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Abstract: In this paper, we investigate the calibration of a mathematical model describing different
behaviors occurring during a natural, a societal, or a technological catastrophe. This model was
developed in collaboration with geographers and psychologists. To collect information on the level of
stress, psychologists of the LPPL laboratory of Nantes (France) led virtual reality experiments. These
experiments consisted in immersing individuals in a situation of catastrophe and measuring their
electrocardiogram. From the physical and biological data collected, we present the methodology
to calibrate the behavioral model. First, a theoretical analysis is carried out to determine (i) if the
parameters can be uniquely estimated, (ii) the minimal number of discrete measurements required
for the estimation. Then, from these analyses, an estimation procedure is performed to calibrate the
mathematical model or at least to have an order magnitude of the model parameters. Through this
work, we will show from simulations that the proposed system makes it possible to apprehend non
observable human processes.

Keywords: parameter estimation; virtual reality; identifiability; behavioral model

1. Introduction

The past forty years have witnessed a significant increase in the number of natural
or technological disasters. A better understanding of their consequences is essential to
ensure the safety and security of populations. Improvements are particularly needed in
our understanding and ability to anticipate human individual and collective behavior with
respect to complex disasters of any origin [1–13]. The way we predict or anticipate human
responses determines how we handle emergencies.

A few previous works concerning the modeling of human emotional behavior during
a catastrophic event can be found in the literature. However, most of them focus on specific
situations or phenomena, such as the feeling of panic, the fear propagation mechanism [3]
or crowd behavior [14]. These works try to capture the dynamics of these mechanisms
from the observation of interactions, such as on video. Panic is the emotion most studied
since it is the most observable. The main difficulty, however, is to observe the different
emotions of individuals during such events. Information is limited on the true evolution
of a population’s response during a disaster because of the difficulty of observing and
analyzing human reactions in real time. The main sources of information on the behaviors
adopted during a disaster are interviews and surveys carried out with operational actors,
residents and victims after (or before) the disaster and in a specific region.
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Additionally, it has long been accepted by geographers and psychologists that an
individual can adopt several emotional behaviors and can change behavior several times
during a catastrophe leading to different group dynamics. In [15], the authors propose a
model based on emotional contagion which associates the decision to search for peers with,
a set of emotions. However, it was not calibrated by real experiments. It was validated
from simulations showing that, by choosing certain parameters, certain types of searching
decisions could be determined.

To further understand human behavior and its transitions during disasters, an inter-
disciplinary study was carried out by mathematicians and researchers in the humanities
and social sciences associated with field and political workers (operational and institu-
tional experts) within the framework of the Com2SiCa project (ANR project Com2SiCa
(https://www.com2sica.cnrs.fr/, accessed on 1 December 2021)).

The first mathematical model developed by this research group was the Reflex, Con-
trol, Panic model (RCP) [5,6]. This model was based on the neurobiological response to
a threat, or the stress response, with regard to the areas of the brain involved in the be-
havioral responses [16]. Two categories of behaviors were proposed: instinctive behaviors
commanded by the reptilian brain, and acquired and controlled behaviors commanded
by the prefrontal cortex. The reflex behaviors of instinctive flight, panic, and alert are
classified in the first category. The controlled behaviors are classified in the second [6].
This RCP model was then enriched by integrating knowledge from the psychology of
emotions. This change in point of view has led to a new Alert-Control-Panic (APC) model
integrating other emotions. It provides a better interpretation of states and behavioral
state changes observed in real or simulated disaster situations. These states are not only
qualified, with regard to the brain areas responding to stress, but also, with regard to the
management of emotions. Two key variables were retained: the emotional load (strong or
weak) and the emotional regulation (strong or weak).

To better understand the different behaviors experienced during a catastrophic event
and study them in ideal conditions, a virtual reality experiment was conducted in the
laboratory of Psychology of Nantes between September and November in 2020. This
virtual reality experiment consisted in immersing the volunteer in a sudden, unforeseen
disaster without pre-warning signs. Thanks to this new approach, observation data were
obtained and allowed us to calibrate the APC model and especially to give the orders of
magnitude of the parameters. As this paper will show, this calibrated model could be an
interesting tool to capture and understand the different behavior dynamics that can occur
during a catastrophic event.

However, two problems arose when estimating the parameters which make it difficult
to implement the model in practice:

• The presence of non-linearities in the mathematical model due to the imitation processes;
• The small number of data.

This realistic but difficult context implies a prior fine analysis of feasibility of the
parameter estimation, which is why we needed to address two main questions before
estimating the parameters:

• Is it possible to estimate all of the model’s parameters from the physiological measure-
ments provided by virtual reality?

• What is the minimal number of discrete time measurements needed to be sure of the
parameter estimation procedure results?

The answers were provided by two theoretical studies. The first is an identifiability
analysis which ensures that, from given measurements, it is possible to uniquely estimate
the model parameters [17,18]. It is an important issue when examining links between the
mathematical model and data. If this step in the calibration of the model is overlooked, it
can result in misleading or incorrect parameter estimates and model predictions. The sec-
ond analysis determined the minimal number of time measurements required to estimate
the unknown parameters.

https://www.com2sica.cnrs.fr/
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Once these qualitative studies were conducted on the mathematical model, the proce-
dure for estimating the parameters drawn from the data collected during the virtual reality
experiment could be explained. The procedure is based on the resolution of a non-linear
least-squares problem solved with the genetic algorithm [19]. A global algorithm was
preferred to a local one since there was no initial guess of the parameter values.

The paper is structured as follows. Section 2 presents the different behaviors defined
by psychologists and their modeling. In Section 3, the protocol implemented by the
psychologists of Nantes is presented and the links between the mathematical model and
the virtual reality experiment are provided in Section 4. In Section 5, the identifiability
of the model is studied based on the observations made by the psychologists and the
minimal number of observation points required to estimate the parameters is deduced.
The parameter estimation procedure is carried out in Section 6. Section 7 concludes the
paper and shows a possible application of the calibrated model to better understand the
processes inducing changes in behaviors.

