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Abstract: Eye-tracking can offer a novel clinical practice and a non-invasive tool to detect neuropatho-
logical syndromes. In this paper, we show some analysis on data obtained from the visual sequential
search test. Indeed, such a test can be used to evaluate the capacity of looking at objects in a specific
order, and its successful execution requires the optimization of the perceptual resources of foveal
and extrafoveal vision. The main objective of this work is to detect if some patterns can be found
within the data, to discern among people with chronic pain, extrapyramidal patients and healthy
controls. We employed statistical tests to evaluate differences among groups, considering three novel
indicators: blinking rate, average blinking duration and maximum pupil size variation. Additionally,
to divide the three patient groups based on scan-path images—which appear very noisy and all
similar to each other—we applied deep learning techniques to embed them into a larger transformed
space. We then applied a clustering approach to correctly detect and classify the three cohorts.
Preliminary experiments show promising results.

Keywords: eye tracking; Til Making Test; visual sequential search test; neurological diseases;
deep learning

1. Introduction and Related Work

Eye-tracking offers a fundamental tool to process and analyse human brain behaviour
by detecting eye position and speed of movements [1]. Moreover, eye movements could in
principle be used in order to highlight the presence of pathological states, and consistent
research has been recently performed in this direction [2,3]. In the last decades, Machine
Learning (ML) has been widely applied to many different research fields [4–7] and, in
particular, some examples of its use for Trail Making Test (TMT) data analysis can be
found in the literature. For instance, in [8], an approach based on random forests, decision
trees and Long Short Term Memories (LSTMs) was proposed to detect the presence of a
pathological state in the tested subjects. In particular, 60 patients were recruited in the study,
24 of which presenting brain injury and 36 presenting vertigo episodes. Similarly, in [9], the
eye-tracking test was used to analyse children diagnosed with autism spectrum disorder
(ASD), in order to establish a quantitative relationship between their gaze performance and
their ability in social communication. Indeed, in the same study, the eye gaze-tracking was
proposed as a possible non-invasive, quantitative biomarker to be used in children with
ASD. Finally, a vast literature exists related to applications of eye-tracking tests to detect
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depression syndromes [10–13], and eye-tracking studies have proved their efficacy in the
diagnosis of other common neurological pathologies, such as Parkinson’s disease, brain
trauma and neglect phenomena [14–17], while ML techniques have been recently applied
to process TMT data for the detection of the Alzheimer’s disease [18,19].

In [20], a new experiment based on TMT has been proposed, called the Visual Sequen-
tial Search Test (VSST). In a standard TMT experiment, a subject is presented with a sheet
of numbers and letters arranged in a random manner and is asked, using a pen, to perform
two tasks simultaneously, namely, to connect both in progressive and alternating order
numbers and letters. In the VSST setting, the patients are required to carry on the same
task based only on eye movements. Human visual search [20,21] is, in fact, a common
activity that enables humans to explore the external environment to take everyday life
decisions. Indeed, sequential visual search should use a peripheral spatial scene classi-
fication technique to put the next target in the sequence in the correct order, a strategy
which, as a byproduct, could also improve the discriminatory ability of human peripheral
vision and save neural resources associated with foveation. With respect to the cohorts of
patients under examination, data were collected from people with chronic pain, extrapyra-
midal patients and healthy controls. In particular, individuals affected by extrapyramidal
symptoms suffer from tremors, rigidity, spasms, decline in cognitive functions (dementia),
affective disorders, depression, amnesia, involuntary and hyperkinetic jerky movements,
slowing of voluntary movements such as walking (bradykinesia), and postural abnormal-
ities. Conversely, there are several mechanisms underlying chronic pain; more often an
excessive and persistent stimulation of the “nociceptors” or a lesion of the peripheral or
central nervous system, but there are also forms of chronic pain that do not seem to have a
real, well-identified cause (neuropathic pain). Therefore, chronic pain can be related to a
variety of diseases, with very different severity, from depression, to chronic migraine and
to cancer.

