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Abstract: Some properties of generalized convexity for sets and functions are identified in case of the
reliability polynomials of two dual minimal networks. A method of approximating the reliability
polynomials of two dual minimal network is developed based on their mutual complementarity
properties. The approximating objects are from the class of quadratic spline functions, constructed
based on both interpolation conditions and shape knowledge. It is proved that the approximant
objects preserve both the high-order convexity and some extremum properties of the exact reliability
polynomials. It leads to pointing out the area of the network where the maximum number of paths
is achieved. Numerical examples and simulations show the performance of the algorithm, both in
terms of low complexity, small error and shape preserving. Possibilities of increasing the accuracy of
approximation are discussed.

Keywords: network reliability;convex functions;quadratic spline functions; approximation

1. Introduction

From the earliest days of network reliability, researchers have tried to develop al-
gorithms to efficiently compute the reliability of graphs/networks. In a recent survey
paper [1], Brown et al. have rediscovered the way of this research domain, by shedding
light on some of the theoretical advances made in the past as well as the new directions.
This scientific adventure started with the work of Moore and Shannon [2,3] and von Neu-
mann [4], when the first foundations of the field were settled. In the late seventies [5],
Valiant demonstrated that the main computational problem, i.e., to compute the reliability
polynomial of a two-terminal network, is #P-complete. Therefore, when the graph parame-
ters are growing significantly, one has to find alternative methods for estimating reliability,
such as (i) applying simplifications in order to reduce the computations as much as possible
so that the algorithm becomes practically effective, (ii) bounding the reliability polynomial
(using combinatorial methods and/or structural properties), and (iii) approximating the
reliability polynomial such that the error of approximation is bounded by a relatively
small quantity.

The less investigated topics related to network reliability are the analytical properties
such as shape properties of the reliability polynomials, including convexity, the number of
real roots and their density, etc. In order to compensate the complexity problems of com-
puting the coefficients of the reliability polynomial of a two-terminal network, the authors
of [6,7] proposed to approximate the polynomials using structural properties of the net-
works. In particular, duality is a characteristic that induces complementary properties on
the coefficients, which are considered in the approximations. In [8], Hermite interpolation
is used for hammock networks based on previous results on the shape [9]. Cubic splines
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are proposed in [6,7] and are suitable for any two-terminal networks. In [7], two methods
of producing cubic splines are compared—Lagrange-type interpolation procedures and
Bernstein approximation operator, emphasizing the accuracy of the methods. There are
several advantages for taking duality into account in the context of approximations:

• Computing the first non-trivial (different from zero) coefficient of the reliability poly-
nomial of a network enables one to directly obtain the value of the last non-trivial
(different from the binomial coefficient) coefficient of the reliability polynomial of the
dual network.

• Adjusting approximated coefficients of a network can be done more efficiently when
duality is considered, as more information is taken into account.

• The error of simultaneous approximation of two dual networks can be more accurately
estimated when compared to a single network approximation.

1.1. Our Contribution.

The mutual behaviour of two dual networks, described from the point of view of
their reliability, provides us with additional information, which is used as input in the
construction of the algorithms from [6,7]. In this paper, we refine the approximation
technique by considering the shape properties of the reliability polynomials of two dual
two-terminal networks. A profound research on the shape of the reliability polynomials
of two dual two-terminal networks is presented, starting from their complementarity
properties [6,7]. Their mutual behaviour referring to high-order convexity properties,
tangents properties, inflection points, etc. are emphasized. We construct approximation
operators that preserve as many as possible shape properties. The use of the quadratic
spline functions allows us to keep control on the approximation process from the point
of view of shape preserving. The notations and abbreviations used in this article are
summarized in Table 1.

Table 1. Abbreviations and notations.

Networks and Reliability
2TN two-terminal network n number of devices of a network
MMN matchstick minimal network w width of a network (length of the dual network)
SoP series-of-parallel l length of a network (width of the dual network)
PoS parallel-of-series p probability that a device works
G MMN Rel(G; p) reliability polynomial of G
G⊥ dual of G Rel(G⊥; p) reliability polynomial of G⊥

H, H+ Hammock network Nk, N⊥k kth coefficient of Rel(G; p)/Rel(G⊥; p)
Integers, Reals, and Incidence Matrices

N set of natural numbers R set of real numbers
(n

k) binomial coefficient ⊕ XOR (addition mod 2) operation
Mw,l({0, 1}) set of w× l binary matrices 1l×w, 0l×w all-ones/all-zeros matrix
MG matchstick incidence matrix of G MG bitwise complement of MG

Approximations
F(l,w) segmentary linear function of a (l, w)-type MMN f(l,w)(x) quadratic spline functions that approximate F(l,w)

F(w,l) segmentary linear function of a (w, l)-type MMN f(w,l)(x) quadratic spline functions that approximate F(w,l)
A, B, C coefficients of f(l,w) A⊥, B⊥, C⊥ coefficients of f(w,l)
Ñ(F(l,w); k) adjusted approximation of Nk Ñ(F(w,l); k) adjusted approximation of N⊥k
ApRel(G; p) approximation of Rel(G; p) ApRel(G⊥; p) approximation of Rel(G⊥; p)
V(xV , yV) maximum point of function f(l,w) V⊥(xV⊥ , yV⊥) maximum point of function f(w,l)
∆(k) correction factor for the approximation

1.2. Outline of the Article

In Section 2, we describe the types of networks implied in our research and introduce
the main definitions and properties regarding their reliability. Section 3 contains results
referring to high-order convexity properties of the reliability polynomial of a MMN and
the manner, in which these properties are transferred to the dual network. Some extremum
properties of the coefficients function are discussed. An algorithm for simultaneous ap-
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proximation of the reliability polynomials of two dual networks is described in Section 4
based on quadratic spline functions. The approximant functions are constructed to pre-
serve, as much as possible, the shape properties of the reliability polynomials of MMNs.
In Section 5, we simulate the approximation technique using the new algorithm. The shape
properties of the approximant objects are emphasized, proving the performance of the
algorithm from shape preserving point of view. We conclude the article in Section 6.

2. Preliminaries on Network Reliability
2.1. Matchstick Minimal Two-Terminal Networks

Any network G made of n identical devices that has two distinguished terminals—a
source S and a terminus T—is called a two-terminal network (denoted by 2TN in the
sequel). G can be characterized at least by three parameters: width (w), length (l), and size
(n)—w is the size of a “minimal cut” separating S from T, l is the size of a “minimal path”
from S to T. In general, we have n ≥ wl (see [2]). Any 2TN G of width w and length l will
be called a (l, w)− 2TN, or 2TN of type (l, w). All functions, as reliability polynomial, its
coefficients function and various approximations, related to a (l, w)− 2TN will be denoted
by a character having the index (l, w). Any 2TN satisfying n = wl is minimal (see [2]),
the members of the family of minimal 2TNs being denoted by MMN.

Matchstick Minimal Networks

Let l and w be two strictly positive integers. A 2TN G is a MMN if and only if it
can be designed in one of the following two ways: Either start by a parallel-of-series
(PoS) of width w and length l and place vertical matchsticks arbitrarily, or start with a
series-of-parallel (SoP) of width w and length l and remove vertical matchsticks arbitrarily.