2. The Different Behaviors and Their Modeling
2.1. Emotional Load and Its Regulation

Within the framework of the Com2SiCa project, we focused on two key variables to
identify and characterize different human behaviors occurring during a sudden catastrophe:
the intensity of the emotional charge and its regulation. The first corresponds to the
quantitative aspect of the emotion, and is adaptive to situations of threat or catastrophe [20].
We note that the intensity of the emotion is high in situations of fear or stress. The second is
defined as the processes involved in adapting to relatively strong emotional episodes. Most
researchers agree that emotions are not uncontrollable forces but they can be modulated
when necessary (see [21] and the references within). Furthermore, adaptive emotion
regulation consists in modulating—not eliminating—the experience of emotions [22,23].
By crossing these two variables, we characterized a wider range of human behaviors that
may occur during a disaster than the sole panic behavior. As this behavioral diversity is
difficult to model mathematically, we reduced it by identifying the behavioral states in
which reactions can be located. Hence, three behavioral states were proposed:

• The alert state corresponds to a low emotional charge and low regulation. It relates to
a phase of assimilation of information relative to the event, a moment when people
search in a very short time for information about the scenario they are experiencing. It
marks a break from everyday behavior. Alert behaviors are often described by startle
movements, rapid eye movements or a fixed gaze, and verbal interrogation of people
close by;

• The controlled state corresponds to an emotional charge which is more or less strong.
This emotional charge is regulated which is why this behavior is controlled. People
can regulate their emotions, to act and adapt their behavior to the crisis context.
The controlled behavior does not ensure the safety of the person or the individual’s
survival. It concerns behaviors such as mutual aid, protection and care of others but
also anti-social behaviors, such as theft, looting, and voyeurism;

• The panic state corresponds to a high emotional charge and a low regulation insuffi-
cient to provide a controlled behavior. Individuals in panic can adopt behaviors of
panic flight, stupor, and disorderly agitation with cries of fear, for example.

Scientists in the humanities and social sciences can use different methods to differ-
entiate these states. For example, they can associate each one with different physical
manifestations that they can observe during a catastrophic event (Figure 1). They can
collect physiological data to capture these behaviors and quantify them. Alert and control
behaviors are associated with basic physiological states such as a low heart rate contrary
to panic states. To capture these three states by simulation in a virtual reality experiment,
physiological measures may be used, such as electrocardiograms and skin conductance.
The aim is to quantify the emotional load and its intensity from the perspective of learned
or controlled behaviors versus instinctive or automatic ones (see Section 3).
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Figure 1. Representation of the different behaviors and the corresponding observable physical
manifestations.

Since people do not maintain the same behaviors all the time, psychologists define two
types of transitions between these three states. The first are the natural transitions specific
to individuals depending on their experiences and their past. The second is imitation
or social comparison which is important factor in the process of behavioral change [24].
Depending on a certain predisposition, the perception of the behavior of others encourages
people to act in the same way [25]. In these collective circumstances and faced with an
uncertain situation, that is to say, the absence of clear benchmarks for action, people can
set up a mechanism of social comparison leading them to trust others and to consider the
behavior of others as a reference and an example to follow. This form of informational
imitation reduces the feeling of uncertainty.

2.2. Modeling the Dynamics of Human Behavior: Cross-References between the Social and
Mathematical Sciences

The modeling of these different behaviors and their dynamics is presented below
and is inspired by classical epidemic models, the Susceptible-Infected-Recovered (SIR)
models [26]. As for SIR models, the population in situation of catastrophe is subdivided
in several categories according to the adopted behavior and their different interactions
are considered.

2.2.1. Structural Components of the APC Model

The mathematical Alert-Panic-Control (APC) model aims to describe the different
behaviors during a catastrophic event, their temporal dynamics, i.e., the transitions from
one state to another, and the responses to them due to qualitative parameters, i.e., the
environmental context or group effects.

A catastrophic event marks a transition from everyday behavior to reactions specific
to the disaster. That is why we consider a population of size N with an everyday behavior.
We denote by A, C, and P, the population in the alert, the control and the panic states,
respectively, and Q and B those exhibiting an everyday behavior. The first (Q) can be
observed before the event starts but the second (B) occurs during or after the event. We
suppose that the beginning of the catastrophe (resp. the end of the catastrophe) is modeled
by the function γ (resp. ϕ). Thus, when the catastrophe is triggered at time t (γ(t) 6= 0),
a proportion γ(t)Q(t) of people with an everyday behavior become aware of an imminent
danger and adopt an alert behavior, seeking information about what happened. Then,
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depending on intrinsic and imitation processes, as explained above, people in alert state
adopt either a control or a panic behavior. Finally, after a certain time, people in a control
state begin to return to everyday life, by seeking shelter for example, at a proportion
ϕ(t)C(t) at time t.

Concerning the transitions (Figure 2), the parameters represented in blue, Bi, i = 1, . . . , 4,
and Ci, i = 1, 2 designate the natural transitions specific to population based on their
experience and past history. For B3 and B4, the humanities and social sciences consider
that populations engaged in a panic or control behavior can return to an alert state even if
the probability is low. The second type of transition, F, G and H in the diagram, describes
the imitation or social comparison processes as explained in the following section.

Figure 2. This diagram shows the different behavior states between Q, A, P, C, B, and their interactions.

2.2.2. Imitation Processes

Imitation processes are important transitions in threat situations. Individuals can
mimic the behavior either of another individual or of individuals within a small group
by observation and perception of the behavior of the other or others. In the APC model,
the imitation transitions are modeled as process contamination terms in SIR models. For ex-
ample, the imitation process of control behaviors by individuals in alert is given by the

term −F(A(t), C(t))
C(t)

N
A(t). It models the probability for each individual with a control

behavior to spread this behavior among individuals in alert and it is proportional to the
portion of C in the whole population N = Q(0) + A(0) + C(0) + P(0) + B(0). To express
that the behavior of the majority influences the behavior of the minority through the process
of imitation, we consider the following form for F:

F(A, C) = αη

(
C

A + ε

)
, (1)

where ε << 1, 0 ≤ α ≤ 1 and η(s) =
s2

1 + s2 is given in Figure 3. Since the value of the

function η depends on the proportion of people in alert and control, the probability varies
according to the proportion of control and alert individuals. The function η models that
the higher the number of people with a control behavior, the higher the number of people
with an alert behavior who will imitate those with a control behavior.

Analogously: 
G(A, P) = βη

(
P

A + ε

)

H(C, P) = γp→cη

(
C

P + ε

)
− γc→pη

(
P

C + ε

) (2)

where β, γp→c, γc→p ∈ [0; 1].
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Figure 3. Representation of the function η. This sygmoidal function was chosen to model the fact
that the behavior of the majority is the most imitated one.

For the imitation term H, the imitation can go from panic to control and from control
to panic.

Note that the imitation process can go in both directions between control and panic
but not between alert/control and alert/panic, according to psychologists, since alert is a
state that passes too rapidly to be imitated.

2.2.3. The Complete Model

The APC model comprises 5 equations, each one describing the evolution in time
(in seconds in this article) of one of the population groups. Following Figure 2, the APC
mathematical model is the following:

dA(t)
dt

= γ(t) Q(t)− (B1 + B2) A(t) + B3 C(t) + B4 P(t)− F(A(t), C(t))
C(t)

N
A(t)

−G(A(t), P(t))
P(t)

N
A(t),

dC(t)
dt

= B1 A(t) + C1P(t)− (B3 + C2)C(t) + F(A(t), C(t))
C(t)

N
A(t)

+H(C(t), P(t))
P(t)

N
C(t)− ϕ(t)C(t),

dP(t)
dt

= B2 A(t) + C2C(t)− (B4 + C1) P(t) + G(A(t), P(t))
P(t)

N
A(t)

−H(C(t), P(t))
C(t)

N
P(t),

dQ(t)
dt

= −γ(t)Q(t),
dB(t)

dt
= ϕ(t)C(t).