In [22], an algorithmic approach for the analysis of the VSST, based on the episode
matching method, is proposed. In this paper, instead, we analyse the VSST data from a
different perspective, examining both the blinking behaviour and the pupil size of the
subjects and the freezed images of the scan-paths captured during the test, to gain an
insight into the patient condition and offer a support for the clinical practice. For this
purpose, we have compared several indicators to distinguish among classes of patients. A
first preliminary analysis was performed, to evidence statistical differences based on pupil-
derived measures. Such analysis showed the presence of statistically diversified behaviours
existing among healthy, chronic and extrapyramidal subjects. Moreover, we further imple-
mented a Deep Learning (DL) autoencoder architecture, with a U-Net backbone [23], to
reconstruct the trajectory images for the three groups of individuals. Subsequently, as a
proof of concept, we analysed the latent embedding representations using the K-means
clustering algorithm, to verify the presence of clusters corresponding to the three cohorts
of patients. Preliminary experiments actually evidence well-defined phenotypical groups
in the latent space.

The paper is organised as follows. In Section 2, the VSST and the dataset used are
described, together with the statistical methodologies and the DL approach employed for
analysing pupils and image data. In Section 3, we summarise and discuss the obtained
results. Finally, Section 4 collects some conclusions and traces future work perspectives.

2. Materials & Methods
2.1. Visual Sequential Search Test

The Trail Making Test is used in clinical practice as a neuropsychological assessment
of visual attention and task switching. The test investigates the subject’s attentive abilities
and the capability to quickly switch from a numerical to an alphabetical visual stimulus.
Successful performance of the TMT requires a variety of mental abilities, including letter
and number recognition, mental flexibility, visual scanning and motor function [24].
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The research described in this paper used an oculomotor-based methodology, called
eye-tracking, to study cognitive impairments in patients affected by chronic pain and
extrapyramidal syndrome. Eye-tracking is in fact a promising way to carry out this kind of
cognitive tests, allowing the recording of eye movements, to determine where a person is
looking, what the person is looking at and for how long the gaze remains in a particular
spot. More precisely, an eye-tracker uses invisible near-infrared light and high-definition
cameras to project the light into the eye and record the direction in which it is reflected by
the cornea [25]. Advanced algorithms are then used to calculate the position of the eye
and determine exactly where it is in focus. This makes it possible to measure the visual
behaviour and fine eye movements and allows for a more subtle exploration of cognitive
dysfunction in a range of neurological disorders.

Several different eye-tracking devices exist, for example, the screen-based
eye-tracker [26]. This type of test requires respondents to sit in front of a monitor and to
interact with a screen-based content. In the experiments described in this paper, we made
use of a special type of TMT experiment, namely the Visual Sequential Search Test. Such
test has been created for studying the top-down visual search, which can be summarised
as a series of saccades and fixations. In particular, the VSST consists of a repeated search
task, and patients are asked to make the connection by looking at a logical sequence of
numbers and letters. Here, the required task is to follow with the movement of the eyes the
alphanumeric sequence 1-A, 2-B, 3-C, 4-D, 5-E, as shown in Figure 1.

Figure 1. Stimuli timing. ∗ The timing depends on the type of patient to be tested.

2.2. VSST Experimental Dataset Description

Three types of individuals were recruited for the experiments. In particular: 46 patients
with extrapyramidal syndrome, 284 affected by chronic pain and 46 controls. For each
person, the eye-tracker provided the following information:
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• average gaze position along x axis (pixels);
• average gaze position along y axis (pixels);
• fixation ID (integer) (−1 = saccade);
• pupil size (left);
• pupil size (right);
• timestamp (every 4 ms);
• stimulus (code of the image shown in the screen).

Regular eye movements alternate between saccades and visual fixations. A fixation
consists in maintaining the visual gaze on a single location. A saccade, instead, is a quick,
simultaneous movement of both eyes, between two or more phases of fixation in the same
direction. In case of blinking, the device loses the signal, which results in NaN value
recorded in our dataset, either for the position (x, y) on the screen and for the size of
the pupils.

