G(i)Y is a Gröbner basis. By the Buchberger’s Criterion (see,

e.g., [14], Theorem 3.3), it suffices to verify that each S-pair of elements in G(i)Y can be reduced

to zero by G(i)Y using the division algorithm. To do this, we distinguish several cases:

• Let f ∈ G(i)1 , that is to say, f = xj+1xb
k − xb

j xk+1, for some j ∈ {i, . . . , n − 2} and
k ∈ {j + 1, . . . , n− 1}.

◦ Let g = xl+1xb
m− xb

l xm+1 ∈ G
(i)
1 . If gcd(xj+1xb

k , xl+1xb
m) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j + 1 = m, k = l + 1 or
k = m. If j = l then S( f , g) = xb

m(−xb
j xk+1) − xb

k(−xb
j xm+1) = xb

j (xb
k xm+1 −

xb
mxk+1) reduces to zero with respect to G(i)Y . If j + 1 = m , then

S( f , g) = xl+1xb−1
j+1 (−xb

j xk+1)− xb
k(−xb

l xj+2).

Now, as i ≤ j < j + 1 ≤ k < k + 1 and i ≤ l < l + 1 ≤ m = j + 1 < j + 2, the lead-
ing term of S( f , g) with respect to ≺i is xb

k xb
l xj+2. Then

S( f , g) = xb
l (xb

k xj+2 − xb
j+1xk+1) + xb−1

j+1 xk+1(xb
l xj+1 − xl+1xb

j ) reduces to zero

with respect to G(i)Y . By symmetry, the case k = l + 1 is completely similar to the

latter one. Finally, if k = m , then S( f , g) = −xl+1(−xb
j xk+1)− xj+1(−xb

l xk+1) =

xk+1(xb
j xl+1 − xj+1xb

l ) reduces to zero with respect to G(i)Y .

◦ Let g = xl+1xb
m− xb

l xm+1 ∈ G
(i)
2 . If gcd(xj+1xb

k , xl+1xb
m) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j + 1 = m, k = l + 1
or k = m. First, we observe that the cases j = l and k = m produce the same
S-polynomial as in the corresponding case for g ∈ G(i)1 ; so, we just focus on the
cases j + 1 = m and k = l + 1. If j + 1 = m , then i ≤ j < j + 1 ≤ k < k + 1
and l < l + 1 ≤ m = j + 1 < j + 2 = m− 1 ≤ i, therefore i < j + 1 = m < i,
a contradiction. Finally, if k = l + 1 , then i ≤ j < j + 1 ≤ k < k + 1 and
l < l + 1 = k ≤ m < m + 1 ≤ i, so i < k = l + 1 < i, a contradiction again.

◦ Let g = xb
l xm+1 − xl+1xb

m ∈ G
(i)
3 . If gcd(xj+1xb

k , xb
l xm+1) = 1, then S( f , g) re-

duces to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j + 1 = l, j = m, k = l or
k = m + 1. If j + 1 = l , then i ≤ j < j + 1 = l ≤ k < k + 1 and l ≤ i − 1; so

i < j + 1 = l ≤ i− 1, a contradiction. If j = m (or k = l , respectively) then

S( f , g) = xb
m(xb

k xl+1 − xb
l xk+1) (or S( f , g) = xk+1(xj+1xb

m − xb
j xm+1), respec-

tively) reduces to zero with respect to G(i)Y . Finally, if k = m + 1 , then

S( f , g) = xb
l (−xb

j xm+2)− xj+1xb−1
m+1(−xl+1xb

m).
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Now, as i ≤ j < j + 1 ≤ k = m + 1 < k + 1, l ≤ i − 1 and i ≤ m, then
xl+1 or xm−1 is cheaper than the others for the order induced by the last n− 1
rows of the matrix M, therefore leading term of S( f , g) is xb

l xb
j xk+1 and thus,

S( f , g) = −xb
j (xb

l xm+2 − xl+1xb
m+1) − xl+1xb−1

m+1(xb
j xm+1 − xj+1xb

m) reduces to

zero with respect to G(i)Y .

• Let f ∈ G(i)2 , that is to say, f = xj+1xb
k − xb

j xk+1, for some j ∈ {1, . . . , i − 2} and
k ∈ {j + 1, . . . , i− 1}.

