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Abstract: The main object of this paper is to propose a new asymmetric model more flexible than the
generalized Gaussian model. The probability density function of the new model can assume bimodal
or unimodal shapes, and one of the parameters controls the skewness of the model. Three simulation
studies are reported and two real data applications illustrate the flexibility of the model compared
with traditional proposals in the literature.
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1. Introduction

Azzalini [1] introduced the skew-normal (SN) model and Durrans [2] introduced the
generalized Gaussian model, also known as the power-normal (PN) model. A limitation of
those models is that they only produce uni-modal asymmetric densities, and are therefore
not appropriate for fitting bimodal data. An approach typically used for fitting multimodal
data is the mixture of normal or asymmetric-normal models, which present difficulties such as
identifiability problems (see McLachlan and Peel [3]; Marin et al. [4]) and complicated numerical
implementation. Bimodal distributions generated from skew-symmetric distributions can
be found in Azzalini and Capitanio [5], Ma and Genton [6], Arellano-Valle et al. [7], Kim [8],
Lin et al. [9,10], Elal-Olivero et al. [11], Arnold et al. [12,13], Gómez et al. [14], Braga et al. [15],
Venegas et al. [16] and Gómez-Déniz et al. [17], among others.

It is therefore of interest to study asymmetric models that are adequate for fitting
possible bimodal data. Hence, the main object of this paper is to propose asymmetric
distributions that are more flexible than the SN and PN models; and are also useful for
modeling bimodal data, which are very common in practical situations. The proposed
model is not a mixture type model, to avoid the identifiability problems mentioned above.
Our proposal considers a family of distributions which can adopt both a unimodal shape
(competing with the SN and PN models) and a bimodal shape (competing with the mixture
of normals).

The following Lemma is introduced in Gómez et al. [14], and is crucial for the construction
of the new family of distributions.
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Lemma 1. Let f be a symmetric around zero probability density function (pdf), F its respective
cumulative distribution function (cdf) and G an absolutely continuous cdf such that G′ is a
symmetric pdf around zero. Then,

g(z; λ, δ) = cδ f (|z|+ δ)G(λz), z, λ, δ ∈ R (1)

is the pdf of a random variable, where c−1
δ = 1− F(δ).

Gómez et al. [14] studied the skew-flexible-normal (SFN) distribution with pdf given
by:

f (z; λ, δ) = cδφ(|z|+ δ)Φ(λz), z, λ, δ ∈ R. (2)

The authors show that, for δ < 0, the model in (2) is bimodal. We denote this model
as SFN(λ, δ).

The “Lehmann’s alternatives” model proposed in Lehmann [18] is based on the
distribution of the maximum of a sample. It is a good alternative for extending models
because it incorporates a higher asymmetry and/or kurtosis than the basal model. The cdf
of this model is given by:

FF(z; α) = {F(z)}α, z ∈ R, α > 0, (3)

where F is a cdf. For α ∈ Z, the cdf corresponds to the random variable defined as
(Z1, . . . , Zα), where the Zis are independent and identically distributed with common cdf
F. Durrans [2] extends this interpretation to fractional order statistics for α ∈ R. We denote
a random variable with cdf defined in (3) as Z ∼ PF(α). The case, F = Φ, corresponds to
the PN model with pdf given by

ϕ(z; α) = αφ(z){Φ(z)}α−1, z ∈ R, α > 0, (4)

which we denote by Z ∼ PN(α). This model has been studied in more detail in Gupta
and Gupta [19]. Pewsey et al. [20] derived its Fisher information matrix, showing that
it is non-singular in a neighborhood of symmetry point (α = 1), which is not satisfied for
the SN distribution under the symmetry hypothesis, that is, at λ = 0, because its Fisher
information matrix is singular.

The paper is organized as follows. In Section 2, the flexible power-normal (FPN) model
is introduced and some of its main properties are discussed. An inference of the model
via maximum likelihood (ML) estimation is considered in Section 3. Three procedures to
draw values from the FPN distribution are discussed in Section 4. Three simulation studies
are carried out in Section 5 in order to assess different aspects of the model. Two real data
applications are reported in Section 6, illustrating the usefulness of the model compared
with other common distributions in the literature. Finally, Section 7 presents a discussion
of the main results of the paper.

2. Flexible Power-Normal Distribution

In this section, we introduce a more flexible model than the power-normal model
introduced in (4) by incorporating a new shape parameter δ. One of the interesting features
of this model is that, for certain values of shape parameter δ, a bimodal pdf can be obtained.

Definition 1. A random variable Z follows a FPN distribution with parameters α and δ, if its pdf
is given by:

ϕ(z; α, δ) = k(α, δ)φ(|z|+ δ){Φ(z)}α−1, z, δ ∈ R, α ∈ R+, (5)

where

k(α, δ) = kα,δ =

[√
2πφ(δ)

∫ 1

0
uα−1 exp{−δ

∣∣∣Φ−1(u)
∣∣∣}du

]−1

,
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is the normalizing constant. We use the notation Z ∼ FPN(0, 1, α, δ).