(3)

Model (3) is rewritten in terms of fraction of the population instead of numbers
of individuals:
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

da(t)
dt

= γ(t) q(t)− (B1 + B2) a(t) + B3 c(t) + B4 p(t)

−F̃(a(t), c(t)) c(t) a(t)− G̃(a(t), p(t)) p(t) a(t),

dc(t)
dt

= B1a(t) + C1 p(t)− (B3 + C2) c(t) + F̃(a(t), c(t)) c(t)a(t)

+H̃(c(t), p(t)) p(t)c(t)− ϕ(t)c(t),

dp(t)
dt

= B2a(t) + C2c(t)− (B4 + C1) p(t) + G̃(a(t), p(t)) p(t) a(t)

−H̃(c(t), p(t)) c(t) p(t),

dq(t)
dt

= −γ(t)q(t),
db(t)

dt
= ϕ(t)c(t)

(4)

with (ε̃ =
ε

N
) 

F̃(a, c) = αη

(
c

a + ε̃

)
, G̃(a, p) = βη

(
p

a + ε̃

)
,

H̃(c, p) = γp→cη

(
c

p + ε̃

)
− γc→pη

(
p

c + ε̃

)
.

(5)

It can be rewritten:

ẋ(t, θ) = ψ(t, x, u, θ) (6)

where x = (a, c, p, q, b)T = (A/N, C/N, P/N, Q/N, B/N)T ∈ [0, 1]5, u = (γ, ϕ),
θ = (B1, B2, B3, B4, C1, C2, α, β, γc→p, γp→c) ∈ D with D := (R+∗)6 × (R+)4.

At the initial time, the entire population is supposed to be engaged in an everyday
behavior so that the following initial conditions are considered:

x(0) = (0, 0, 0, 1, 0)T . (7)

Following the proof of [2], the proposition is deduced:

Proposition 1. The Cauchy problem (6)–(7) admits a unique maximal non-negative solution for
any value of the parameters θ ∈ D.

3. The Virtual Reality (VR) Experiment

The VR experiment was conducted by psychologists in the LPPL laboratory of Nantes
(France) in a closed and controlled environment. Its aim was to determine from physio-
logical measurements, the different behavioral states and the changes occurring during a
catastrophic event by taking into account the environmental context, such as the type of
event, the spatial configuration, and the presence or absence of individuals.

3.1. The VR Experimental Procedure and Sample

This VR experiment consisted in immersing individuals in the simulation of a tsunami
on the Mediterranean coast of Nice (France), a scenario event which has since been included
in national regulatory tools. The scenario of the simulation was based on research data
(See [27]). To construct the spatial context, topographical information was gathered in
Nice regarding the beach, such as its width, the presence of stairs, pebbles, and access
guardrails, etc. (See [28]). Virtual characters (avatars) were also included to observe
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behavioral reactions in the context of social interactions between the survey respondents
and the avatars.

Three scenarios were built based on three experimental conditions, designed to simu-
late different reactions, to compare them and to better understand how the context affects
behavior. For example, a situation of danger does not automatically generate a feeling
of threat if the person is alone. The reaction depends on the person’s experience and the
behaviors of those around whose behavior can be imitated. The three following scenarios
were carried out:

• First scenario (neutral scenario): in this experimental condition, the person is alone
without any virtual person;

• Second scenario (organized scenario): in this experimental condition, the person is in
the presence of virtual persons with a suitable behavior (escape from the tsunami by
walking quickly in the right direction and without shouting);

• Third scenario (non-organized scenario): in this experimental condition, the person is
in the presence of virtual persons with an unsuitable behavior (escape by running in
all directions and shouting).

In the second scenario, the physical reactions of the avatars express a control behavior
whereas in the third one they express panic.

Eighty-eight unpaid volunteers were recruited through the local press and were
assigned randomly to one of the three conditions. The sample was composed of 43 women
and 45 men. Their age ranged from 18 to 56 years with a mean of 26.76 years and a standard
deviation of 9.41. The participants were divided into the different conditions by respecting
a balance between men and women, and a diversity in the ages. Therefore, 29 persons were
assigned to the first and third scenario and 30 to the second one. The distribution of the
participants with respect to their sex and the scenario is provided in Table 1.

Table 1. Distribution of the surveys with respect to their sex and the scenario.

Sex

Condition Women Men Total

First scenario 14 15 29

Organized scenario 15 15 30

Non organized scenario 14 15 29

Total 43 45 88

During the simulation, each participant was immersed in a virtual reality environment
that provides a visual and auditory feedback (Figure 4). The subject was directly placed
on the beach at the beginning of the simulation and had free movements. To capture and
maintain the participant’s attention, the proposed timeline was based on how a tsunami
on the Mediterranean coast of Nice is perceived rather than the reality of its dynamics.
As decided, after 60 s, the level of the sea decreased. Then, the wave formed on the horizon,
and the water noises became louder. The wave reached the beach after 3 min. If the
participants stayed immobile on the beach, the application stopped when they were struck
by the wave. If the participants had an escape behavior inside the city, the application
stopped when they reached a city exit. In all other cases, the application stopped 2 min
after the wave submerged the beach. The steps are summed up in Figure 5.

All subjects gave their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of University of Angers, France
(CER_20200114).
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Figure 4. Photographs of the virtual experiment in the laboratory of Nantes. Each participant was
immersed in a virtual reality environment providing visual and auditory feedback.

Avatars escape

Avatars stand up (95s)

Times (sec)0 30 60 90 120 150 180 210 240 270 300

Decrease in 
ocean level and 
appearance of 
the wave

 The wave reaches 
the embankment

End of the 
scenario

Alert

End of alert

Beginning 
of the 
scenario

Wave sound

Cries if non 
organized

Figure 5. Process of the tsunami scenario over time: in green, progression of the wave due to the
tsunami; in purple, the sounds heard by the survey respondents participating in the virtual reality
experiment; in orange, the avatars action; in red, the beginning and the end of the actions.

3.2. Measurements

Physiological measurements were recorded for each participant to determine their
emotional charge at each moment of the simulation. A Nexus X MKII device was connected
to the participant by electrodes. It recorded for each of them an electrocardiogram (ECG)
and skin conductance in order to identify any stress signals when faced with the tsunami.
The ECG is a recording that provides different variables relevant for detecting of a state of
stress [29]. It reports successive polarization and depolarization of the heart, translated
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into the characteristic peaks of this type of recording. In particular, it provides the Heart
Rate (HR) expressed as beats per minute, calculated from the frequency of apparition of a
type of peak during one minute of recording. Skin conductance measures the continuous
variation in the electrical characteristics of the skin. The data are collected by applying
a low, undetectable, and constant voltage to the skin and then measuring how the skin
conductance varies.