◦ Let g = xl+1xb
m− xb

l xm+1 ∈ G
(i)
2 . If gcd(xj+1xb

k , xl+1xb
m) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j + 1 = m, k = l + 1 or
k = m. If j = l (or k = m , respectively), then S( f , g) = xb

j (xb
k xm+1 − xk+1xb

m)

(or S( f , g) = xk+1(xl+1xb
j − xb

l xj+1), respectively) reduces to zero with respect to

G(i)Y . If j + 1 = m , then

S( f , g) = xl+1xb−1
m (−xb

m−1xk+1)− xb
k(−xb

l xm+1)

and, as l + 1 ≤ m = j + 1 ≤ k ≤ i − 1, the leading term of S( f , g) is equal to
xl+1xb−1

m xb
m−1xk+1. Thus, S( f , g) = −xb−1

m xk+1(xl+1xb
m−1− xb

l xm)+ xb
l (xb

k xm+1−

xb
mxk+1) reduces to zero with respect to G(i)Y ; observe that l < l + 1 ≤ m implies

that the leading term of xl+1xb
m−1 − xb

l xm is actually xl+1xb
m−1. Finally, by sym-

metry, the case k = l + 1 is completely similar to the latter one.

◦ Let g = xb
l xm+1− xl+1xb

m ∈ G
(i)
3 . If gcd(xj+1xb

k , xb
l xm+1) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j + 1 = l, j = m, k = l or
k = m + 1. If j + 1 = l , then

S( f , g) = xb−1
l xm+1(−xb

l−1xk+1)− xb
k(−xl+1xb

m).

Furthermore, as l = j + 1 ≤ k ≤ i− 1 and l ≤ i− 1 < i ≤ m < m + 1, we have
that the leading term is xb−1

l xm+1xb
l−1xk+1 if k = l and xb

k xl+1xb
m otherwise. In

ther first case, S( f , g) = xm+1xb
k−1 + xkxb

m reduces to zero with respecto to G(i)Y .
In the second case, S( f , g) = xb

m(xb
k xl+1 − xk+1xb

l ) + xb−1
l xk+1(xb

mxl − xm+1xb
l−1)

reduces to zero with respect to G(i)Y . If j = m (or k = l , respectively) then

S( f , g) = xb
m(xb

k xl+1 − xb
l xk+1) (or S( f , g) = xk+1(xj+1xb

m − xb
j xm+1), respec-

tively) reduces to zero with respect to G(i)Y . Finally, if k = m + 1 , then j + 1 ≤
k = m + 1 ≤ i− 1, l ≤ i− 1 and i ≤ m; so, m + 1 < i ≤ m, a contradiction.

• Let f ∈ G(i)3 , that is to say, f = xb
j xk+1 − xj+1xb

k , for some j ∈ {1, . . . , i − 1} and
k ∈ {i, . . . , n− 1}.

◦ Let g = xb
l xm+1 − xl+1xb

m ∈ G
(i)
3 . If gcd(xb

j xk+1, xb
l xm+1) = 1, then S( f , g) re-

duces to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j = m + 1,
k + 1 = l or k = m. As j ≤ i − 1 < i ≤ k and l ≤ i − 1 < i ≤ m, the cases
j = m + 1 and k + 1 = m cannot occur. If j = l (or k = m , respectively), then

S( f , g) = xl+1(xk+1xb
m − xm+1xb

k) (or S( f , g) = xb
m(xb

l xj+1 − xb
j xl+1), respec-

tively) reduces to zero with respect G(i)Y .

Once we know that G(i)Y is Gröbner basis, it is immediate to see that it is reduced since

the leading term of f ∈ G(i)Y does not divide any other monomial that appears in a binomial

of G(i)Y \ { f }.
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It remains to prove that G(i)Y generates I2(Y). Clearly, G(i)Y is contained in the set of

2× 2−minors of Y. Moreover, as the cardinality of G(i)1 ,G(i)2 and G(i)3 are(
(n− 1)− i

)
+
(
(n− 1)− i− 1

)
+ . . . + 1 =

(
n− i

2

)
,

(
(i− 1)− 1

)
+
(
(i− 1)− 2

)
+ . . . + 1 =

(
i− 1

2

)
and

(i− 1)(n− i),

respectively, we have that the cardinality of G(i)Y is equal to (n−1
2 ) which is the number of

2× 2−minors of Y. Therefore, G(i)Y generates I2(Y) and we are done.