2.1. Some Particular Cases of the FPN Model

For the FPN distribution, we have the following particular cases.

Proposition 1. If Z ∼ FPN(0, 1, α, δ), then

1. ϕ(z; 0, 1, α = 1, δ = 0) = φ(z).
2. ϕ(z; 0, 1, α, δ = 0) = αφ(z){Φ(z)}α−1.
3. ϕ(z; 0, 1, α = 2, δ = 0) = 2φ(z)Φ(z).
4. ϕ(z; 0, 1, α = 2, δ) = cδφ(|z|+ δ)Φ(z).

Remark 1. Note that points 1 and 2 show that N and PN distributions are particular cases of the
FPN model. Points 3 and 4 show that the model contains particular cases of the skew-normal and
skew-flexible-normal models (SN(1) and SFN(1,δ), respectively).

2.2. Properties of the pdf for the FPN Model

The following propositions illustrate a point where the pdf of the FPN model is not
differentiable.

Proposition 2. Let Z ∼ FPN(0, 1, α, δ). If δ 6= 0, then the pdf of the FPN is not differentiable at
z = 0.

Proof. Note that

lim
z→0+

ϕ(z; α, δ) = (1/2)α−2kα,δφ(δ)

(
α− 1√

2π
− δ

2

)
, and

lim
z→0−

ϕ(z; α, δ) = (1/2)α−2kα,δφ(δ)

(
α− 1√

2π
+

δ

2

)
,

from which we conclude that the pdf of the FPN model is not differentiable at z = 0 as
long as δ 6= 0.

Proposition 3. Let Z ∼ FPN(0, 1, α, δ). If δ < 0, the distribution of the random variable Z
is bimodal.

Proof. Equating to zero the first derivative for the pdf of the random variable Z with FPN
distribution, we have the following cases:

1. If z < 0, then it follows that the solution is given by z1 = (α− 1)φ(z1)/Φ(z1) + δ.
2. If z ≥ 0, we have the solution z2 = (α− 1)φ(z2)/Φ(z2)− δ.

Moreover, if α → 1−, z1 ∈ R− and if α → 1+, z2 ∈ R+. Hence, z1 and z2 are distinct
values. Therefore, Z is a random variable with a bimodal distribution.

Corollary 1. Let Z ∼ FPN(0, 1, α, δ). If α = 1 and δ < 0, then random variable Z is symmetric
and bimodal.

Proof. If α = 1 then ϕ(z; α = 1, δ) = (2cδ)
−1φ(|z| + δ), z, δ ∈ R. As φ is a symmetric

function, we conclude that Z is a symmetric random variable.

Figure 1 shows plots of the pdf for the FPN(0, 1, α, δ) for different values of α and
δ. As mentioned previously, for δ < 0 a bimodal pdf is obtained, but one of the modes
“disappears” when α moves away from one (α → 0− or α → +∞), whereas for δ ≥ 0 a
unimodal pdf is obtained with different degrees of kurtosis (leptokurtic, mesokurtic or
platykurtic) depending on the value of α. On the other hand, α < 1 and α > 1 produce a
positive and negative skew effect in the pdf, respectively, whereas α = 1 corresponds to a
symmetrical pdf.
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Figure 1. Pdf for FPN(0, 1, α, δ) with different combinations of α and δ: (a) FPN(0, 1, α, δ = −1) and varying α;
(b) FPN(0, 1, α, δ = 1) and varying α; (c) FPN(0, 1, α = 0.7, δ) and varying δ; and (d) FPN(0, 1, α = 1.5, δ) and varying δ.

2.3. Moments

Definition 2. Let Z ∼ FPN(0, 1, α, δ). For r = 1, 2, . . ., we define the lower and upper r-th
incomplete moments of Z as

µ−r (Z) =
∫ z

−∞
yr ϕ(y; α, δ)dy and µ+

r (Z) =
∫ ∞

z
yr ϕ(y; α, δ)dy,

respectively. With those definitions, the r-th moment of Z is given by

µr = E(Zr) = µ−r (Z) + µ+
r (Z).

The next result presents a recursive expression for computing the moments of the FPN
random variable.

Proposition 4. Let Z ∼ FPN(0, 1, α, δ). The r-th moment of the random variable Z is given by:

µr = (r− 1)µr−2(0) + δkα,δ
[
µ−r−1(0)− µ+

r−1(0)
]
+

+ (α− 1)kα,δ

∫ 1

0

[
Φ−1(v)

]r−1
φ
[∣∣∣Φ−1(v)

∣∣∣+ δ
]
vα−2dv. (6)

The r-th central moment, say µ́r = E[(Z− E(Z))r], for r = 2, 3, 4, can be computed
using the expressions:

µ́2 = µ2 − µ2
1, µ́3 = µ3 − 3µ2µ1 + 2µ3

1 and µ́4 = µ4 − 4µ3µ1 + 6µ2µ2
1 − 3µ4

1.