In our study, only the ECG and more specifically the HR, were retained because of
their reliability [30]. Even if the experiment was conducted in a laboratory, the slight
movements of the participants distorted some of the conductance measurements.

Before starting each simulation, the experimenters carried out a test to check that the
devices functioned properly (VR and physiological measurements) and to familiarize the
participants with VR. Thus, all participants experienced the same test situation, which was
an immersion in a Viking village. This test also allowed us to record a base line of the
HR at rest specific to each individual. Throughout the VR experiment, the stress state of
each participant was determined in comparison with the base line: a state of stress was
identified as soon as the participant’s HR exceeded the base line and, therefore, increased.

From the HR measurements, two categories of persons were distinguished: calm and
stressful persons corresponding to a low HR and a high HR, respectively. Consequently,
two series of measurements were obtained.

In the following section, we show the links between the physiological measurements
and the corresponding variables of the model.

4. The Link between the Mathematical Model and the Experimental Data

According to [31] and Section 2, three types of behavioral states occur during a
catastrophic event with respect to their emotional charge and the capacity of individuals to
regulate it: the alert, control and panic states. In the following section, we associate these
states with the psychological measurements.

4.1. Observed Variables of the Mathematical Model

In this section, we determine which variables or combinations (of variables) of the
mathematical model can be associated with one of the experiment measures.

Based on knowledge in psychology and physiology, alert and control behaviors
correspond to a basic state in which persons have a low heart rate (HR) contrary to the panic
behavior (see Section 2 and [30]). During the VR experiments, two sets of measurements
distinguished from the cardiac measurements were associated with a low HR or a high
HR. Therefore, we consider that the first set of measurements correspond to everyday, alert
and control behaviors in the APC model and the second set to the panic behavior. Persons
returning to everyday life in the mathematical model can be identified by persons moving
to safety in le vieux Nice or finishing the simulation. Their percentage during the experiment
time corresponds to the difference between the total number of survey respondents and
the number of control and panic respondents.

The data provided by the psychologists are gathered in Table 2 and represent the
percentages of survey respondents exhibiting daily-alert-control behavior, panic behavior
and return to everyday behavior in the three scenarios (neutral, organized, and non-
organized). A graphical representation of the distribution of these behavioral states over
time is provided in Figure 6 for the neutral scenario.

The next step was to convert the data in Table 2 into densities for the mathematical
treatment. We denote Sm as the density of persons with a low HR corresponding to the
first set of measurements, pm the density of persons with a high HR corresponding to the
second set and bm := 1− Sm − pm the density of persons who finished the VR scenario.

The corresponding variables of the mathematical model (4) are denoted y1 = q + a + c,
y2 = p and y3 = b. They are also called outputs of the model. The aim of the following step
was to search for the best parameters to make the trajectories of the model fit as closely as
possible to the experimental data such as those of Figure 6 for the neutral scenario.
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Table 2. Tabular giving the percentage of survey respondents with an everyday-alert-control behavior (EAC), panic behavior
(P) and return to back to daily behavior (BD) for the three scenarios (neutral, organized, and non-organized) with respect to
the time in seconds.

Times (s) 40 60 80 0. 100 120 140 160 180 200 220 240 260 280

Neutral P (%) 0.00 47.83 56.52 56.52 43.48 30.43 8.70 13.04 13.04 8.70 4.35 4.35 0.00
EAC (%) 100.00 52.17 43.48 43.48 26.09 30.43 30.43 8.70 4.35 4.35 4.35 4.35 0.00
BD (%) 0.00 0.00 0.00 0.00 30.43 39.13 60.87 78.26 82.61 86.96 91.30 91.30 100.00

Organized P (%) 0.00 44.00 52.00 56.00 52.00 36.00 12.00 8.00 8.00 0.00 0.00 0.00 0.00
EAC (%) 100.00 56.00 48.00 44.00 44.00 28.00 20.00 4.00 4.00 4.00 4.00 4.00 0.00
BD (%) 0.00 0.00 0.00 0.00 4.00 36.00 68.00 88.00 88.00 96.00 96.00 96.00 100.00

Non P (%) 0.00 53.85 61.54 50.00 65.38 30.77 11.54 7.69 0.00 0.00 0.00 0.00 0.00
Organized EAC (%) 100.00 46.15 38.46 50.00 26.92 26.92 30.77 7.69 3.85 0.00 0.00 0.00 0.00

BD (%) 0.00 0.00 0.00 0.00 7.69 42.31 57.69 84.62 96.15 100.00 100.00 100.00 100.00

Figure 6. Neutral scenario: Representation of the distribution (%) over time of the everyday-alert-
control behaviors, panic behavior and return to everyday behavior.

4.2. Modeling the Beginning and the End of the Catastrophe

From Figure 5 and Table 2, a simple representation of functions γ and ϕ can be found.
In the scenario of the VR experiment, the survey respondents are supposed to be engaged
in an everyday behavior until the 60 s point, the moment at which the beginning of the
wave can be heard. Thus, γ that models the catastrophe is supposed to be equal to 0 up to
60 s. Then, at 90 s, when the siren sounds, we suppose that all the persons become aware of
the imminent arrival of danger. Consequently, 100% of survey respondents have adopted
in one of the three behaviors: alert, control or panic behavior. Between 60 and 90 s, we
assume that the percentage of people aware that a disaster is regularly increasing. Using
the function

φ(s) =


0 if s < τ0
1 if s > τ1
1
2
− 1

2
cos
(

s− a
b− a

π

)
if τ0 ≤ s ≤ τ1

(8)

an approximation of γ with τ0 = 60, τ1 = 90 is obtained (see Figure 7).
In the same way, the function ϕ describing the return to an everyday behavior is

constructed from φ with τ0 (resp. τ1) as the time at which the first survey respondent (resp.
the last one) left the simulation. ϕ must be calculated for each scenario since persons do not
adopt the same behaviors. For example, the organized scenario ends at 280 s contrary to the
non-organized scenario that ends at 200 s. This difference shows that imitation processes
were different depending on the scenario.
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Figure 7. Representation of the function γ that models the catastrophe using the function (8) with
τ0 = 60, τ1 = 90.

5. Identifiability and Minimal Number of Observation Data

This section describes the strategy implemented to estimate the parameters from
the set of measurements provided in Table 2. Two strategies are possible. The first is
to follow the three VR scenarios and estimate first the intrinsic parameters and then,
from their knowledge, estimate the imitation processes in the organized and non-organized
scenario. A second possible strategy is to estimate all the parameters from the two
scenarios integrating imitation processes (organized and non-organized scenarios) without
any knowledge of the intrinsic parameters.