Example 1. We observe that the reduced Gröbner basis, G(i)Y , of I2(Y) with respect to ≺i is not an
universal Gröbner basis. For example, if n = b = 5 and ≺ is the term order defined by

a1 a2 a3 a4 a5
0 0 −1 0 0
0 0 0 0 −1
0 0 0 −1 0
0 −1 0 0 0

,

then one can check (using, for example, Singular [15]) that the reduced Gröbner basis of the ideal
I2(Y) with respect to ≺ has eight generators; however, G(i)Y contains (5−1

2 ) = 6 binomials only.

Alternatively, one can see that G(i)Y is not an universal Gröbner basis of I2(Y) by us-
ing ([16], Theorem 4.1).

We now consider the 2× n−integer matrix B whose j−th column is

aj :=
(

rb(j− 1)
1

)
, j = 1, . . . , n.

Remark 1. Observe that aj =
(
a, rb(n)

)
· aj, for every j = 1, . . . , n.

Notice that the semigroup ideal associated to {a1, . . . , an} is equal to J; indeed, J is
the kernel of (3).

Corollary 1. The ideal J is minimally generated by the 2× 2−minors of Y. Moreover, J has a
unique minimal system of binomial generators.

Proof. Let I2(Y) the ideal generated by the 2× 2−minors of Y. Since b aj + ak+1 = aj+1 + b
ak for every j and k, we have that I2(Y) ⊆ J.

Conversely, let C be the (n− 2)× n−matrix

b −1 −b 1 0 . . . 0 0 0 0
0 b −1 −b 1 . . . 0 0 0 0
0 0 b −1 −b . . . 0 0 0 0
0 0 0 b −1 . . . 0 0 0 0
0 0 0 0 b . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 . . . b −1 −b 1
0 0 0 0 0 . . . 0 b −(b + 1) 1


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and let IC be the ideal of k[x1, . . . , xn] generated by

{xu+ − xu− | u is a row of C},

where u+ and u− denote the positive and negative parts of u, respectively. Clearly,
IC ⊆ I2(Y).

Now, as the determinant of the submatrix of C consisting in the last n− 2 columns
is 1, the rows of C generates a rank n− 2 subgroup GC of Zn such that Zn/GC is torsion
free. Moreover, as B C> = 0, we conclude that the rows of C generate kerZ(B). Therefore,
by ([14], Lemma 7.6),

J = IC :
(

∏
j

xj

)∞
⊆ I2(Y) :

(
∏

j
xj

)∞
.

By Proposition 1 and ([17], Theorem 3.1), we have that I2(Y) : x∞
i = I2(Y) for every

i = 1, . . . , n. So, I2(Y) : (∏j xj)
∞ = I2(Y) and, consequently, J ⊆ I2(Y) as desired.

Finally, by Proposition 1, we conclude that the 2× 2−minors of Y form a minimal
system generators of J and, ([4], Corollary 14), we conclude that J has a unique minimal
system of binomial generators.

We recall that semigroup ideals minimally generated by a Graver basis have unique
minimal system of binomials generators (see ([4], Corollary 16)). As Graver bases are in
particular universal Gröbner bases (see [18], Proposition 4.11), by Example 1, we can assure
the minimal system of binomial generators of J is not a Graver basis.

4. Gröbner Basis and Minimal Generators for I

We maintain the notation of the Introduction and the previous Sections, and we set
G(i)4 to be equal to{

xa+1
1 xb

l − xl+1xb
n | l = 1, . . . , i− 1

}⋃{
xl+1xb

n − xa+1
1 xb

l | l = i, . . . , n− 1
}

,

where the underlined monomials again highlight the leading terms with respect to ≺i of
the corresponding binomials.

Let I2(X) be the ideal of k[x1, . . . , xn] generated by the 2× 2−minors of the matrix X
defined in (2).

Theorem 1. The set G(i) = G(i)Y ∪ G
(i)
4 is a minimal Gröbner basis of I2(X) with respect to ≺i. In

particular, the cardinality of G(i) is (n
2).