With those definitions, the variance and the asymmetry and kurtosis coefficients are
given by:

σ2 = Var(Z) = µ́2,
√

β1 = µ́3/[µ́2]
3/2 and β2 = µ́4/[µ́2]

2,

respectively. Figure 2 shows the asymmetry and kurtosis coefficients for the FPN(0, 1, α, δ)
model with different values of α and δ.

2.4. The Location-Scale Extension

We consider now the location-scale extension for the model. The FPN distribution
with location parameter ξ ∈ R and scale parameter η ∈ R+, is defined as the distribution
of the random variable X = ξ + ηZ, for which the pdf is given by:

ϕ(x; ξ, η, α, δ) =
kα,δ

η
φ

(
|x− ξ|

η
+ δ

){
Φ
(

x− ξ

η

)}α−1
, x, ξ, δ ∈ R, η, α ∈ R+. (7)
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If X has a density function as in the Equation (7) model, we use the notation X ∼
FPN(ξ, η, α, δ).
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Figure 2. (a) Skewness and (b) kurtosis coefficients for the FPN(0, 1, α, δ) model.

3. Inference for the FPN Model

In this section, we discuss the ML estimation of the parameters of the FPN model.
Observed and expected (Fisher) information matrices are derived for the standard and
location-scale models. For the location-scale situation, we have a four-dimension parameter
vector, θ = (ξ, η, α, δ)>.

3.1. Standard Case

Considering that Z1, . . . , Zn are independent and identically distributed with standard
FPN distribution, the log-likelihood function for (α, δ) based on the sample Z = (z1, . . . , zn)
is given by:

`(α, δ; Z) = n log
(

kα,δ√
2π

)
− 1

2

n

∑
i=1

(|zi|+ δ)2 + (α− 1)
n

∑
i=1

log{Φ(zi)}, (8)

from which the elements of the score function are given by:

U(α) = n
{
−
√

2πh(α, δ) + u
}

and U(δ) = n
{√

2πg(α, δ)− |z| − δ
}

, (9)

where

h(α, δ) = φ(δ)kα,δ

∫ 1

0
zα−1 log z exp

{
−δ
∣∣∣Φ−1(z)

∣∣∣}dz, u =
n

∑
i=1

ui/n,

g(α, δ) = φ(δ)kα,δ

∫ 1

0

(∣∣∣Φ−1(z)
∣∣∣+ δ

)
zα−1 exp

{
−δ
∣∣∣Φ−1(z)

∣∣∣}dz,

and |z| = ∑n
i=1|zi|/n.

Equating the above derivatives to zero, we obtain the ML equations, which are
given by:

u =
√

2πh(α, δ) and δ =
√

2πg(α, δ)− |z|.

To solve the above equations, a numerical procedure is required since analytical
solutions are not available. To derive the Fisher information matrix, we consider the second
derivatives of the log-likelihood function for parameters (α, δ), which we denote by (jxy);
these are given by:

jαα = n[−∆1α(α, δ) + ∆2α(α, δ)], jδα = n[−
√

2π∆1αδ(α, δ) + ∆2αδ(α, δ)], and
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jδδ = n[−∆1δ(α, δ) + ∆2δ(α, δ) + 1],

where

∆1α(α, δ) =
(

∂ log kα,δ
∂α

)2
, ∆2α(α, δ) = kα,δ

∂2k−1
α,δ

∂α2 , ∆1αδ(α, δ) = g(α, δ)
(

∂ log(kα,δ)
∂α

)
,

∆1δ(α, δ) =
(

∂ log kα,δ
∂δ

)2
, ∆2δ(α, δ) = kα,δ

∂2k−1
α,δ

∂δ2 , ∆2αδ(α, δ) = kα,δ
∂2k−1

α,δ
∂α∂δ .

The elements of the Fisher information matrix are obtained by computing the expected
values of the corresponding elements of the observed information matrix.

3.2. The Location-Scale Model

For a random sample of size n, X1, . . . , Xn, from the FPN(ξ, η, α, δ) distribution, the
likelihood function for θ = (ξ, η, α, δ)> based on the sample X = (x1, . . . , xn) can be
written as:

`(θ; X) = n{log(kα,δ)− log(η)− log(
√

2π)} − 1
2

n

∑
i=1

z2
i −

n
2

δ2 − δ
n

∑
i=1
|zi|+

+ (α− 1)
n

∑
i=1

log{Φ(zi)}, (10)

where zi =
xi−ξ

η . The elements of the score function are given by:

U(ξ) =
1
η

n

∑
i=1

zi +
δ

η

n

∑
i=1

sign(zi)−
α− 1

η

n

∑
i=1

wi,

U(η) = −n
η
+

1
η

n

∑
i=1

z2
i +

δ

η

n

∑
i=1

zisign(zi)−
α− 1

η

n

∑
i=1

ziwi,

U(α) = −
√

2πnh(α, δ) +
n

∑
i=1

log{Φ(zi)} = n
{
−
√

2πh(α, δ) + u
}

, and

U(δ) =
√

2πng(α, δ)−
n

∑
i=1
|zi| − nδ = n

{√
2πg(α, δ)− |z| − δ

}
,

where ui = log Φ(zi), wi = φ(zi)/Φ(zi) and sign is the sign function. The solutions for the
score equations are given by:

δ =
√

2πg(α, δ)− |z|, (α− 1)(zw) + 1 = z2 + δzsign(z),

u =
√

2πh(α, δ) and z + δsign(z) = (α− 1)w,

where

w =
n

∑
i=1

wi/n, z =
n

∑
i=1

zi/n, |z| =
n

∑
i=1
|zi|/n, z2 =

n

∑
i=1

z2
i /n and zw =

n

∑
i=1

ziwi/n.

3.3. Expected Information Matrix

For an observation (zi = z) we have that:

`i(θ; z) = log(k(α, δ))− log(η)− log
√

2π} − 1
2
(|z|+ δ)2 + (α− 1) log{Φ(z)}, (11)

where z = (x − ξ)/η. The second derivatives of the log-likelihood function (11) with
respect to the model parameters are given by:
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jiξξ =
1
η2

[
1 + (α− 1)(zw + w2)

]
, jiαξ =

w
η

, jiδξ = − 1
η

sign(z),

jiηξ =
1
η2

{
sign(z)(|z|+ δ) + z + (α− 1)

[
z2w + zw2 − w

]}
,

jiηη =
1
η2

[
−1 + 2sign(z)(|z|+ δ)z + z2 − (α− 1)

(
2zw− z2w2 − z3w

)]
,

jiαη =
zw
η

, jiδη = − z
η

sign(z), jiαα = −∆1α(α, δ) + ∆2α(α, δ),

jiδα = [−
√

2π∆1αδ(α, δ) + ∆2αδ(α, δ)], and jiδδ = −∆1δ(α, δ) + ∆2δ(α, δ) + 1,

where ∆1α, ∆2α, ∆1δ, ∆2δ, ∆1αδ and ∆2αδ are defined in Section 3.1. Note that zsign(z) =
|z|, |z|sign(z) = z, E(sign(Z)) = µ+

0 (ξ)− µ−0 (ξ) and E(|Z|) = µ+
1 (ξ)− µ−1 (ξ). Denoting

iξξ , iξη , . . . , iδδ as the expected values of the elements of the observed information matrix
and defining akj = E(ZkW j) for k = 0, 1, 2, 3, and j = 0, 1, 2 we obtain:

iξξ =
1
η2 [1 + (α− 1)(a11 + a02)], iαξ =

a01

η
, iδξ = −

µ+
0 (ξ)− µ−0 (ξ)

η
,

iηξ =
1
η2

{
δ(µ+

0 (ξ)− µ−0 (ξ)) + 2a10 + (α− 1)(a21 + a12 − a01)
}

,

iηη =
1
η2

[
−1 + 2δ(µ+

1 (ξ)− µ−1 (ξ)) + 3a20 − (α− 1)(2a11 − a22 − a31)
]
,

iαη =
a11

η
, iδη = −

µ+
1 (ξ)− µ−1 (ξ)

η
, iαα = −E(∆1α(α, δ)) + E(∆2α(α, δ)),

iδα = [−
√

2πE(∆1αδ(α, δ)) + E(∆2αδ(α, δ))], and

iδδ = −E(∆1δ(α, δ)) + E(∆2δ(α, δ)) + 1.

akj must be computed numerically since they have no closed forms.

4. Simulating Values from the FPN Model

In this section, we discuss three methods for drawing values from the FPN distribution.
This model has no stochastic representation, nor does it have a tractable cdf, making data
simulation by conventional methods difficult. On the other hand, as the FPN is a location-
scale model, we only discuss the case ξ = 0 and η = 1.

4.1. Acceptance-Rejection Method: Way 1

This method can be used for δ ≥ 0. Note that the pdf of the FPN(0, 1, α, δ) model can
be written as

ϕ(z; α, δ) = α−1kα,δ exp
(
− δ2

2

)
︸ ︷︷ ︸

C

× exp(−δ|z|)︸ ︷︷ ︸
g1(z;δ)

× αφ(z){Φ(z)}α−1︸ ︷︷ ︸
h1(z;α)

,

where g1(z; δ) ∈ [0, 1], ∀z ∈ R, ∀δ ≥ 0 and h1(z; α) is the pdf of the PN(α). For this reason,
to draw values from the standard FPN model, we can use the following algorithm:

1. Simulate U ∼ U(0, 1).
2. Simulate Y ∼ PN(α).

• Simulate U1 ∼ U(0, 1).

• Do Y = Φ−1
(

U1/α
1

)
.

3. If U ≤ exp(−δ|Y|), accept Y. Otherwise, back to step 1.
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The probability of a value being accepted is 1/C = αk−1
α,δ exp(δ2/2).