Another way of defining a MMN, described in [10], is by using the bijection between
the set of all MMNs of length l and width w and the set of all binary matrices MG ∈
M(l−1)×(w−1){0, 1}. At any (l, w)−MMN G, we associate its matchstick incidence matrix
MG ∈ M(l−1)×(w−1){0, 1}, as

• MG(i, j) = 1 if there is a matchstick at position (i, j);
• MG(i, j) = 0 if there is no matchstick at position (i, j).

Hammock Networks

MMNs presenting a “brick-wall” pattern are known as hammocks [2,3,11,12]. Start-
ing from a SoP, by alternately deleting matchsticks, one can construct a hammock. If w
and l are both even, there are two hammocks (H and H+); otherwise, only one ham-
mock exists H. Using the matchstick incidence matrix, we have MPoS = 0(w−1)×(l−1) and
MSoP = 1(w−1)×(l−1) (see Figure 1).

S T

PoS

S T

H

S T

H+

S T

SoP

Figure 1. Square 4-by-4 parallel-of-series, hammocks, and series-of-parallel.

Duality Properties

Let G be a MMN. The dual of G, denoted here by G⊥, was introduced in [2]. Duality
properties were proved in [6,9] in case of particular MMNs, such as hammocks. Some
duality properties, that are needed in the context of approximations (as mentioned in [6]),
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are recalled in the next subsection. Let us denote by 1l×w the all-ones matrix and the
bit-wise complement of a binary matrix MG ∈ M(l−1)×(w−1){0, 1} as

MG = 1(l−1)×(w−1) ⊕MG, (1)

where ⊕ denotes the XOR operation.

Theorem 1 ([10]). Let G be a (l, w)−MMN. Then, either l = 1 (G being the all parallel network)
and we have G⊥ is the all series network, or w, l ≥ 2 and we have MG⊥ =

(
MG

)t.

Notice that by Theorem 1, the dual of a (l, w)−MMN is a (w, l)−MMN.

2.2. Reliability Polynomial

The reliability of a 2TN is defined as the probability that the source S and the terminus
T are connected, given that each device closes with probability p. The reliability polynomial
is presented in the literature under several forms, depending on the basis of the linear
space of polynomials that is taken into account. If the Bernstein basis{(

n
k

)
pk(1− p)n−k|k ∈ {0, 1, ..., n}

}
is used, then we have the so-called N-form (see in [2]):

Rel(G; p) =
n

∑
k=0

Nk pk(1− p)n−k. (2)

The coefficient Nk represents the number of ways one can select a subset of k devices in
G such that if these k devices are closed and the remaining are open, then the two terminals
S and T are connected, i.e., G is closed. Straightforward, well-known basic properties of
Nk can be immediately deduced from the definition.

Property 1 ([2]). If G is a (l, w)− 2TN, then

• ∀k ∈ {0, . . . , n} , 0 ≤ Nk ≤ (n
k);

• ∀k ∈ {0, . . . , l − 1} , Nk = 0;
• ∀k ∈ {n− w + 1, . . . , n} , Nk = (n

k).

Corollary 1 ([6]). Denoting by ak the coefficient of Rel(G; p) written in Bernstein basis, then
the coefficients in (2) are Nk = (n

k)ak. As consequence, we deduce that 0 ≤ ak ≤ 1 for all
k ∈ {0, 1, ..., n}.

In the sequel, we consider two dual MMNs, denoted by G and G⊥. All over the
paper, the coefficients of the reliability polynomial of G will be denoted as in (2) and the
coefficients of the reliability polynomial of the dual network G⊥ will be denoted by N⊥k .
The following complementarity property is well known:

Property 2 ([2]). If Rel(G; p) and Rel(G⊥; p) are the reliability polynomials of two dual MMNs
of type (l, w) respectively (w, l), then

Rel(G; p) + Rel(G⊥; 1− p) = 1. (3)

Equation (3) leads to the following complementarity identity, proved in [6] (Property
2 p.80) for hammock networks:
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Property 3 ([6,7]). If Nk and N⊥k are coefficients of the reliability polynomials of two dual MMNs,
G and G⊥, then

Nk + N⊥n−k =

(
n
k

)
, (4)

for all k ∈ {0, 1, 2, ..., n}.

Identity (4) also holds for any dual 2TNs (the proof is identical).

Parallel-of-Series and Series-of-Parallel.

For some type of MMNs there is a closed formula of the reliability polynomial.

Theorem 2 ([13]). Let PoS be a (l, w)−MMN. Then, we have

Rel(PoS; p) =
n

∑
k=l

[ k
l ]

∑
j=1

(−1)j+1
(

w
j

)(
n− jl
n− k

)
pk(1− p)n−k, (5)

where
[

k
l

]
denotes the integer part of the fraction.

The proof relies of the fact that one can write the coefficients of a (l, w)− PoS using
the formula

Nk =
[ k

l ]

∑
j=1

(−1)j+1
(

w
j

)(
n− jl
n− k

)
. (6)

Combined with (4) one can deduce

N⊥n−k =
[ k

l ]

∑
j=0

(−1)j
(

w
j

)(
n− jl
n− k

)
. (7)

Remark 1. The coefficients of a PoS also have a combinatorial interpretation, fact that allows one
to deduce basic properties such as those in Proposition 1. Indeed, Nk represents the number of ways
one can distribute k balls among w urns, where the urns have height l, such that at least one urn is
completely filled with balls.

Using the complementary property induced by duality (4), we deduce the following result.

Proposition 1. Let G be a (l, w)−MMN. Then, we have

[ k
l ]

∑
j=1

(−1)j+1
(

w
j

)(
n− jl
n− k

)
≤ Nk ≤

[ n−k
w ]

∑
j=0

(−1)j
(

l
j

)(
n− k− jw

k

)
(8)

Proof. Any coefficient Nk of an arbitrary (l, w) −MMN is bigger that or equal to the
same coefficient of an (l, w)− PoS and smaller than or equal to the same coefficient of
an (l, w) − SoP. Using Formula (6), one obtains the first inequality. As for the second

inequality, we the formula for the coefficients of a (w, l)− PoS, i.e., ∑
[ k

w ]
j=1(−1)j+1(l

j)(
n−jw
n−k ),

combined with the fact that its dual is a (l, w)− SoP. This yields that the n− k coefficient of

an (l, w)− SoP equals ∑
[ k

w ]
j=0(−1)j+1(l

j)(
n−jw
n−k ). Therefore, a simple variable change implies

the wanted result.
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3. Mutual Shape Properties of the Reliability Polynomials of Two Dual Networks
3.1. Convexity of High Order

Let us consider [a, b] ⊆ R an interval and a function f : [a, b] → R. Suppose that
n ∈ N.

Definition 1. The divided difference of order n of function f on points a ≤ x1 < x2 < ... <
xn+1 ≤ b is the number defined by

[x1, x2, ..., xn+1; f ] =
[x2, x3, ..., xn+1; f ]− [x1, x2, ..., xn; f ]

xn+1 − x1
, (9)

[x1; f ] = f (x1).

Remark 2. It is known (see, for example, in [14]) that if a function f is n-th order differentiable on
a point x ∈ (a, b), then the derivative f (n)(x) equals to the limit of n![x1, x2, ..., xn+1; f ] when all
points xi, i ∈ {1, 2, ..., n + 1} tend to x.