To determine the best strategy, a global identifiability study is first carried out on the
Model (6) to which the model outputs are added. The global identifiability of the model
makes it possible to determine whether without noisy data and with sufficient data, all the
parameters or groups of parameters can be uniquely characterized from the model outputs
in all the search domain. A further specific study serves to determine whether the number
of measurements is sufficient to estimate all or groups of parameters. This mathematical
study will show that the second strategy does not allow us to estimate all the parameters
from the second and third scenarios due to a lack of measurements as opposed to the first
strategy. Therefore, the strategy selected has to correspond to VR protocol which is to first
estimate the intrinsic parameters and then the imitation processes.

For the mathematical studies, we add the outputs to Equation (6) and set:{
ẋ(t, θ) = ψ(t, x(t, θ), u(t), θ),
y(t, θ) = h(x(t, θ), θ) ∈ R3.

(9)

5.1. Identifiability
5.1.1. Definition

The identifiability property ensures that two different parameter vectors generate two
distinct trajectories. More precisely:

Definition 1. Let P be an admissible set of parameters. The model (9) is said to be globally
identifiable at θ if a time t1 ∈ [0, T] exists such that for all t ∈ [0, t1], for all θ̄ ∈ P , θ̄ 6= θ,
the trajectories y(t, θ) and y(t, θ̄) are different.

5.1.2. Method

To test the identifiability of the model, the method proposed in [32] and performed
in [33] is also used. It is based on differential polynomials that is, expressions constructed
from variables t, x, u, y, parameters θi and constants. Specific output-polynomials de-
pending only on the model outputs y, the inputs u, and the parameters θi are obtained
with the Rosenfeld–Groebner algorithm, an elimination algorithm. From the specific order
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[y, u] ≺ [x] that consists in eliminating the unknown state variables (here the block [v]
means that v and its derivatives are ordered by the ranking < such that v < v̇ < v̈ < . . .
and ≺ indicates a block elimination ranking in the sense “ranks lower than” between two
blocks), it triangulates the differential equation system (9) using the operations of addition,
subtraction, multiplication and derivation. A general set of differential polynomials with
pairwise distinct leading derivatives is obtained and its solutions are the general solutions
of (9) and reciprocally. The specific output-polynomials belong to this set. They can be
rewritten in the following form (see [32]):

Pi(y, u, θ) = mi
0(y, u) +

qi

∑
j=1

Θi
j(θ)mj,i(y, u) = 0, i from 1 to 3 (10)

where (Θi
j)1≤j≤qi are rational in θ, Θi

v 6= Θi
w (v 6= w), (mj,i)1≤j≤qi are differential polynomi-

als with respect to y, mi
0 6= 0. The highest ranking derivative which appears in Pi is called

the leader. For example, with the elimination order [x1] ≺ [x2], the leader of the differential
polynomial p(x1, x2) = x2

1 + ẋ2 + x2 + x1 ẍ2 is ẍ2.
According to [32], the algorithm returns as many output-polynomials as outputs.

In our case, we have 3 output-polynomials, and the leader of the polynomial in Pi corre-
sponds to yi.

From then onwards, to simplify the notations, only one output is considered such that
the index i is omitted. Let us denote by s the highest time derivative order of y in P.

From the coefficients of the polynomial P, the initial conditions, if any, and the
constraints on the parameters, we can define the real-valued function φ by

φ : θ = (θ1, . . . , θp) ∈ P 7→ (Θ1, . . . , Θq, y(0, θ), . . . . . . , y(s−1)(0, θ)) (11)

where P is an a priori known admissible set of parameters. Under some technical con-
ditions omitted in this paper (for more details, the interested reader can refer to [32]),
the identifiability result is the following:

Proposition 2. We assume that the Wronskian W(m1, . . . , mq) = det(mk(y, u), k = 1, . . . , q)
is not identically equal to zero (To verify this assumption, it is sufficient to verify the linear
independence of the mk(y, u), k = 1, . . . , q. In fact, the monomials are linearly independent if there
exists a time point at which the Wronskian is non-zero.).The model (9) is globally identifiable if the
function φ is injective on P .

Remark 1. To test the identifiability of the APC model, we used the IdentifiabilityTree algorithm
developed in [33] and implemented in Maple. This algorithm provides the set of key parameters
leading to the identifiability of the model and can ultimately test its global identifiability. The first
step is to use the Rosenfeld–Groebner algorithm to obtain the output-polynomials. From the
coefficients of these differential polynomials, the second step uses IdentifiabilityTree algorithm. This
algorithm tests the identifiability of a given parameter when some parameters are known. The reason
is that, in some applications, the identifiability property of the mathematical model may depend on
the knowledge of some key parameters. The algorithm returns a set of parameter lists, and each set
gives the identifiability of one parameter with respect to the others. In practical terms, if a parameter
θl is not identifiable, the lists gives the parameters that has to be identified to obtain the identifiability
of θl . If the model is identifiable, only one list containing all the parameters of the model is returned.

At the end of this step, we have the following assumptionsH:

1. Functions of γ and ϕ are known;
2. y1(t) = q(t) + a(t) + c(t), y2(t) = p(t), y3(t) = b(t).
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5.1.3. Identifiability of the APC Model with No Imitation

In this section, we consider the first scenario where there is no imitation. The conse-
quences for the mathematical model are that F = G = H = 0 and the parameter vector
that we want to identify is θ̃ := (B1, B2, B3, B4, C1, C2).

Remark 2. The identifiability of the model at θ̃ when F = G = H = 0 means that the intrinsic
parameters could be estimated uniquely from the first scenario with perfect, noisy-free data. Assum-
ing that the profile of participants is the same in the three scenarios and, therefore, also the intrinsic
parameters, the imitation parameters can be estimated from the second and third scenarios if they
are identifiable.

The following proposition gives the identifiability result when α = β = γ1 = γ2 = 0,
and rewritten in an equivalent way F = G = H = 0.

Proposition 1. If there is no imitation, under the assumption H, model (9) is identifiable with
respect to θ̃.

Proof of Proposition 1. The IdentifiabilityTree algorithm is applied with the elimination
order [y1, y2, y3] ≺ [q, a, c, p, b].