4.2. Acceptance-Rejection Method: Way 2

This method can be used for α ≥ 1. Note that:

ϕ(z; α, δ) = 2kα,δc−1
δ︸ ︷︷ ︸

C

×Φα−1(z)︸ ︷︷ ︸
g1(z;α)

× 0.5cδφ(|z|+ δ)︸ ︷︷ ︸
h1(z;α)

,

where g1(z; α) ∈ [0, 1], ∀z ∈ R, ∀α ≥ 1 and h1(z; δ) is the pdf of the SFN(0, δ). For this
reason, to draw values from the standard FPN model, we can use the following algorithm:

1. Simulate U ∼ U(0, 1).
2. Simulate Y ∼ SFN(0, δ).

• Simulate U1, U2 ∼ U(0, 1) independently.
• Do Y1 = Φ−1(Φ(δ) + U1[1−Φ(δ)])− δ.
• If U2 ≤ 1/2, do S = 1. Otherwise, do S = −1.
• Do Y = Y1 × S.

3. If U ≤ {Φ(Y)}α−1, accept Y. Otherwise, back to step 1.

The probability of a value being accepted is 1/C = 0.5k−1
α,δcδ. Figure 3 shows the

constant C for the two ways discussed of drawing values from the FPN model. Results
suggest that neither method is appropriate for drawing values from the FPN model for
large values of δ.

alpha

1

2

3

4

5

d
e
lta

0

2

4

6

8

10

C

20

40

60

(a)

alpha

2

4

6

8

10

d
e
lta

−4

−2

0

2

4

C

50

100

150

(b)

Figure 3. Constant C for the acceptance-rejection method to draw values from FPN model: (a) way 1
and (b) way 2.

4.3. A Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm is used extensively in a Bayesian context, because
it allows values to be drawn from a given pdf, as long as we know its kernel (and not
necessarily a possible normalizing constant). For the FPN distribution, that kernel is
given by:

ϕ∗(z; α, δ) ∝ φ(|z|+ δ){Φ(z)}α−1, z, δ ∈ R, α ∈ R+.

The method requires a proposal distribution, for which we considered the N(0, σ2)
model. The detail of the algorithm is as follows:

• Define an initial value z0.
• For i = 1, . . . , n, draw vi ∼ N(0, σ2) and Ui ∼ U(0, 1). Do z∗i = zi−1 + vi.
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• Define pi = ϕ∗(z∗i ; α, δ)/ϕ∗(zi−1; α, δ).
• If Ui ≤ pi, do zi = z∗i . Otherwise, zi = zi−1.

z1, . . . , zn represent a sample of size n from the FPN distribution. In order to decrease
the correlation of the values drawn, we draw b + t × n values. The first b values are
discarded (the burn-in) and for t values we only consider 1 (the thin). In particular, we
consider b = 1000, t = 10 and σ = 1, showing a satisfactory performance of the method for
all the combinations of α and δ considered in this work.

5. Simulation Studies

In this Section, we present three simulation studies. The first study illustrates the
performance of the three simulation procedures in drawing values from the model dis-
cussed in Section 4. The second study is devoted to assessing the performance of the ML
estimators in finite samples. The third study shows a model selection problem to select
among the N, PN and FPN models when the data are generated under different scenarios.

5.1. Assessing the Simulation Procedures for the FPN Model

In this Section, we study the three methods discussed in Section 4 to simulate values
from the FPN distribution. Figure 4 shows the histogram versus the theoretical curve for
10,000 values drawn from three combinations of parameters for the FPN model, using the
three methods discussed previously. Note that, except for restrictions in the acceptance-
rejection method given in the two ways (i.e., δ ≥ 0 and α ≥ 1 for way 1 and way 2,
respectively) the three methods seem suitable for drawing values from the model.

x
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Figure 4. Ten thousand values simulated from the FPN(ξ, η, α, δ) model under different scenarios:
(a) ξ = 2, η = 3, α = 0.2, δ = 2.5 and acceptance-rejection method: way 1; (b) ξ = −8, η = 5,
α = 2, δ = −0.5 and acceptance-rejection method: way 2; (c) ξ = 100, η = 50, α = 0.8, δ = −2.5 and
Metropolis-Hastings method.

On the other hand, we evaluate the execution times of the three ways of drawing
values (when the comparison is possible). For this, we draw 100 samples for the FPN
model of size 1000; 2000 and 5000 and compute the average of these execution times. We
consider ξ = 0, η = 1, α ranging in {0.1, 0.2, . . . , 5.0} and δ ranging in {−5.0,−4.9, . . . , 5.0}.
The results for the three methods were very similar (with differences lower than 0.01 s).
For instance, considering all the combinations for α and δ and n = 5000 (the case that took
the longest), the maximum average of the execution times was 0.9134 s, suggesting that is
relatively quick to simulate values from the model in all cases. As the Metropolis-Hastings
algorithm can be applied for the FPN model in all situations, this method was used for
data generation hereinafter.