Proof. Proceeding as in the proof of Proposition 1, we first need to prove that S( f , g)
reduces to zero with respect to G(i), for every f , g ∈ G(i). However, as, by Proposition 1,
G(i)Y is already a Gröbner basis with respect to ≺i and the leading terms with respect to ≺i

of the binomials in G(i)4 are relatively prime, it suffices to prove that S( f , g) reduces to zero

with respect to G(i), for every f ∈ G(i)Y and g ∈ G(i)4 . To do this we distinguish three cases:

• f ∈ G(i)1 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {i, . . . , n− 2}, k ∈ {j + 1, . . . , n− 1}
}

. If j 6= l and
k 6= l + 1, then the leading terms of f and g are relatively prime and there is nothing
to prove. Therefore, it suffices to consider the cases j = l or k = l + 1.

◦ If j = l, then l ≥ i; otherwise, the leading terms of f and g are relatively prime,
and S( f , g) = xb

n(−xb
l xk+1)− xb

k(−xa+1
1 xb

l ) = −xb
l (xk+1xn − xa+1

1 xb
l ) reduces to

zero with respect to G(i)4 .
◦ If k = l + 1 then n− 2 ≥ k − 1 = l ≥ j ≥ i, otherwise the leading terms of f

and g are relatively prime, and S( f , g) = xb
n(−xb

j xl+2)− xj+1xb−1
l+1 (−xa+1

1 xb
l ) =
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−xb
j xb

nxl+2 + xa+1
1 xj+1xb−1

l+1 xb
l . Observe that the leading term of S( f , g) is divisible

by the leading term of h := xb
nxl+2 − xa+1

1 xb
l+1 ∈ G(i)4 . Therefore,

S( f , g) = xb
j h− xb

j xa+1
1 xb

l+1 + xa+1
1 xj+1xb−1

l+1 xb
l = xb

j h− xa+1
1 xb−1

l+1 (xb
j xl+1− xj+1xb

l ).

Now, as xb
j xl+1 − xj+1xb

l ∈ G
(i)
Y , we are done.

• f ∈ G(i)2 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {1, . . . , i− 2}, k ∈ {j + 1, . . . , i− 1}
}

. If j + 1 6= l
and k 6= l, then the leading terms of f and g are relatively prime and there is nothing
to prove. So, it suffices to consider the cases j = l − 1 or k = l.

◦ If j + 1 = l, then 1 ≤ j = l − 1 < k ≤ i − 1, otherwise the leading terms of f
and g are relatively prime, and S( f , g) = xa+1

1 xb−1
l (−xb

l−1xk+1)− xb
k(−xl+1xb

n) =

xb
k xl+1xb

n − xa+1
1 xb

l−1xb−1
l xk+1. If l = k, then the S-polynomial S( f , g) = xb

k xk+1xb
n

−xa+1
1 xb

k−1xb−1
k xk+1 = −xb−1

k xk+1(xa+1
1 xb

k−1− xkxb
n) reduces to zero with respect

to G(i)4 ; otherwise, the leading term of S( f , g) is xb
k xl+1xb

n which is divisible by

the leading term of h := xb
k xl+1 − xk+1xb

l ∈ G
(i)
4 . So, S( f , g) = xb

nh + xb
nxk+1xb

l −
xa+1

1 xb
l−1xb−1

l xk+1 = xb
nh − xb−1

l xk+1(xa+1
1 xb

l−1 − xb
nxl). Now, since xa+1

1 xb
l−1 −

xb
nxl ∈ G

(i)
4 , we are done.

◦ If k = l, then 1 ≤ j < k = l ≤ i − 1, otherwise the leading terms of f
and g are relatively prime, and S( f , g) = xa+1

1 (−xb
j xl+1) − xj+1(−xl+1xb

n) =

−xl+1(xa+1
1 xb

j − xj+1xb
n). Now, since xa+1

1 xb
j − xj+1xb

n ∈ G
(i)
4 , we are done.

• f ∈ G(i)3 =
{

xb
j xk+1 − xj+1xb

k | j ∈ {1, . . . , i − 1}, k ∈ {i, . . . , n − 1}
}

. If j 6= 1,

j 6= l, k 6= l and k 6= n− 1, then the leading terms of f and g are relatively prime and
there is nothing to prove. Therefore, is suffices so consider the cases j = 1, j = l, k = l
or k = n− 1.