The concept of convex function of high order on an interval was introduced in 1926 by
E. Hopf [15]. T. Popoviciu [16] extended this concept to functions defined on an arbitrary
set in 1934. Furthermore, T. Popoviciu [14] extensively studied this concept in case of real
functions of several real variables.

Definition 2 ([14]). Function f is said to be n-th order convex (non-concave, polynomial, non-
convex, concave) on [a, b] if

[x1, x2, ..., n + 2; f ] > (≥,=,≤,<) 0, (10)

respectively, for all systems of points a ≤ x1 < x2 < ... < xn+2 ≤ b

The functions having one of the properties defined by means of (10) are generally
called n-th order functions (see in [16,17]).

Remark 3. The reliability polynomial of a network of type n is a n-th order polynomial function on
[0, 1], as every n-th degree polynomial has this property [15].

Remark 4. If function f is n + 1-th order differentiable on [a, b], then, in view of Remark 2, it
follows that condition (10) is expressible in terms of derivatives as follows: function f is n-th order
convex (non-concave, polynomial, non-convex, concave) on [a, b] if

f (n+1)(x) > (≥,=,≤,<) 0, (11)

respectively, for all x ∈ [a, b]. The one side derivatives are considered on points a and b.

3.2. Convexity Properties of the Reliability Polynomials of Two Dual Minimal Networks

With the properties of convexity being accidentally mentioned, both in case of the
reliability polynomial of a MMN (see in [6,7]) and in case of its coefficients sequence (see in
[18]), this subsection presents the research results on the presence of various types of
high-order convexity to the reliability polynomials of two dual MMNs. The impact of
networks duality on the shape of the polynomials is emphasized.

Theorem 3. If Rel(G; p) and Rel(G⊥; p) are the reliability polynomials of two dual MMNs of
type (l, w), respectively, (w, l), n = lw ≥ 3, and 0 ≤ k ≤ n, then the following holds.

1. If k is odd, then Rel(G; p) and Rel(G⊥; 1− p) are (k− 1)-th order functions of the same type
on each sub-interval of [0, 1]: either both are (k− 1)-th order convex or both are (k− 1)-th
order concave.
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2. If k is even then Rel(G; p) and Rel(G⊥; 1− p) are (k− 1)-th order functions of opposite
types on each sub-interval of [0, 1]: if one polynomial is (k− 1)-th order convex then the other
one is (k− 1)-th order concave, and conversely.

Proof. The two polynomials are differentiable functions of all orders, verifying (3). By suc-
cessively differentiating the Equation (3) k times one gets

dk

dpk Rel(G; p) = (−1)k+1 dk

dpk Rel(G⊥; 1− p), (12)

which gives the conclusion, based on Remark 4.

Figure 2 shows the mutual behaviour of the derivatives of the reliability polynomials
of two dual hammock networks. The corresponding impact on the shape of reliability
polynomials is described by the following corollaries.

(a) k = 1 (b) k = 2 (c) k = 3
Figure 2. dk

dpk Rel(G; p) (dash black line), dk

dpk Rel(G⊥; p) (solid black line), and dk

dpk Rel(G⊥; 1− p) (solid pink line) for the
3-by-5 hammock network.

Corollary 2. Suppose that n ≥ 3 and k = 2. Relation (12) implies that if p0 is an inflection point
of the polynomial Rel(G; p) then it is an inflection point of Rel(G⊥; 1− p), which implies that
1− p0 is an inflection point of Rel(G⊥; p).

Corollary 3. Suppose that n ≥ 3, k is odd and take p = 1
2 in Equation (12). It follows that

dk

dpk Rel(G;
1
2
) =

dk

dpk Rel(G⊥;
1
2
),

which means that all derivatives of odd order of the reliability polynomials of two dual networks,
Rel(G; p) and Rel(G⊥; p), have the same value. In particular, if k = 1 one gets that the two
polynomials, Rel(G; p) and Rel(G⊥; 1− p), have parallel tangents at p = 1

2 .

Corollary 4. Suppose that n ≥ 3, k is even and take p = 1
2 in Equation (12). It follows that

dk

dpk Rel(G;
1
2
) = − dk

dpk Rel(G⊥;
1
2
).

In particular, if k = 2 one gets that if p = 1
2 is an inflection point of a reliability polynomial of

a network then it is an inflection point of the reliability polynomial of the dual network as well.

Corollary 5. Suppose that G is a minimal network of length l ≥ 3 and width w, which means
that n = lw ≥ 3. Property 1 implies that all derivatives of order k < l of its reliability polynomial
Rel(G; p) equal to 0 at p = 0. As consequence, the x-axis is tangent to the graph of this polynomial
at p = 0 and the curvature radius of Rel(G; p) tends to infinity when p→ 0. All these, together
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with the non-negativity of a reliability polynomial over [0, 1], imply that the polynomial is first-
order convex in the neighborhood of the origin. Theorem 3 implies that the reliability polynomial
Rel(G⊥; 1− p) is concave in the neighborhood of the origin. The functions Rel(G⊥; 1− p) and
Rel(G⊥; p) are symmetric with respect to the straight line p = 1

2 , which implies that it is also
convex in the neighborhood of the origin.

Another convexity property of functions that is important in the context of the reliabil-
ity theory in case of 2TNs is the log-convexity, defined as follows:

Definition 3 ([19]). A function f : E→ R, E ⊆ R, is said to be log-convex (or log-concave) on E
if f (x) > 0 for all x ∈ E and function log( f ) is convex (or concave, respectively) on E.

Remark 5. It is proved in [19], pp. 207, that the log-convex (log-concave) functions are also convex
(concave) functions, but the converse is not true. Based on the results of Huh [18] and Lenz [20], the
sequence of the coefficients of a the reliability polynomial is log-concave. This property will be used
in the sequel, because it implies the concavity of the coefficients function of a reliability polynomial,
which will be defined in the next section.

Consider G a (l, w)−MMN. The reliability polynomial of this network, expressed in
Bernstein basis, is Rel(G; p) defined by (2). Knowing the reliability polynomial Rel(G; p)
is equivalent to knowing the corresponding function F(l,w) defined by (13). We consider
the dual network G⊥ together with its reliability polynomial Rel(G⊥; p). Let us define
two functions, which we call coefficients functions in the sequel: F(l,w) : [0, n] → R and
F(w,l) : [0, n]→ R by

F(l,w)(x) =

{
0, if x = 0
(Nk − Nk−1)x + kNk−1 − (k− 1)Nk, if x ∈ [k− 1, k], k ∈ {1, 2, ..., n}.

(13)

F(w,l)(x) =

{
0, if x = 0
(N⊥k − N⊥k−1)x + kN⊥k−1 − (k− 1)N⊥k , if x ∈ [k− 1, k], k ∈ {1, 2, ..., n}.

(14)
In fact, function F(l,w) (respectively, F(w,l)) is the segmentary linear function obtained

based on the coefficient functions of the reliability polynomials two dual hammock net-
works, as defined in [7,18,20]. Knowing the reliability polynomials of the two dual networks
is equivalent to knowing the two coefficient functions defined by (13) and (14).