The output-polynomials given by the Rosenfeld–Groebner algorithm are:

P1 := (−B1 B2 C2 + B1 C2
2 − B2

2 B3 − B2
2 C2 + B2 B3 C2 + B2 C2

2) ẏ3
+B2 C2 ẏ3 ϕ + B2 (ÿ2 + ẏ2 γ) ϕ + (B2

2 − B2 C2) ẏ3 γ
+(B1 B2 − B1 C2 + B2

2 + B2 B4 + B2 C1) ẏ2 ϕ + (B1 B2 B4
+B1 B2 C1 − B1 B4 C2 − B1 C1 C2 + B2

2 C1 − B2 C1 C2) y2 ϕ
+(B2 B4 + B2 C1) y2 γ ϕ− B2

2 y1 γ ϕ = 0,

P2 := −B2 (ẏ3 ϕ̇ + ÿ3 ϕ + ẏ3 ϕ2) + (B1 C2 + B2 B3 + B2 C2) ẏ3 ϕ
−B1 ẏ2 ϕ2 + (−B1 B4 − B1 C1 − B2 C1) y2 ϕ2 = 0,

P3 := ẏ1 + ẏ2 + ẏ3 = 0

(12)

The third polynomial is not informative on the coefficients, thus only P1 and P2 will be
used to study the identifiability of the model. To put these polynomials in the form (10), we

let B̃1 :=
B1

B2
(B2 is supposed to be non-zero) and we divide P1 and P2 by B2. The following

real-valued function is obtained φ(θ) = (B2, C2, B2 − C2, B4 + C1, (B2 − C2) B̃1 + B2 + B4 +
C1, (B2 − C2) (B̃1 C2 + B3 + C2), ((B4 + C1) B̃1 + C1) (B2 − C2), B̃1, B̃1 C2 + B3 + C2, (B4 +
C1) B̃1 + C1).

Under the set of conditions C(θ) = {B̃1 > 0, B2 > 0, B3 > 0, B4 > 0, C1 > 0, C2 > 0},
the algorithm IdentifiabilityTree allows us to conclude that the parameters B̃1, B2, B3, B4, C1,
C2 are identifiable, and consequently B1 too.

5.1.4. Identifiability of the Imitation Parameters

Now that the parameters of the linear part are known, an identifiability study can be
carried out on the set of imitation parameters that is θ̌ := (α, β, γc→p, γp→c). We have the
following proposition.

Proposition 3. We assume that the intrinsic parameters are known. Under the assumption H,
the model (9) is identifiable with respect to the θ̌.
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Proof. First, according to the last equation of (4), c can be supposed as an output of the
model since b and ϕ are known according to assumption H. Let y4 := c. The sum of the
first three equations of (4) is equal to:

ȧ + ċ + ṗ + q̇ = −γq− ϕc. (13)

Equation (13) can also be rewritten q̇ + γq = ẏ1 + ẏ2 − ϕy4. This differential equation
has a unique solution with the initial condition q(0) = 1. Furthermore, q can also be
considered too as an output of the model. Let y5 := q. Finally, from (13), we deduce
that y6 := a is an output of the model. Consequently, the first three equations of (9) are
output-polynomials.

To prove the identifiability of the imitation parameters α and β, it is sufficient to prove

that the functions ϕ1(t) =
c(t)3

(a(t) + ε̃)2 + c(t)2 , ϕ2(t) =
p(t)3

(a(t) + ε̃)2 + p(t)2 are linearly

independent. To test this condition, we evaluate the Wronskian

W(ϕ1, ϕ2) =

∣∣∣∣ ϕ1(t) ϕ2(t)
ϕ̇1(t) ϕ̇2(t)

∣∣∣∣
that gives

W(ϕ1, ϕ2) =

3 p(t)2 c(t)2
(

A + B− 2C
3

)
Den

(14)

with

A := −((a(t) + ε̃)2 + p(t)2) p(t) (
c(t)2

3
+ (a(t) + ε̃)2) ċ(t),

B := c(t) (p(t)2/3 + (a(t) + ε̃)2) ((a(t) + ε̃)2 + c(t)2) ṗ(t),
C := ȧ(t) p(t) c(t) (c(t)− p(t)) (c(t) + p(t)) (a(t) + ε̃)
Den := (c(t)2 + a(t)2 + 2 a(t) ε̃ + ε̃2) (a(t)2 + 2 a(t) ε̃ + p(t)2 + ε̃2) 6= 0.

(15)

The Wronskian is not identically equal to zero. Therefore, α and β are identifiable. We
can prove in the same manner that γp→c and γc→p are identifiable.

Remark 3. To prove the identifiability of the APC model with no imitation (see Section 5.1.3) we
could use the same reasoning as in the previous proof. However, we need an explicit expression of
the output-polynomials to determine the minimal number of measurements in Section 5.2.

5.1.5. Identifiability of the Complete Model

The following proposition gives the identifiability result of the complete model.

Proposition 4. Under assumptionH, model (9) is identifiable.

Proof. Using the same arguments as in the proof of Proposition 3, we find that the equa-
tions of the model are output-polynomials and that all the parameters are identifiable.

Remark 4. The output-polynomials deduced from the complete model (with imitation terms) and
the Rosenfeld–Groebner algorithm have a higher time derivative order than P1 and P2 defined at (12).
Because of the non-linear terms corresponding to the imitation processes, more derivation operations
are necessary in the elimination procedure to obtain the corresponding output-polynomials.

5.2. Minimal Number of Observation Data

In [34,35], the authors proposed a method to determine the minimal number of obser-
vation points in order to obtain the local identifiability of the system. The result is based
on the generation of a function ρ = ρ(Θ, y, ẏ, . . . , y(k)), where k is a non-negative integer,
such that ρ has continuous partial derivatives with respect to Θ. The local identifiability
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results from the local inversion of ρ by using the implicit function theorem in a neighbor-
hood where the function vanishes. [34] noticed that differential polynomials obtained from
differential algebra methods can generate this function ρ. We present below an adaptation
of their result with the output-polynomial (10).

To simplify the notations in this section, we consider only one output-polynomial.
The index i is, therefore, omitted in (10). We denote the coefficients of P by Θ = (Θk(θ))k=1,...,q.
Note that P1 and P2 defined at (12) can be rewritten in this form.

Proposition 5. Let us assume that

1. The function

ρ : Rq ×Rm → Rq

(Θ, y) 7→ (P(θ, y), P(θ, y)(1), . . . , P(θ, y)(q−1))
(16)

is a differentiable function with respect to the first variable;
2. The function φ defined at Equation (11) is injective;
3. The Wronskian W(m1, . . . , mq) defined at Proposition 2 is not identically equal to zero.

In order to have the local identifiability of the model, the minimum number of measurements of
y is sy + q, where sy is the higher order derivative of y in P.

Proof. First, note that by definition ρ vanishes for all y and Θ. Then, let us apply the Taylor
expansion of ρ at Θ∗

ρ(Θ, y) ≈ ρ(Θ∗, y) + (Θ−Θ∗)
∂ρ

∂Θ
(Θ∗, y). (17)

By definition, ρ(Θ∗, y) = 0 and ρ has continuous partial derivatives with respect to
Θ, thus

| ∂ρ

∂Θ
| =

∣∣∣∣∣∣∣∣
∂P

∂Θ1
. . . ∂P

∂Θq
...

∂P(q−1)

∂Θ1
. . . ∂P(q−1)

∂Θq

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
m1 . . . mq

...
m(q−1)

1 . . . m(q−1)
q

∣∣∣∣∣∣∣∣.
(18)

By assumption, | ∂ρ

∂Θ
| is the Wronskian W(m1, . . . , mq) which is supposed to not be

identically equal to zero. According to (17), Θ can be expressed as a differentiable function
of y and its derivatives up to its sy + q− 1 order derivative. Or to evaluate a derivative of
order sy + q− 1, sy + q points are needed. Consequently, to have the local identifiability of
the model, the number of measurements of y must be at least sy + q.