◦ If j = 1, then, in particular, l < i, otherwise the leading terms of f and g are rel-
atively prime. Now, if a + 1 ≥ b, then S( f , g) = xa+1−b

1 xb
l (−x2xb

k)− xk+1xl+1xb
n

and its leading term is divisible by the leading term of h := xb
l x2− xl+1xb

1 ∈ G
(i)
2 ∪

G(i)3 ; then S( f , g) = xa+1−b
1 xb

kh− xa+1−b
1 xb

k(−xl+1xb
1)− xk+1xl+1xb

n = xa+1−b
1 xb

kh

−xl+1(xk+1xb
n − xa+1

1 xb
k) which reduces to zero with respect to G(i)2 ∪ G

(i)
3 ∪ G

(i)
4 .

Otherwise, if a+ 1 < b, then S( f , g) = xb
l (−x2xb

k)− xb−a−1
1 xk+1(−xl+1xb

n) and its

leading term is divisible by the leading term of h := xb
l x2 − xl+1xb

1 ∈ G
(i)
2 ∪ G

(i)
3 ;

then S( f , g) = xb
kh −xb

k(−xl+1xb
1) − xb−a−1

1 xk+1(−xl+1xb
n) = xb

kh − xb−a−1
1 xl+1

(xk+1xb
n − xa+1

1 xb
k) which reduces to zero with respect to G(i)2 ∪ G

(i)
3 ∪ G

(i)
4 , too.

◦ If j = l, then 1 ≤ l ≤ i − 1; otherwise, the leading terms of f and g are rela-
tively prime, and S( f , g) = xa+1

1 (−xl+1xb
k)− xk+1(−xl+1xb

n) = −xl+1(xk+1xb
n −

xa+1
1 xb

k) which reduces to zero with respect to G(i)4 .
◦ If k = l, then i ≤ l ≤ n− 1; otherwise, the leading terms of f and g are relatively

prime, and S( f , g) = xb
n(−xj+1xb

l )− xb
j (−xa+1

1 xb
l ) = xb

l (xa+1
1 xb

j − xj+1xb
n) which

reduces to zero with respect to G(i)4 .
◦ If k = n− 1, then 1 ≤ j < i ≤ l < n, otherwise the leading terms of f and g are

relatively prime. In this case, S( f , g) = xl+1xb−1
n (−xj+1xb

n−1)−xb
j (−xa+1

1 xb
l ) and,

since the leading term of S( f , g) is divisible by the leading term of h := xa+1
1 xb

j −

xj+1xb
n ∈ G

(i)
4 , we have that S( f , g) = xb

l h− xb
l (−xj+1xb

n) + xl+1xb−1
n (−xj+1xb

n−1)

= xb
l h− xj+1xb−1

n (xl+1xb
n−1 − xb

l xn), and as xl+1xb
n−1 − xb

l xn belongs to G(i)1 , we
are done.
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Now, as S( f , g) reduces to zero with respect to G(i) in all the three cases we conclude
that G(i) forms a Gröbner basis.

Once we know that G(i) is a Gröbner basis, we observe that the leading terms of the
binomials in G(i) are not divisible by the leading term of any other binomial in G(i) other
than itself. That is to say, the Gröbner basis G(i) is minimal.

Clearly, G(i) is a subset of 2× 2−minors of X. Moreover, its cardinality is equal to
the cardinality of G(i)Y , that is (n−1

2 ), plus the cardinality, n− 1, of G(i)4 . Therefore, G(i) has
cardinality equal to (n−1

2 ) + (n − 1) = (n
2) which is the number of 2× 2−minors of X.

Hence we conclude that G(i) generates I2(X) and we are done.

Example 2. The minimal Gröbner basis, G(i), of I2(X) with respect to ≺i is not reduced in
general. For example, if n = 4, a = 3 and b = 3, then one can see (using, e.g., Singular [15])
that the binomial x4

4 − x1x4
2x2

3 belongs to the Gröbner basis of I2(X) with respect to ≺2; however,
x4

4 − x1x4
2x2

3 is not a minor of X.

Corollary 2. If gcd(a, rb(n)) = 1, then the ideal I is minimally generated by the 2× 2−minors
of X. In this case, if n > 3, then I has a unique minimal system of generators if and only if and
a < b− 1.