Remark 6. The coefficient function F(l,w) is concave on [l− 1, n−w+ 1]. The coefficients function
F(w,l) is concave functions on [w− 1, n− l + 1]. This shape is a consequence of Property 1 and
Remark 5.

3.3. Extremal Properties of the Coefficients Functions

The sequence of coefficients of the reliability polynomial have some monotony prop-
erties, that are consequences both of their complementarity property (4) and of Remark 5.
The concavity of functions F(l,w) and F(w,l) on [0, n], together with Property 1, imply that the
index of the maximum coefficient of the two reliability polynomials is in [l − 1, n− w + 1],
and [w− 1, n− l + 1], respectively. We construct, in the next section, a method to approxi-
mate the reliability polynomials of two dual networks, denoted here by G of (l, w)-type,
and its dual G⊥ of (w, l)-type. We prove that the maximum coefficient of the approximate
reliability polynomial of the G is reached in the same interval as the maximum coefficient of
the exact polynomial. The most frequent interval that contains the index of the maximum



Mathematics 2021, 9, 3182 9 of 21

point of F(l,w), as identified by studying the completely known reliability polynomials of
small size hammock networks and also small size compositions of series and parallel, is

I1 =

[
n− w + l

2
,

n− w + l
2

+
n− w− l + 2

4

]
.

Few networks have the index of the maximum coefficient of the reliability polynomial
not belonging to I1 but to a larger interval,

I2 =

[
n− w + l

2
, n− w +

1
2

]
.

Few examples are presented in Table 2. The maximum coefficient of the reliability
polynomial is denoted by max(Nk), and the value of the index k of the maximum coefficient
is denoted by argmax(F(l,w)(x)) in this table.

Table 2. Extremal values of the coefficients functions for small hammocks.

w l max(Nk) argmax(F(l,w)(x)) I1 I2

2

3 10 4 [3.5, 4] [3.5, 4.5]

4 20 6 [5, 6] [5, 6.5]
4 24 5 [5, 6] [5, 6.5]

5 56 7 [6.5, 8] [6.5, 8.5]

3

2 16 3 [2.5, 3.25] [2.5, 3.5]

3 84 5 [4.5, 5.75] [4.5, 6.5]

4 450 7 [6.5, 8.25] [6.5, 9.5]

5 2443 9 [8.5, 10.75] [8.5, 12.5]

4

2 62 4 [3, 4] [3, 4.5]
2 66 4 [3, 4] [3, 4.5]

3 698 7 [5.5, 7.25] [5.5, 8.5]

4 7700 9 [8, 10.5] [8, 12.5]
4 8312 9 [8, 10.5] [8, 12.5]

5 88,948 11 [10.5, 13.75] [10.5, 16.5]

5

2 244 5 [3.5, 4.75] [3.5, 5.5]

3 5653 8 [6.5, 8.75] [6.5, 10.5]

4 132,750 11 [9.5, 12.75] [9.5, 15.5]

5 3,162,650 14 [12.5, 16.75] [12.5, 20.5]

A special case is presented by Parallel-of-series and Series-of-parallel networks.
In case of a PoS, we proved that index of the maximum value of the coefficients (6)
is in

[
n
2 , n− w + 1

2

]
. We omit the proof of this property both because of its length and

because it exceeds the purpose of this paper. However, we remark that the coefficients of
the reliability polynomial of all types of network have the same extremal property, which
we retrieve to its approximant.
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4. Shape-Preserving Simultaneous Approximation of the Reliability Polynomials of
Two Dual Two-Terminal Networks
4.1. An Efficient Constructive Method

In this section, we intend to build a method of approximation of functions F(l,w)

and F(w,l) by means of a spline function, starting from the properties of the reliability
polynomials described above and in [11,21]. Some generalized convexity properties as
described in [22] will be used. We construct segmentary polynomial function meant to
imitate the shape of functions F(l,w) and F(w,l). As proved in [17], given a continuous
function on a bounded closed interval, the Bernstein approximation polynomial of degree
s of this function preserves the convexity of the approximated function (see also in [23,24]).
This property gave us the idea of approximating functions F(l,w) and F(w,l) by means of
polynomials imitating the Bernstein polynomial of third degree in [6]. The results of
the cubic spline approximation algorithm presented in [6] constructed both by means of
Lagrange interpolation and by a weakened Bernstein type approximation operator are
compared in [7]. Furthermore, the algorithm from in [6] is refined in [7] in order to
improve the accuracy of the approximation. In this paper, we describe a version of the
approximation algorithm from in [7] obtained by replacing the cubic splines with quadratic
splines. The initial information on the two coefficients functions F(l,w) and F(w,l) refers to
their values on intervals [0, l − 1] ∪ [n−w + 1, n] and [0, w− 1] ∪ [n− l + 1, n] respectively.
We also have shape information on these functions, i.e., the concavity of these functions
is a consequence of the results from [18,20]. We complete the missing information from
intervals [l − 1, n− w + 1] and respectively [w− 1, n− l + 1] by the known information on
the shape of the coefficients functions F(l,w) and F(w,l). This is the reason to carefully chose
the initial knots in order to generate a function having the same shape as F(l,w) and F(w,l).
In order to approximate F(l,w) and F(w,l) we construct two continuous quadratic spline
functions f(l,w) : [0, n]→ R and f(w,l) : [0, n]→ R that verify the following conditions:

f(l,w)(0) = f(l,w)(1) = ... = f(l,w)(l − 1) = 0
f(l,w)(s) = Ns > ( n

w−1)

f(l,w)(n− w + k) = ( n
w−k), k ∈ {0, 1, ...w− 1},

(15)


f(w,l)(0) = f(w,l)(1) = ... = f(w,l)(w− 1) = 0
f(w,l)(t) = N⊥t > ( n

l−1)

f(w,l)(n− l + k) = ( n
l−k), k ∈ {0, 1, ...l − 1}.

(16)

for some points s ∈ [l − 1, n− w + 1] and t ∈ [w− 1, n− l + 1].

Remark 7. If l > 2 and w > 2, it is always possible to find two numbers s ∈ [l − 1, n− w + 1]
and t ∈ [w− 1, n− l + 1] such as the two conditions Ns > ( n

w−1) and N⊥t > ( n
l−1) are valid.

Indeed, one can always compute Nl and N⊥w by means of the technique from [11]. Then, one
can compute Nn−w and N⊥n−l using the coefficients complementarity relation (4). The relation(4)
implies that at least two of the four coefficients verify the needed conditions.