Remark 5. In the case where Assumption 2. is difficult to check, i.e., the functional determinant
| ∂ρ

∂Θ | is difficult to calculate because it may require high formal calculus, it can be replaced by
the following:

q distinct time points t1, . . . , tq exist such that the determinant∣∣∣∣∣∣∣∣
∂P

∂Θ1
(t1) . . . ∂P

∂Θq
(t1)

...
∂P

∂Θ1
(tq) . . . ∂P

∂Θq
(tq)

∣∣∣∣∣∣∣∣ (19)

is not identically equal to zero.
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Example 1. Consider the output-polynomials P1 and P2 given in (12). They are needed to identify
all the parameters. After dividing P1 by B2, we obtain a polynomial of the form (10) composed of
7 coefficients and whose indeterminates are y1, y2, y3. Its leader is ÿ2. This polynomial must be
derived six times to get a square system. The higher order derivative in P1 is 2 for y2 and 1 for y3.
Consequently, the higher order derivatives of the system composed of 7 equations are 8 for y2 and
7 for y1. To evaluate a derivative of order 8 (resp. order 7), 9 points are needed (resp. 8 points).
Finally, 9 measurements are needed to estimate the coefficients of the output-polynomial P1/B2.

Using the same argument with P2/B2, we deduce that 3 + 2 = 5 measurements of y3 (resp.
3 + 1 = 4 measurements of y2) are needed to estimate its coefficients.

In conclusion, the minimal number of measurements required to have the local identifiability
is 9.

Remark 6.

• From the results of Section 3, we can conclude that a parameter estimation procedure can be
implemented to estimate the intrinsic parameters using the data provided in Table 1. There is a
unique parameter vector that allows the model outputs to fit the data of this table in the case of
noisy-free measurements;

• One could be tempted to estimate all the parameters of the model from the second and third
scenario. However, from Remark 4, order derivatives of output-polynomials are higher and
there are not enough measurement points to have the local identifiability.

In summary, the parameter identification will be carried out in three steps corre-
sponding to the three conditions in the VR experiment. The main assumption is that the
participants have the same profile in the three scenarios. For each one, a set of parameters
will be estimated with respect to each scenario. The intrinsic parameters will be first esti-
mated for the Neutral scenario in which there is no imitation process. Then, the parameters
describing control imitation processes will be calculated from the organized scenario and
the parameters describing the panic imitation processes from the non-organized scenario.
Figure 8 summarizes the steps of identification.

First scenario:
No avatar

Estimation of 
the parameters  
modelling 
natural 
transitions

Second scenario:
Avatars escaping 
quickly in the 
right direction

Third scenario :
Avatars escaping 
by running in all 
directions and 
shouting

Estimation of 
the parameters 
modeling 
imitation 
towards panic

Estimation of 
the parameters 
modeling 
imitation 
towards control

Figure 8. Diagram summarizing the steps of the identification of the model parameters. The natural
transitions will be first estimated from the first scenario. Then, imitation processes will be identified
from the second and third scenarios.
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6. Parameter Estimation

The parameter estimation procedure is accomplished following the steps defined in
the previous section.

6.1. Minimization Problem

Given discrete-time measurements and a parametrized model describing a continuous-
time process, we seek the parameter values best fitting the experimental data. To fulfill
this objective, an optimization procedure is implemented to adjust the model parameters
and the measurements. It is constructed from a L2 cost function given by the sum of the
square of the differences between the outputs of the model and the experimental data at
each discrete time.

Let (ti)i=1,...,M be the discrete time instants corresponding to the physiological mea-
surements, Sm, pm, and bm, defined in Section 4.1. These three vectors correspond to the
densities of persons engaged in a control, panic and return to everyday behavior at each
discrete time. Set ymes = (Sm, pm, bm)T and y(θ) = (y1(ti), y2(ti), y3(ti))

T
i=1,...,M obtained

from the outputs of the model evaluated at each ti with the parameter vector θ, where the
exponent “T” indicates the transpose of the matrix.

The cost function J(θ) is the square of the sum of the errors, that is

J(θ) = ‖ymes − y(θ)‖2
2 =

M

∑
i=1

3

∑
j=1

(ymes
i,j − y(θ)i,j)

2 (20)

where ymes
i,j (resp. y(θ)i,j) is the component at the i-th line and j-th column of the matrix

ymes (resp y(θ)) and M is the number of discrete-time measurements.
The solution of the optimization algorithm is denoted

θ̂ = argminθ∈P J(θ) (21)

Several local and global optimization algorithms are proposed in the literature to
solve this non-linear least-squares fitting [36,37]. The results of the optimization algo-
rithms are the sets of parameters that produce the best fit between the simulations and
experimental data.

In our case, local optimization algorithms such as Levenberg–Marquardt are not
reliable for finding the global minimum since they require a first initial guess of the
parameters that we do not have.

Global optimization methods and particularly stochastic ones such as simulated
annealing, genetic algorithms, and evolutionary computation are suggested as the methods
of choice when knowledge of the parameter values is lacking. Starting with a suitable
initial domain, global optimization methods search more or less exhaustively through the
parameter values in the attempt to minimize the cost function. One of the main problems
associated with these methods is that they tend to be computationally expensive and may
not perform well when the noise in the measurements is significant.

In this work, we chose the genetic algorithm inspired by Darwin’s theory of biological
evolution [19,38]. This evolutionary algorithm imitates genetic processes. According to
predefined operations, it generates children by selecting and combining/muting the best
parents in the current generation. It reiterates this process until the population evolves into
an optimal solution. Since it uses probabilistic transition rules instead of deterministic ones,
it can search for solutions in a large domain. Furthermore, contrary to other algorithms,
function derivatives are not required. For more details, the readers can refer to [39].

In the following section, we present the numerical results.
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6.2. Results

The function optim_ga implemented in the software Scilab was used to estimate
the parameters. The model outputs of the mathematical model are not very sensitive
to the imitation parameters. We therefore just want to have an order of magnitude of
these parameters.

To estimate the numerical errors in the parameters, the sum of the relative errors
between the measurement curves and the model outputs with respect to time is drawn for
each case.

6.2.1. Scenario with No Avatars

In this scenario, 29 persons were surveyed but only 23 were kept because of the
quality of their measurements. Indeed, either their signal was absent or it had too many
artifacts due to little movements distorting the recorded measurements. In the optimization
problem (21), the variables and their constraints are θ = (B1, B2, B3, B4, C1, C2) ∈ P where

P = {θ ∈ [0.01, 0.7]2 × [0.01, 0.2]2 × [0.01, 0.7]2/B2 + C2 < 1}.