Proof. By Theorem 1, to prove the first part of the statement it suffices to see that I = I2(X).
By Lemma 2, we have that ϕA( f ) = 0, for every f ∈ G(i), where ϕA is the k−algebra

homomorphism define in (1). Therefore I2(X) ⊆ I. Conversely, let L be the (n − 1) ×
n−matrix

b −(b + 1) 1 0 . . . 0 0 0
0 b −(b + 1) 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . b −(b + 1) 1
(a + 1) 0 0 0 . . . 0 b −(b + 1)


and let IL be the ideal of k[x1, . . . , xn] generated by

{xu+ − xu− | u is a row of L}.

Clearly, IL ⊆ I2(X).
On the one hand, a direct computation shows that the set of (n− 1)× (n− 1)−minors

of L is equal (up to sign of its elements) to {a1, . . . , an} and therefore, by ([18] [Lemma 12.2),

IL :
( n

∏
i=1

xi
)∞

= I

if and only if gcd(a1, . . . , an) = gcd(a, rb(n)) = 1. On the other hand, by Theorem 1
and ([17], Theorem 3.1), we have that I2(X) :

(
x∞

i
)
= I2(X) for every i = 1, . . . , n, that is to

say, I2(X) :
(

∏n
i=1 xi

)∞
= I2(X). Putting this together we conclude that

I2(X) = I2(X) :
( n

∏
i=1

xi
)∞ ⊇ IL :

( n

∏
i=1

xi
)∞

= I,

and thus I = I2(X) as claimed.
To prove the second part of the statement, we observe that, for every i 6= n, the

non-leading term, xa+1
1 xb

l , of the binomial xl+1xb
n − xa+1

1 xb
l ∈ G

(i)
4 is divisible by the leading

term of xb
1xl − x2xb

l−1 ∈ G
(i)
3 , provided that l ≥ 3 (otherwise, no such binomial in G(i)3

exists), if and only a + 1 ≥ b. Now, as these are the only divisibility relationships between
the monomials of the binomials in G(i), and l ≥ 3 implicitly requires n > 3 , we obtain that
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for n > 3, G(i) is reduced for every ≺i if and only a < b− 1, and, by ([4], Corollary 14), we
conclude that for n > 3, I has a unique minimal system of binomial generators if and only
if and a < b− 1.

Notice that the condition gcd(a, rb(n)) = 1 cannot be avoided.

Example 3. Let n = 4, a = 3 and b = 2. In this case, a1 = rb(4) = 15, a2 = 18, a3 = 24
and a4 = 36. Clearly, gcd(a1, a2, a3, a4) = gcd(a, rb(4)) = 3. By direct computation, one can
check that I is minimally generated by four binomials whereas I2(X) is minimally generated by six
binomials. In particular, I 6= I2(X); in fact, one has that I is a minimal prime of I2(X).

The following example shows the minimal system of generators of I for n = 4.

Example 4. If n = 4, then the ideal I ⊂ k[x1, x2, x3, x4] is minimally generated by

xb+1
2 − xb

1x3, xb
1x4 − x2xb

3, xb+1
3 − xb

2x4

and
xa+b+1

1 − x2xb
4, xa+1

1 xb
2 − x3xb

4, xb+1
4 − xa+1

1 xb
3

(recall that the first three binomials generates J). In [9], a complete classification of the monomial
curves in A4(k) having a unique minimal system of generators is given. By ([9], Theorem 3.11),
one has that I has a unique minimal system of generators if and only if xa+1

1 xb
3 is not divisible by

xb
1x3; equivalently a < b− 1 as we already knew by Corollary 2. Observe that the result on the

uniqueness of the system of generators of I can be deduced from [19], too.

We end this paper by observing that, since both J and I are determinantal ideals by
Corollaries 1 and 2, respectively, one can conveniently adapt ([20], Section 2.1) to compute
the minimal free resolution of I and J using the Eagon–Northcott complex. In particular,
one can prove that the k−algebras k[x1, . . . , xn]/J and k[x1, . . . , xn]/I are Cohen–Macaulay
of type n − 2 and n − 1, respectively (see ([20], Section 2.1 for further details)). The
explicit computation of the minimal free resolution of k[x1, . . . , xn]/J and k[x1, . . . , xn]/I is
a future work.
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