In order to define the two functions f(l,w) and f(w,l), we have previously taken into
account the convexity properties of the second-degree polynomial that allows us to define
approximation operators that preserve some shape properties of the approximated curve.
In the sequel we define an approximation function by interpolating the coefficients func-
tions using quadratic splines conveniently chosen in order to preserve the convexity and
concavity shapes. Function f(l,w) is searched as

f(l,w)(x) =


0, if 0 ≤ x ≤ l − 1
Ax2 + Bx + C, if l − 1 < x ≤ n− w + 1
d(l,w)(k)(x), if x ∈ (k− 1, k], k ∈ {n− w + 2, ..., n}

(17)
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Here,

d(l,w)(k)(x) =
((

n
k

)
−
(

n
k− 1

))
x + k

(
n

k− 1

)
− (k− 1)

(
n
k

)
are the straight line segments determined by points (k − 1, ( n

k−1)) and (k, (n
k)), for all

k ∈ {n− w + 2, ..., n} respectively. Furthermore, the coefficients A, B, C ∈ R are obtained
using the interpolation conditions:

limx→l−1
x>l−1

f(l,w)(x) = 0

f(l,w)(s) = Ns > ( n
w−1)

f(l,w)(n− w + 1) = ( n
w−1)

(18)

Function f(w,l) is searched as

f(w,l)(x) =


0, if 0 ≤ x ≤ w− 1
A⊥x2 + B⊥x + C⊥, if w− 1 < x ≤ n− l + 1
d(w,l)(k)(x), if x ∈ (k− 1, k], k ∈ {n− l + 2, ..., n}

(19)

Here,

d(w,l)(k) =
((

n
k

)
−
(

n
k− 1

))
x + k

(
n

k− 1

)
− (k− 1)

(
n
k

)
are the straight line segments determined by points (k − 1, ( n

k−1)) and (k, (n
k)), for all

k ∈ {n− l + 2, ..., n}. As above, the coefficients A⊥, B⊥, C⊥ ∈ R are obtained using the
interpolation conditions: 

limx→w−1
x>w−1

f(w,l)(x) = 0

f(w,l)(t) = N⊥t > ( n
l−1)

f(w,l)(n− l + 1) = ( n
l−1)

(20)

The interpolation conditions (18) and (20) lead to the following systems of linear
equations in order to compute the functions f(l,w) and f(w,l) using (17) and (19):

A(l − 1)2 + B(l − 1) + C = 0
As2 + Bs + C = Ns
A(n− w + 1)2 + B(n− w + 1) + C = ( n

w−1),
(21)


A⊥(w− 1)2 + B⊥(w− 1) + C⊥ = 0
A⊥t2 + B⊥t + C⊥ = N⊥t
A⊥(n− l + 1)2 + B⊥(n− l + 1) + C⊥ = ( n

l−1).
(22)

The approximation algorithm, based on determining the functions f(l,w) and f(w,l)
using the solutions of the two systems of equations obtained by Cramer’s rule, is as follows.
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The algorithm:

Step 1. Compute the values of two coefficients Ns and N⊥t using some technique from
literature. If Nl and Nw are chosen then we use the method from [11] and then we
compute the values Nn−w and N⊥n−l using (4).
Here, we put s = n− w and t = n− l.

Step 2. Compute the coefficients of the approximate functions f(l,w) and f(w,l), by

A =
( n

w−1)(s− l + 1)− Ns(n− w− l + 2)
(s− l + 1)(n− w− l + 1)(n− w− l + 2)

B =
Ns(n− w− l + 2)(n− w + l)− ( n

w−1)(s− l + 1)(s + l − 1)
(s− l + 1)(n− w− l + 1)(n− w− l + 2)

C =
(l − 1)

[
( n

w−1)s(s− l + 1)− Ns(n− w + 1)(n− w− l + 2)
]

(s− l + 1)(n− w− l + 1)(n− w− l + 2)

A⊥ =
( n

l−1)(t− w + 1)− N⊥t (n− w− l + 2)
(t− w + 1)(n− w− l + 1)(n− w− l + 2)

B⊥ =
N⊥t (n− w− l + 2)(n− l + w)− ( n

l−1)(t− w + 1)(t + w− 1)
(t− w + 1)(n− w− l + 1)(n− w− l + 2)

C⊥ =
(w− 1)

[
( n

l−1)t(t− w + 1)− N⊥t (n− l + 1)(n− w− l + 2)
]

(t− w + 1)(n− w− l + 1)(n− w− l + 2)
.

Step 3. Write functions f(l,w) and f(w,l) using (17) and (19), respectively.

Step 4. Compute f(l,w)(k), k ∈ {l, l + 1, ..., n− w}.
Step 5. Compute f(w,l)(k), k ∈ {w, w + 1, ..., n− l}.
Step 6. Compute

∆(k) =
(

n
k

)
− f(l,w)(k)− f(w,l)(n− k), (23)

for each k ∈ {min{l − 1, w− 1}, ... max{n− l + 1, n− w + 1}}.

Step 7. Compute Ñ(F(l,w); k) = f(l,w)(k) +
∆(k)

2 , and Ñ(F(w,l); n− k) = f(w,l)(n− k) + ∆(k)
2 .

Step 8. If Ñ(F(l,w); k) < 0 then replace Ñ(F(l,w); k) = 0, and put Ñ(F(w,l); n− k) = (n
k) (or

converse, if the dual coefficient is negative).

Step 9. Output the approximation polynomials

ApRel(G; p) =
n

∑
k=0

Ñ(F(l,w); k) pk(1− p)n−k, (24)

ApRel(G⊥; p) =
n

∑
k=0

Ñ(F(w,l); k) pk(1− p)n−k. (25)

Remark 8. The overall time complexity of computing ApRel(G; p) and ApRel(G⊥; p) is O(n),
when n→ ∞. This fact can be easily deduce either by inspecting each step of our algorithm or by
adapting the proof of Theorem 5 from in [7].

4.2. Shape and Extremum Properties of the Approximation Operator

In this subsection we suppose that both l ≥ 2 and w ≥ 2 and at least one inequality is
strict. It implies that n ≥ 6.

Remark 9. All the invariant properties proved in [7] (Property 14, Corollary 15 and Property 16)
in case of the use of an approximation operator constructed by means of cubic spline functions stay
valid. One can prove that the approximate reliability polynomial of two dual networks obtained by



Mathematics 2021, 9, 3182 13 of 21

using quadratic splines keep invariant the complementarity relations (3), (4) and their consequences
in a similar manner as in [7], which means that

Ñ(F(l,w); k) + Ñ(F(w,l); n− k) =
(

n
k

)
, (26)

n

∑
k=0

[
Ñ(F(l,w); k) + Ñ(F(w,l); n− k)

]
= 2n, (27)

ApRel(G; p) + ApRel(G⊥; 1− p) = 1. (28)

Remark 10. As a consequence of (28), it follows that all the properties of the derivatives of the
reliability polynomials of two dual networks proved in the previous section, Theorem 3, stay valid in
case of the approximation polynomials. The corollaries of Theorem 3 stay also valid, implying that
the same type of high-order convexity are retrieved to the approximation polynomials. Simulations
on small-sized MMNs, showing these shape properties are in Figures 3 and 4.

It is proved in [18,20] that the coefficients sequence of the reliability polynomial of a
MMN has the log-concavity property. It implies, as discussed above, that the coefficients
functions F(l,w) and F(w,l) are concave on intervals [l − 1, n] and [w − 1, n], respectively.
The concavity is preserved by the spline approximation functions f(l,w) and f(w,l). As con-
sequence of the known information on the coefficients function (13) and (14), it follows
that there are two numbers s ∈ {l, l + 1, ..., n − w} and t ∈ {w, w + 1, ..., n − l} such as
Ns > ( n

w−1) and N⊥t > ( n
l−1).

Property 4. If l > 2 and w ≥ 2 and if s ∈ {l, l + 1, ..., n−w} such as Ns > ( n
w−1), then function

f(l,w) is concave and f(l,w)(x) ≥ 0 on interval [l − 1, n− w + 1].