5.2. Performance of ML Estimators in Finite Samples

In order to evaluate the properties of ML estimators in finite samples, the samples were
generated based on the Metrópolis-Hastings algorithm discussed in the previous section.
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In all cases, we consider ξ = 0 and η = 1 as true values. The sample sizes considered
were n = 200 and n = 500 with three values for α (0.5, 1.0 and 1.5) and δ (−0.5, 0.0 and
0.5). The three values for δ represent the bimodal asymmetric, bimodal symmetric and
unimodal cases respectively, totaling 18 different cases. For each, we drew 1000 replicates
and we computed the ML estimators using the optim function in R. We present the mean of
the estimates and the mean of the estimated standard errors for the 1000 replicates. Results
are presented in Table 1, showing that the mean of the estimates converges to the true value,
and the mean of the estimated standard errors is reduced for all the parameters when n is
increased, suggesting that the ML estimators for the FPN model are consistent.

Table 1. Mean of the estimates and mean of the estimated standard errors (in parentheses) based on 1000 replicates for the
FPN model. In all cases ξ = 0, η = 1 are maintained and different sample sizes and values for α and δ are considered.

Parameter
δ = −0.5 δ = 0 δ = 0.5

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

α = 0.1 ξ 0.4861 (4.4259) −0.2412 (2.0642) −0.1071 (1.5502) −0.0133 (1.2664) −0.0065 (1.0174) −0.0029 (0.8505)
η 0.9068 (0.5161) 0.9280 (0.4248) 0.9340 (0.3629) 0.9258 (0.3173) 0.9382 (0.2802) 0.9469 (0.2468)
α 0.1195 (0.0990) 0.1109 (0.0774) 0.1136 (0.0719) 0.1101 (0.0637) 0.1093 (0.0640) 0.1081 (0.0601)
δ −0.8799 (1.3637) −0.6915 (0.6524) −0.4955 (0.4797) −0.3877 (0.3809) −0.1621 (0.3485) −0.0117 (0.3129)

α = 0.8 ξ −0.022 (0.134) 0.000 (0.085) 0.054 (0.150) 0.011 (0.124) 0.000 (0.064) −0.007 (0.031)
η 0.971 (0.100) 0.989 (0.065) 0.923 (0.132) 0.953 (0.090) 0.977 (0.189) 1.009 (0.118)
α 0.835 (0.096) 0.809 (0.060) 0.846 (0.150) 0.870 (0.123) 0.895 (0.155) 0.833 (0.079)
δ −0.587 (0.225) −0.532 (0.145) −0.163 (0.281) −0.109 (0.181) 0.450 (0.439) 0.515 (0.277)

α = 1.0 ξ 0.006 (0.126) −0.007 (0.081) 0.018 (0.129) 0.017 (0.105) −0.003 (0.069) −0.013 (0.038)
η 0.965 (0.108) 0.984 (0.070) 0.928 (0.135) 0.947 (0.088) 0.991 (0.206) 1.008 (0.126)
α 1.011 (0.112) 1.009 (0.072) 1.065 (0.178) 1.058 (0.138) 1.184 (0.352) 1.060 (0.104)
δ −0.578 (0.243) −0.540 (0.156) −0.167 (0.309) −0.122 (0.197) 0.493 (0.516) 0.510 (0.298)

α = 1.5 ξ −0.003 (0.122) 0.008 (0.079) 0.050 (0.112) −0.016 (0.096) −0.016 (0.096) −0.018 (0.03)
η 0.970 (0.115) 0.983 (0.074) 0.921 (0.136) 0.964 (0.092) 0.963 (0.092) 1.011 (0.126)
α 1.515 (0.190) 1.498 (0.115) 1.479 (0.241) 1.504 (0.207) 1.604 (0.207) 1.501 (0.154)
δ −0.584 (0.273) −0.541 (0.173) −0.175 (0.343) −0.104 (0.228) 0.545 (0.527) 0.524 (0.330)

5.3. A Model Selection Study

In this Section, we consider a simulation study in order to assess two model selection
criteria in different contexts based on the FPN model: the AIC (see Akaike [21]), namely

AIC = −2`(θ̂; X) + 2k,

where θ̂ is the ML estimator of θ and k is the number of parameters for the fitted model;
and the Bayesian criterion (see Schwarz [22]), defined as

BIC = −2`(θ̂; X) + log(n)k.

Models with lower AIC and BIC are preferred. The data were drawn from the
FPN(ξ = 0, η = 1, α, δ) model, with α varying in (0.5, 0.8, 1.0, 1.5, 3.0) and δ varying
in (−1.5,−0.5, 0.0, 0.5, 2.0). Note that the FPN(0, 1, α = 1, δ = 0) corresponds to the N
distribution and FPN(0, 1, α 6= 1, δ = 0) corresponds to the PN model. Again, we consider
two sample sizes: 200 and 500. For each simulated sample, we fitted the N, PN and FPN
models and selected a model based on AIC and BIC criteria. Table 2 summarizes the per-
centage of times where each model is chosen based on the two criteria. Note that for α = 1
and δ = 0 (where the data are drawn from the N model), both criteria effectively chose the
N model more frequently than the other models. However, for α 6= 1 and δ = 0 (where the
data are drawn from the PN model), both criteria continue to choose the N model more
frequently (except for the case α = 3, δ = 0 and n = 500), suggesting that AIC and BIC
criteria choose the N model over the other models in scenarios where the asymmetry and
the sample size are greater. For all other cases, we note that the BIC criterion tends to
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choose the N model—incorrectly—much more frequently than the AIC criterion, and the
advantages of the FPN model are evidenced in cases where |δ| is increased.