Condition B2 + C2 < 1 was added to limit the panic behavior and make the algorithm
convergent considering that the model is very sensitive to the intrinsic parameters and
large values make the Runge–Kutta algorithm that solves system (4) divergent.

The genetic algorithm returns the following values for the intrinsic parameters:
B1 = 0.1915, B2 = 0.4374, B3 = 0.1009, B4 = 0.1741, C1 = 0.1448, C2 = 0.4676.

The left subplot of Figure 9 represents the trajectories of the real data Sm, pm, bm,
and the trajectories of the outputs calculated with the estimated parameters. In the right
subplot, the curves represent the simulations of a, p, c, b, q.

Figure 9. (Left): Representation of real data Sm, pm, bm, and the output trajectories: densities of the
control (y1), panic (y2), and everyday (y3) behavior after the catastrophe. (Right): Simulations of a, p,
c, b, q with the parameters obtained from the genetic algorithm.

From the three output trajectories, the sum of the relative errors between the measure-
ment curves is calculated and plotted with respect to time in Figure 10. The relative error
increases between 120 and 150 s when individuals begin to move to safety in le vieux Nice
but slightly decreases until the end of the scenario. Consequently, the mathematical model
fits well with the beginning of the measurement curves. There is a slight degradation in
the results when individuals begin to stop the VR but the relative error stays constant and
decreases a little when considering a longer time.
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Figure 10. Representation of the relative error with respect to time. It corresponds to the sum of the
relative errors between Sm, pm, bm and y1, y2, y3, respectively. We note a deterioration of the results
after 120 s but the relative error stabilizes and even decreases when considering a longer time.

Remark 7. We note that the population has a low risk culture. The relations B2 > B1 and C2 > C1
imply that individuals tend to engage in a panic behavior on their own.

6.2.2. Organized Scenario

In the second scenario, 25 persons were selected again among 29. The values of the
intrinsic parameters found in the first scenario were used. In this scenario, since there are
no panic avatars, we assume that β = γc→p = 0.

The optimization problem is solved with θ = (α, γp→c) and P = [0, 9]2. The results
obtained with the genetic algorithm are θ̂ = (α, γp→c) = (0.8338, 0). Figure 11 gives the
representation of real data and the output trajectories evaluated with θ̂ and the simulations
of the state variables of the mathematical model.

Figure 11. Organized scenario. (Left): Representation of real data Sm, pm, bm, and the output
trajectories: densities of control (y1), panic (y2), and everyday (y3) behavior after the catastrophe.
(Right): Simulations of a, p, c, b, q with the parameters obtained from the genetic algorithm.

From the three output trajectories, the sum of the relative errors with the measurement
curves is calculated and plotted with respect to time in Figure 12.

We note a peak in the relative error corresponding to the moment that people begin to
exit from VR. However, the relative error decreases when considering a longer time.
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Figure 12. Representation of the relative error with respect to time. It corresponds to the sum of
the relative errors between Sm, pm, bm and y1, y2, y3, respectively. At 140 s, we notice a peak in the
relative error corresponding to the moment that people begin to exit from VR. However, the relative
error decreases when considering a longer time.

6.2.3. Non-Organized Scenario

For the third scenario, 26 persons were kept for the mathematical study. As in the
previous scenario, the intrinsic parameter values found in the first case were used and
since there were no control avatars, we suppose that α = γp→c = 0. In the optimization
problem (21), θ = (β, γc→p) and P = {p ∈ [0, 1]2/β + γc→p < 0.8}. We need to constrain
the parameter values to limit the imitation processes otherwise the panic behavior is
overestimated. The result obtained with the genetic algorithm is θ̂ = (0.6599, 0.0273).
According to Figure 13, the dynamics of the different behaviors were found once again.

Figure 13. Non-organized scenario. (Left): Representation of real data Sm, pm, bm, and the output
trajectories: densities of control (y1), panic (y2), and everyday (y3) behavior after the catastrophe.
(Right): Simulations of a, p, c, b, q with the parameters obtained from the genetic algorithm.

The sum of the relative errors with respect to time is plotted in Figure 14. In that case,
the relative error increases at 140 s when people begin to finish the RV experiment and
decreases when considering a longer time.
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Figure 14. Representation of the relative error with respect to time. It corresponds to the sum of the
relative errors between Sm, pm, bm, and y1, y2, y3, respectively. The relative error increases at 140 s
when people begin to finish the VR experiment and decreases when considering a longer time.

7. Conclusions and Research Perspectives

From discussions with geographers and psychologists, a mathematical model was
created which describes the different behaviors occurring during a catastrophe. It is based
on two key variables used to identify and characterize the different human behaviors in
such events: the intensity of the emotional charge and its regulation. This first modeling
work describes the behavioral dynamics in the context of a sudden catastrophe. However,
due to difficulties in recovering data, such models are rarely calibrated. In this paper,
a new step in the modeling process was achieved by calibrating the mathematical model
derived from a virtual reality experiment conducted by humanities and social scientists.
These scientists contributed by bringing answers to non observable processes. For example,
from the mathematical model, a finer study of the transition process in behavioral changes
could be carried out leading to a better understanding of these processes and consequently
an improvement in decision-making strategies. In the experimental conditions described in
this paper, we can characterize what was the most influential process, as explained below.

To simplify the notations, we let H̃(c, p) = H̃p→c(c, p)− H̃c→p(c, p) with H̃p→c(c, p) =

γp→cη

(
c

p + ε̃

)
and H̃c→p(c, p) = γc→pη

(
p

c + ε̃

)
.

We introduce the following functions given the inflow due to imitation and intrinsic
processes towards control and panic behaviors with respect to the time. For t ∈ [0, T],
the process inducing control behaviors by imitation is

Imc(t) = H̃p→c(c(t), p(t)) c(t) p(t) + F̃(a(t), c(t))c(t)a(t),

and for the intrinsic process

Inc(t) = B1a(t) + C1 p(t).

In the same way, the imitation and intrinsic processes inducing panic behaviors
are, respectively,

Imp(t) = H̃c→p(c(t), p(t)) c(t) p(t) + G̃(a(t), p(t))p(t)a(t),

and for the intrinsic process

Inp(t) = B2a(t) + C2c(t).
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The results of the organized scenario are provided in Figure 15 and of the-non-
organized scenario in Figure 16. We first observe that intrinsic processes seem to dominate
imitation processes in both scenarios. Second, we notice that imitation processes are more
important in the non-organized scenario which shows that a panic behavior is more fre-
quently imitated. This preliminary result may confirm the benefits of training populations
in risk management policies. To confirm this result, further experiments with specific
assumptions should be conducted in the future.

Figure 15. Inflow due to imitation and intrinsic processes towards control with respect to time in the
organized scenario.

Figure 16. Inflow due to imitation and intrinsic processes towards panic with respect to time in the
non-organized scenario.
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