Proof. It is either obvious or elementary to prove that

(s− l + 1) < (n− w− l + 2),

(n− w− l + 2)(n− w + l) > (s− l + 1)(s + l − 1),

s(s− l + 1) < (n− w + 1)(n− w− l + 2).

Using these inequalities, one gets that A ≤ 0, B ≥ 0 and C ≤ 0. The concavity of the
parabola is a consequence of the negativity of A. The non-negativity of function f(l,w) is a
consequence of its definition (17) and the hypothesis on s.

Remark 11. If l ≥ 2 and w > 2 and if t ∈ {w, w + 1, ..., n− l} is chosen such as N⊥t > ( n
l−1)

then
A⊥ ≤ 0, B⊥ ≥ 0, C⊥ ≤ 0.

As consequence, function f(w,l) is concave and f(w,l)(x) ≥ 0 on [w− 1, n− l + 1].

If x, y ∈ R and x < y, then we denote the length of interval [x, y] by L(x; y) = y− x in
the sequel.

Property 5. Suppose that l > 2 and w ≥ 2. Suppose that s is chosen such that Ns > ( n
w−1). Let

us denote by V(xV , yV) the maximum point of function f(l,w) on [l − 1, n− w + 1]. Then,

xV ≥
n− w + l

2
. (29)

Proof. Let us denote the length of intervals [l − 1, n− w + 1], [s, n− w + 1] and [l − 1, s]
by L(l − 1; n− w + 1), L(s; n− w + 1) and L(l − 1; s), respectively. Because l ≤ s ≤ n− w,
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it follows that L(l − 1; n− w + 1) > L(s; n− w + 1) and L(l − 1; n− w + 1) > L(l − 1; s).
The abscissa of the vertex of parabola f(l,w) is

xV =
−B
2A

=
Ns(n− w− l + 2)(n− w + l)

2
[
Ns(n− w− l + 2)− ( n

w−1)(s− l + 1)
]

−
( n

w−1)(s− l + 1)(s + l − 1)

2
[
Ns(n− w− l + 2)− ( n

w−1)(s− l + 1)
]

=
n− w + l

2
+

( n
w−1)L(l − 1; s)L(s; n− w + 1)

2
[
NsL(l − 1; n− w + 1)− ( n

w−1)L(l − 1; s)
] .

From the hypothesis s ∈ [l, n− w] ∩N and also as in the proof of Property 4, one gets

( n
w−1)L(l − 1; s)L(s; n− w + 1)

2
[
NsL(l − 1; n− w + 1)− ( n

w−1)L(l − 1; s)
] > 0,

which means that the abscissa of the maximum point is greater than the middle of the
interval [l − 1, n− w + 1]. The same procedure applies in case of the dual network.

Property 6. Suppose that l > 2 and w ≥ 2. Suppose that Nn−w > ( n
w−1). Let us denote by

V(xV , yV) the maximum point of function f(l,w) on [l − 1, n− w + 1]. Then,

n− w + l
2

≤ xV ≤ n− w +
1
2

. (30)

Proof. The lower bound is a particular case of Property 5. To prove the upper bound
property, we search for a real number S such as

xV ≤ S +
n− w + l

2
.

This inequality is equivalent to

Nn−w(n− w− l + 2) ≤ (2S + 1)
[

Nn−w(n− w− l + 2)−
(

n
n− w

)
(n− w− l + 1)

]
,

0 ≤ 2SNn−w(n− w− l + 2)− (2S + 1)
(

n
n− w

)
(n− w− l + 1).

Because of the hypothesis Nn−w > ( n
w−1), one gets

2S(n− w− l + 2) ≥ (2S + 1)(n− w− l + 1),

which meas that 2S ≥ n− w− l + 1 and

xV ≤
n− w− l + 1

2
+

n− w + l
2

= n− w +
1
2

,

as required.

Property 7. Suppose that l > 2 and w ≥ 2. Suppose that s is chosen such that Ns > ( n
w−1).

Let us denote by V(xV , yV) the maximum point of function f(l,w) on [l − 1, n − w + 1]. Let
E(l, w; s) = Ns[L(l− 1; n−w+ 1)]2− ( n

w−1)L(l− 1; s)[3L(l− 1; n−w+ 1)− 2L(l− 1; s)]. If

E(l, w; s) ≥ 0 (31)
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then
xV ≤

n− w + l
2

+
n− w− l + 2

4
. (32)

Proof. One may write the abscissa xV , which was computed above, as

xV =
n− w + l

2
+

n− w− l + 2
4

−
Ns(n− w− l + 2)2 − ( n

w−1)(s− l + 1)(3n− 3w− l − 2s + 4)

4
[
Ns(n− w− l + 2)− ( n

w−1)(s− l + 1)
] ,

Taking into account that, Ns ≥ ( n
w−1) and s ∈ [l, n− w] ∩N, one gets

Ns(n− w− l + 2)2 − ( n
w−1)(s− l + 1)(3n− 3w− l − 2s + 4)

4
[
Ns(n− w− l + 2)− ( n

w−1)(s− l + 1)
] =

Ns[L(l − 1; n− w + 1)]2

4
[
NsL(l − 1; n− w + 1)− ( n

w−1)L(l − 1; s)
]

−
( n

w−1)L(l − 1; s)[3L(l − 1; n− w + 1)− 2L(l − 1; s)]
4
[
NsL(l − 1; n− w + 1)− ( n

w−1)L(l − 1; s)
] > 0.

Due to (31), it follows the required inequality,

xV <
n− w + l

2
+

n− w− l + 2
4

,

which ends the proof.

Corollary 6. Suppose that l ≥ 2 and w > 2. Suppose that t is chosen such that N⊥t > ( n
l−1) and

condition (31) holds, i.e., E(w, l; t) ≥ 0, where

E(w, l; t) = N⊥t [L(w− 1; n− l + 1)]2 −
(

n
l − 1

)
L(w− 1; t)[3L(w− 1; n− l + 1)− 2L(w− 1; t)].

Let us denote by V⊥(xV⊥ , yV⊥) the maximum point of function f(w,l) on [w− 1, n− l + 1].
Then the abscissa of the maximum point of the dual network has the same boundary property:

n− l + w
2

≤ xV⊥ ≤
n− l + w

2
+

n− w− l + 2
4

. (33)

Proof. The boundary properties of the quadratic spline approximation of the coefficients
function in case of the dual case are obtained following the same reasoning as in the proof
of Properties 5 and 7, using the coefficients A⊥ and B⊥.

Remark 12. Practical simulations show that the hypothesis on s of being chosen such that Ns >
( n

w−1) is a necessary condition for Properties 4, 5, and 7. The following examples show that the
sufficiency does not hold. There are cases when Ns < ( n

w−1) but (31) holds, which is shown by
the following examples. The necessary and sufficient condition for Property 7 consists in both
hypotheses.