Table 2. Percentage of times where AIC and BIC choose the N, PN and FPN models based on 1000
replicates for different scenarios for the FPN model and sample size.

δ

−1.5 −0.5 0.0 0.5 2.0

n α Fitted Model AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

200 0.5 N 0.0 0.2 42.0 85.4 65.2 93.6 35.0 77.9 2.6 19.5
PN 2.2 6.6 8.9 3.7 25.0 6.1 16.0 9.4 0.9 1.3

FPN 97.8 93.2 49.1 10.9 9.8 0.3 49.0 12.7 96.5 79.2

0.8 N 0.0 0.0 41.4 90.2 76.0 97.5 52.0 91.8 5.3 35.1
PN 0.1 0.1 9.3 1.8 12.7 2.1 9.0 2.1 1.6 1.3

FPN 99.9 99.9 49.3 8.0 11.3 0.4 39.0 6.1 93.1 63.6

1.0 N 0.0 0.0 48.2 92.4 76.3 97.7 53.1 92.0 6.0 38.4
PN 0.0 0.0 10.9 3.1 12.9 1.9 10.2 2.9 2.3 2.6

FPN 100.0 100.0 40.9 4.5 10.8 0.4 36.7 5.1 91.7 59.0

1.5 N 0.0 1.4 63.1 96.8 71.6 94.8 43.2 82.3 5.7 35.5
PN 4.1 9.9 11.5 2.1 16.7 4.8 25.7 12.3 6.1 9.3

FPN 95.9 88.7 25.4 1.1 11.7 0.4 31.1 5.4 88.2 55.2

3.0 N 50.1 88.0 71.3 94.0 49.6 83.3 26.6 63.6 1.7 13.2
PN 19.3 11.1 20.5 6.0 37.7 15.6 48.2 33.8 25.7 48.7

FPN 30.6 0.9 8.2 0.0 12.7 1.1 25.2 2.6 72.6 38.1

500 0.5 N 0.0 0.0 11.8 69.2 47.9 87.2 10.7 52.8 0.1 0.4
PN 0.1 0.4 4.2 1.8 39.0 12.1 9.8 11.2 0.0 0.0

FPN 99.9 99.6 84.0 29.0 13.1 0.7 79.5 36.0 99.9 99.6

0.8 N 0.0 0.0 13.6 76.3 72.2 97.6 25.6 82.6 0.0 1.4
PN 0.0 0.0 3.9 1.1 16.1 2.3 3.5 1.8 0.0 0.0

FPN 100.0 100.0 82.5 22.6 11.7 0.1 70.9 15.6 100.0 98.6

1.0 N 0.0 0.0 17.4 80.8 77.4 98.4 25.4 84.0 0.0 2.2
PN 0.0 0.0 5.7 1.7 13.7 1.6 4.6 1.9 0.0 0.0

FPN 100.0 100.0 76.9 17.5 8.9 0.0 70.0 14.1 100.0 97.8

1.5 N 0.0 0.0 41.3 95.2 60.6 94.1 15.7 68.5 0.0 2.1
PN 0.0 0.3 10.8 2.3 29.0 5.6 26.0 19.3 0.9 2.0

FPN 100.0 99.7 47.9 2.5 10.4 0.3 58.3 12.2 99.1 95.9

3.0 N 27.6 91.3 53.1 93.5 18.3 61.1 3.1 25.5 0.0 0.3
PN 4.4 1.0 27.5 6.4 66.6 38.5 57.0 70.9 8.7 25.8

FPN 68.0 7.7 19.4 0.1 15.1 0.4 39.9 3.6 91.3 73.9

6. Numerical Illustrations

In this Section, we illustrate with two real datasets the better performance of the FPN
distribution compared with other models in the literature. Codes were developed in Core
Team R [23] and are available as supplementary material for this manuscript.

6.1. Illustration 1

The first dataset corresponds to 481 observations of the variable “Crack” included in
the dataset verb “Pollen5.Dat” available at http://lib.stat.cmu.edu/datasets/pollen.data,
accessed on 15 October 2021. A descriptive summary of the data can be found in Table 3.
Quantities

√
b1 and b2 denote, respectively, the sample asymmetry and kurtosis coefficients.