Example 1. We consider few cases of small hammock networks as in [11]. After performing
simulations taking l ∈ {3, 4, 5} and w ∈ {3, 4, 5} we have obtained that in cases (l, w) ∈
{(3, 4), (4, 3), (3, 3), (3, 5), (5, 3), (4, 4)} inequality Ns > ( n

w−1) implies (31). This implication is
not valid in cases (l, w) ∈ {(4, 5), (5, 4), (5, 5)}. Tables 3–5 contain the numerical results obtained
in each case. The exact coefficients Ns included in Tables 3–5 are taken from [11].
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Table 3. The case of H with (l, w) = (4, 5): if s = 6 we have (31) valid but the coefficient N6 is less
than (20

6 ).

s s = 5 s = 6 s = 7 s ∈ {8, ..., 14} s = 15 s = 16
Ns 438 3072 13,178 Ns > (20

4 ) 15,468 (20
4 ) = 4845

E(4, 5; s) −265128 39523 1626302 E(4, 5; s) > 0 1741992 0

Table 4. The case of H of (l, w) = (5, 4): if s = 6 we have (31) valid but the coefficient N6 is less than
the binomial.

s s = 5 s = 6 s = 7 s ∈ {8, ..., 15} s = 16 s = 17
Ns 36 510 3334 Ns > (20

3 ) 4816 (20
3 ) = 1140

E(5, 4; s) −36095 6390 450586 E(5, 4; s) > 0 608704 0

Table 5. The case of H of (l, w) = (5, 5): if s = 7 we have (31) valid but the coefficient N7 is less than
the binomial.

s s = 6 s = 7 s = 8 s ∈ {9, ..., 19} s = 20 s = 21
Ns 994 8983 50796 Ns > (25

4 ) 53078 (25
4 ) = 12650

E(5, 5; s) −901834 888337 12504244 E(5, 5; s) > 0 11493942 0

Example 2. A few interesting negative results, showing various behaviour of the approximant if
Ns < ( n

w−1), are found in the following cases:

• If (l, w) = (3, 3) and s = 3 then N3 = 8 < (9
2) = 36 and A = −0.25 < 0, which

means that the approximant is concave. As one can see, Property 4 and Property 5 are valid.
But xV = 22.5 > 5.75, exceeding the upper bound from Property 7.

• If (l, w) = (4, 4) and s = 4, then N4 = 18 < (16
3 ) = 560 and A = 38

9 > 0, which means
that the approximant is convex. As xV = 26

19 < 8 neither Property 4, nor Property 5, nor
Property 7 is valid.

• If (l, w) = (4, 4) and s = 5 then N5 = 204 < (16
3 ) = 560 and A = − 41

9 < 0, which
means that the approximant is concave, validating Property 4. But xV = 592

41 > 8 and also
xV > 10.5. It means that Property 5 is true, but Property 7 is not valid.

• If (l, w) = (4, 4)-dual and s = 4 then N⊥4 = 24 < (16
3 ) = 560 and A⊥ = 32

9 > 0, which
means that the approximant is convex. As xV⊥ = 1

8 < 8 neither Property 4, nor Property 5,
nor Property 7 is valid.

• If (l, w) = (4, 4)-dual and s = 5 then N⊥5 = 264 < (16
3 ) = 560 and A⊥ = − 76

9 < 0, which
means that the approximant is concave, validating Property 4. However, xV⊥ = 208

19 > 8 and
also xV⊥ > 10.5. It means that Property 5 is true, but Property 7 is not valid.

4.3. Error Estimation

In this subsection, we also suppose that both l ≥ 2 and w ≥ 2 and at least one of
the inequalities is strict. The small amount of initial data and of theoretic information
on the reliability polynomial of a MMN arise difficulties in assessing the error of the
approximation. The error of the corresponding approximated reliability polynomial is
determined using the Chebychev distance between functions, because it gives information
on the number of exact decimals obtained by approximation. As consequence, one can
prove that the same upper bound of the error of this approximation as obtained in [7]. All
the same, a more refined upper bound than the result from [7] is proved in this subsection
in case of approximation using quadratic spline functions.

Proposition 2. Let G be a (l, w)-type MMN, and let us denote

M = max{|Nk − N⊥n−k| , 0 ≤ k ≤ n}
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D = (B− B⊥ − 2nA⊥)2 − 4(A− A⊥)(C− C⊥ − B⊥n− A⊥n2).

Then we have
max{|Rel(G; p)−ApRel(G; p)| , 0 ≤ p ≤ 1} ≤ (34)

≤ (n− l − w)

2n+1

[
M + max

{(
n

l − 1

)
,
(

n
w− 1

)
,
∣∣∣∣ D
4(A− A⊥)

∣∣∣∣}].

Proof. Using the definition of Rel and ApRel we obtain

|Rel(G; p)−ApRel(G; p)| ≤
n

∑
k=0

∣∣∣Nk − Ñ(F(l,w); k))
∣∣∣pk(1− p)n−k.

However, according to the algorithm,

Ñ(F(l,w); k) = f(l,w)(k) +
∆(k)

2

= f(l,w)(k) +
1
2

[(
n
k

)
− f(l,w)(k)− f(w,l)(n− k)

]
=

(n
k) + f(l,w)(k)− f(w,l)(n− k)

2
,

and, using (4), one can compute

Nk − Ñ(F(l,w); k)) =
2Nk − (n

k)− f(l,w)(k) + f(w,l)(n− k)
2

=
Nk − N⊥n−k − f(l,w)(k) + f(w,l)(n− k)

2
,

for each k ∈ {l − 1, ..., n− w + 1}. Taking into account (17), we evaluate as follows:

|Rel(G; p)−ApRel(G; p)| ≤
n−w

∑
k=l

∣∣∣∣∣Nk − N⊥n−k − f(l,w)(k) + f(w,l)(n− k)
2

∣∣∣∣∣pk(1− p)n−k

≤ 1
2n

n−w

∑
k=l

∣∣Nk − N⊥n−k

∣∣
2

+
n−w

∑
k=l

∣∣∣− f(l,w)(k) + f(w,l)(n− k)
∣∣∣

2


≤ (n− w− l)M

2n+1 +
1

2n+1

n−w

∑
k=l

∣∣∣ f(l,w)(k)− f(w,l)(n− k)
∣∣∣.

However, according to (17) and (19), we obtain

f(l,w)(k)− f(w,l)(n− k) = (A− A⊥)x2 + (B− B⊥ − 2nA⊥)x + C− C⊥ − B⊥n− A⊥n2.

According to (17) and (19), the absolute maximum value of this second degree polyno-
mial is the absolute value of the ordinate of its vertex. The maximum value of this function
on [l − 1, n− w + 1] is either in the maximum point of this polynomial or a value in the
extremities of this interval. An elementary computation gives

max
∣∣∣ f(l,w)(k)− f(w,l)(n− k)

∣∣∣ = max
{(

n
l − 1

)
,
(

n
w− 1

)
,
∣∣∣∣− D

4(A− A⊥)

∣∣∣∣},

for all k ∈ {l, l + 1, ..., n − w}. Replacing this value in the previous evaluation of the
approximation error one gets the required upper bound.

Remark 13. The error of approximation can be improved by conveniently choosing the initial
coefficients, Ns and N⊥t , if possible.
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5. Simulation Results

We have conducted simulations for hammock networks of size w = 3, l = 5. The exact
coefficients are extracted from [11]. First, we have implemented our algorithm and with
input data Nl−1 = 0, Nn−w, Nn−w+1 and the corresponding N⊥w−1 = 0, N⊥n−l , N⊥n−l+1.