Table 3. Summary statistics for precipitation data.

n Mean Variance
√

b1 b2

481 −0.0483 26.9980 0.2329 2.5944

http://lib.stat.cmu.edu/datasets/pollen.data
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Clearly, the values taken by the asymmetry and kurtosis coefficients indicate that an
asymmetric model may be more adequate than a symmetric model for fitting the pollen
data. Moreover, the data histogram presented in Figure 5a shows that a model with the
ability to fit bimodal data may present better results than just the PN model. To quantify
the findings we test the hypothesis

H0 : δ = 0 against H1 : δ 6= 0,

by using the likelihood ratio statistic

Λ =
`PN(�)
`FPN(�)

,

leading to
−2 log(Λ) = 11.80,

which is greater than the 5% critical value for the chi-square distribution with one degree of
freedom, given by χ2

1 = 3.8414. Hence, there is a clear indication that the FPN model can be
quite useful in fitting bimodal data such as the pollen data described above. Table 4 presents
parameter estimates (standard errors in parentheses) for both the FPN and ordinary models,
including the mixture of normals (MN). Finally, plots for the fitted PN, MN and FPN
models are presented in Figure 5b. Likewise, we present the qq-plot that follows by using
parameter estimates for the FPN model, suggesting a good fit of the model for this dataset.

To compare model fit, we consider the AIC and BIC criteria. Hence, we have that the
FPN model presents the best fit for the pollen dataset, of all the models considered.

Table 4. Parameter estimates (standard errors in parentheses) for N, SN, PN, MN and FPN models in
the pollen dataset.

Parameter N SN PN FPN Parameter MN

ξ −0.0489 (0.2367) −4.9482 (0.8164) −11.8216 (7.2910) −2.0300 (0.2797) ξ1 −3.5847 (0.8948)
η 5.1902 (0.1673) 7.1379 (0.6058) 8.4627 (1.8070) 3.5192 (0.1982) η1 3.3009 (0.3662)
α - 1.6568 (0.4856) 7.5132 (7.9838) 0.7316 (0.0464) ξ2 3.8531 (1.5545)
δ - - - −0.6946 (0.1316) η2 3.9516 (0.6768)
- - - - - p 0.5245 (0.1593)

Log-likelihood −1474.64 −1472.08 −1472.24 −1466.33 −1466.30
AIC 2953.28 2950.16 2950.47 2940.66 2942.60
BIC 2961.63 2962.68 2963.00 2957.36 2963.48
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Figure 5. (a) Fitted distributions: SN (dotted line), MN (dashed line) and FPN (solid line) models.
(b) Simulated QQ-plot for the fitted FPN model and the variable pollen.
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6.2. Illustration 2

The dataset consists of 1150 heights measured at 1 micron intervals along the drum
of a roller (i.e., parallel to the axis of the roller). This was part of an extensive study
of surface roughness of the rollers. The units of height are not given, because the data
are automatically rescaled as they are recorded, and the scaling factor is imperfectly
known. The zero reference height is arbitrary. Data are available for downloading at
http://lib.stat.cmu.edu/jasadata/laslett, accessed on 15 October 2021. More details about
the data can be found in Laslett [24]. Table 5 shows the summary statistics for the data.
Note that the data have a large, negative sample asymmetry and sample kurtosis greater
than three, indicating that the ordinary normal model may present a poor fit. Table 6
presents the fit for the N, SN, PN and FPN models. Note that the minimum AIC and BIC
criteria are attached by the FPN distribution. Finally, Figure 6 presents the histogram for
the data and the fitted pdf for the models, showing the better performance of the FPN
distribution over the other models considered.

Table 5. Summary statistics for roller data.

n Mean Variance
√

b1 b2

1150 3.535 0.422 −0.986 4.855

Table 6. Parameter estimates (standard errors in parentheses) for N, SN, PN and FPN models in
roller dataset.

Parameter N SN PN FPN

ξ 3.5347 (0.0192) 4.2475 (0.0284) 4.5494 (0.0570) 3.8529 (0.0106)
η 0.6497 (0.0135) 0.9644 (0.0304) 0.1983 (0.0279) 0.7589 (0.0634)
α - −2.7578 (0.2529) 0.0479 (0.0155) 0.2082 (0.0568)
δ - - - 1.3045 (0.2064)

Log-likelihood −1135.87 −1071.35 −1085.24 −1065.92
AIC 2275.73 2148.69 2176.84 2139.84
BIC 2285.83 2163.84 2191.98 2160.03
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Figure 6. Histogram of heights dataset and fitted models N (dotted-dashed line), SN (dotted line),
PN (dashed line) and FPN (solid line).

http://lib.stat.cmu.edu/jasadata/laslett
http://lib.stat.cmu.edu/jasadata/laslett
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7. Conclusions

The main object of this paper is to propose a new asymmetric model that is more
flexible than the generalized Gaussian model studied in Durrans [2]. This new model
includes a parameter that makes it more flexible, because it is useful for unimodal or
bimodal data and/or cases with skewness and kurtosis larger than those expected for the
N and PN models. Given the flexibility of the model, further work could study the FPN
distribution in different contexts: regression, measurement with error-in-variable models,
random effect models, and so forth.
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