The results are illustrated in Table 6. The first row in each sub-table represents the exact
coefficients. The second rows represent the results obtained by means of our algorithm. We
notice that the first four non-zero approximations are rather big compared with the exact
values, while the last approximated coefficients are much closer to the exact values.

Table 6. Exact coefficients of the 3-by-5 hammock and its dual, and approximations using our algorithm with input points
Nl−1, Nn−w, Nn−w+1, as well with input point Nl , Nn−w, Nn−w+1.

Ni 0 0 0 16 178 889 2562 4663 5653 4811 2982 1365 455 105 15 1
Alg(l-1,n-w,n-w+1) Ñ 0 0 0 455 1365 3003 4555 5352 5256 4266 2814 1365 455 105 15 1
Alg(l,n-w,n-w+1) Ñ 0 0 0 16 1330 2803 4251 5208 5244 4358 2982 1365 455 105 15 1

N⊥i 0 0 0 0 0 21 194 782 1772 2443 2114 1187 439 105 15 1
Alg(w-1,n-l,n-l+1) Ñ⊥ 0 0 0 0 0 189 738 1179 1082 449 0 0 0 105 15 1
Alg(w,n-l,n-l+1) Ñ⊥ 0 0 0 0 0 21 646 1191 1227 753 200 34 439 105 15 1

(a) k = 1 (b) k = 2
Figure 3. dk

dpk Rel(G; p) (dash black line), dk

dpk Rel(G⊥; 1− p) (solid pink line), and dk

dpk ApRel(G; p)

(dash green line) and dk

dpk ApRel(G⊥; 1− p) (solid yellow line) for the 3-by-5 hammock network with
input data Nl−1, Nn−w, Nn−w+1.

Second, we have implemented the algorithm with input data Nl , Nn−w, Nn−w+1 and
the corresponding N⊥w , N⊥n−l , N⊥n−l+1. In this scenario we had to change the systems of
Equations (21) and (22). More exactly, the new equations we had to solve are

Al2 + Bl + C = Nl

A(n− w)2 + B(n− w) + C = Nn−w

A(n− w + 1)2 + B(n− w + 1) + C = ( n
w−1),

(35)


A⊥w2 + B⊥w + C⊥ = N⊥w
A⊥(n− l)2 + B⊥(n− l) + C⊥ = N⊥n−l
A⊥(n− l + 1)2 + B⊥(n− l + 1) + C⊥ = ( n

l−1).

(36)
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(a) k = 1 (b) k = 2
Figure 4. dk

dpk Rel(G; p) (dash black line), dk

dpk Rel(G⊥; 1− p) (solid pink line), and dk

dpk ApRel(G; p)

(dash green line) and dk

dpk ApRel(G⊥; 1− p) (solid yellow line) for the 3-by-5 hammock network with
input data Nl , Nn−w, Nn−w+1.

We notice from the third row in each sub-table of Table 6 that using more information
(extra coefficients) our algorithm outputs a much finer approximation. Indeed, when
computing the error of approximation for the two versions, we have obtained 0.22 for the
version using Nl−1 and 0.18 for the version using Nl , clearly pointing out the advantage of
the second version. This implies that our algorithm can be adapted using more information
(extra coefficients) in order to produce better results.

Properties of the Approximated Polynomials

The approximated polynomials were also computed and some of the theoretical results
were verified. Indeed, when we investigate the shape properties of the approximated
polynomials we notice that they preserve the complementary properties. Of the properties
we choose to illustrate here is the behavior of the derivatives. In Figure 3 we plot the
derivatives of the approximated polynomials using the variant of the algorithm with input
data Nl−1, Nn−w, Nn−w+1, N⊥w−1, N⊥n−l , N⊥n−l+1, and in Figure 4 those obtained with input
data Nl , Nn−w, Nn−w+1, N⊥w , N⊥n−l , N⊥n−l+1. We plot the first two derivatives, and observe
the following:

• d
dp ApRel(G; p) = d

dp ApRel(G⊥; 1− p);

• d2

dp2 ApRel(G; p) = − d2

dp2 ApRel(G⊥; 1− p).

The Case of Self-Dual Networks

As our method is using some extra information provided by means of duality, we
have simulated the case of self-dual networks. We have considered the 5-by-5 hammock
network, a case for which we have Nk + Nn−k = (n

k). In Figure 5, we have plot the first
derivatives of the networks and of the approximations.

Both the reliability polynomial as well as its approximant satisfy
d2k

dp2k Rel(G; 0.5) = d2k

dp2k ApRel(G; 0.5) = 0. This mainly comes from the fact that

ApRel(G; 0.5) = Rel(G; 0.5) = 0.5. In this case, the error of approximation is lower than
0.21. Notice than, even if less information is used for the particular case of self-dual net-
works, the error of approximation is comparable with the case of smaller networks such as
the 3-by-5 hammock. This fact points out that our method could eventually be used in the
case of some larger networks.
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(a) k = 1 (b) k = 2 (c) k = 3
Figure 5. dk

dpk Rel(G; p) (dash black line), dk

dpk Rel(G⊥; 1− p) (solid pink line), and dk

dpk ApRel(G; p) (dash green line) and
dk

dpk ApRel(G⊥; 1− p) (solid yellow line) for the 5-by-5 hammock network.

6. Conclusions

In this paper, we have studied the shape properties of the reliability polynomials of two
dual networks. Mutual behaviour of these polynomials, referring to high level convexity,
inflection points, and extremal properties of coefficients functions, are studied. The research
from in [6,7] is developed on new bases, taking into account some requirements of shape
preserving. We have proposed a technique for simultaneously approximating the reliability
polynomials of two dual MMNs, choosing the input data based on their shape properties,
in order to obtain results preserving some shapes. Our simulations point out that the
quadratic splines approach gives much better results than other types of approximation
operators if shape criteria are taken into account together with the size of the error and the
complexity of computation. Some possibilities of improving the output are discussed.

Our technique uses complementary properties induced by the notion of duality, which
is considered for planar two-terminal networks only. It would be of interest to extend these
methods to non-planar networks, in general. Here, we refer to all-terminal, k-terminal, and
two-terminal networks.

On another hand, our approach is taking into account, for the first time, some extremal
properties both at the level of the original object and its approximate one. For example,
identifying the maximum coefficient of the reliability polynomial has a significant meaning,
as it points out the length/index where the maximum number of paths is achieved. There
are no techniques, to our knowledge, for locating the maximum of the coefficients of the
reliability polynomial of a network in the scientific literature. Therefore, by proposing a
method for solving this problem, our article opens the road in developing approximation
techniques for this matter.

Based on the significance of the shape and extremal properties in improving the
results obtained by means of an approximation procedure, it is of interest to approach other
approximation problems using this kind of input conditions.

Author Contributions: Conceptualization, G.C. and V.-F.D. and S.H.H.; formal analysis, G.C. and
V.-F.D.; investigation, G.C. and V.-F.D. and S.H.H.; resources, G.C. and V.-F.D. and S.H.H.; writing—
original draft preparation, G.C. and V.-F.D. and S.H.H.; writing—review and editing, G.C. and V.-F.D.;
supervision, G.C.; funding acquisition, G.C. and V.-F.D. and S.H.H. All authors have read and agreed
to the published version of the manuscript.
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