Data preprocessing was necessary before proceeding with the analysis. In particular,
we deleted the experiment part not referring to the image labelled as “TMT stimulus”
(Figure 1), we uniformed the timing to have timestamps exactly every 4 ms, and all the
artefacts and noisy information were removed from the dataset (e.g., repeated rows).

2.3. ETT Image Dataset

To generate the 2D images of the gaze trajectories, the size of the left pupil and the
average positions of the gaze along the horizontal and vertical axes were extracted from
the preprocessed numerical data acquired by the eye-tracker during the experiments. In
this context, pupil size values equal to NaN correspond to the eye blinks and to those
movements recorded while the eye was closed. Therefore these data were removed from
the trajectories, as shown in Figure 2.

The ETT (Eye-Tracking Trajectory) dataset is composed of images of dimension
1920 × 1080 pixels, composed by a single colour channel. Binary images constituting
the dataset consists of a black background (value 0) where the pixels corresponding to
the gaze trajectory appear in white (value 255). In other words, each image is a binarised
single-channel (greyscale) image, with intensity values belonging to {0, 255}. No smooth-
ing operation was performed on the trajectories, in order to preserve the original data
information. ETT includes 376 images (46 healthy controls, 46 extrapyramidal patients
and 284 chronic pain patients). To generate the dataset, we made use of MATLAB 2021a
software [27].

Figure 2. An example of a gaze trajectory image of a chronic patient. On the left, the trajectory with
blinking movements. Blinking movements are highlighted in red. On the right, the 2D trajectory
where the blinking movements are removed.

2.4. Statistical and Deep Learning Methods for the VSST Data Analysis

In the following subsections, we describe how the two sources of information from the
VSST can be processed. On the one hand, the behaviour of the population of our patients
is analysed with statistical methods applied to the morphological characteristics of the
pupil and to the blinking frequency. On the other hand, the images belonging to the ETT
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dataset were preprocessed on the basis of a DL method, to obtain a latent representation
that allows us to adequately group the three cohorts of examined individuals.

2.4.1. Statistical Methods

The following markers were extracted for each patient: the difference between the
maximum and the minimum value of the pupil size (averaged over the right and left eye),
the blinking rate (i.e., the number of blinks per second) and the blinking average duration.
For each of these continuous variables, its distribution over the three classes of patients
was computed. Afterwards, a Kruskall–Wallis test [28] was performed. This nonparametric
test is used for verifying whether samples originate from the same population (or from
populations with equal median). The test has been extensively used for several statis-
tical applications, and has been proved to be a very powerful alternative to parametric
tests [29]. It can compare two or more independent samples of different size, testing the
null hypothesis H0, defined by

H0 : λ1 = λ2 = . . . = λn,

where λi is the median of the ith distribution sample.
In order to detect and remove the outliers of each distribution, we applied the uni-

modal Chebyshev Theorem, with γ = 3 [30]. This resulted in keeping at least 89% of
the values around the mean. Then, we repeated the statistical analysis with the cleaned
samples. Finally, a bootstrapping method was performed to avoid the potential effect
on the results, due to the difference between the sample size of the chronic pain patients
compared to the size of the other two.

2.4.2. Deep Learning Modelling: Autoencoders and the U-Net Architecture

Deep learning has reached state of the art performance in image processing and
analysis for a wide range of applications, in particular it gives excellent results in tasks
such as image classification, detection or segmentation, see [31–33]. In the present work,
we made use of a U-Net-based architecture, a DL model well known for its very good
performance in image processing tasks [34]. This model was originally proposed as an
efficient and fast way to perform biomedical image segmentation [34]. The architecture
is composed by several convolutional layers, which take the original image as input and
produce their segmentation maps. It is based on an encoder–decoder structure and can,
therefore, be successfully used also to perform image reconstruction. As a matter of fact,
in our paper, we trained the U-Net based architecture to reproduce the original image at
the output, obtaining a network which is capable of reconstructing the input images (see
Figure 3). The architecture used for the present work can thus be viewed as a deep learning,
self-supervised autoencoder, made of a downsampling stage (encoder) and an upsampling
stage (decoder). The overall scheme of the deep learning architecture proposed, is depicted
in Figure 4.

Figure 3. Schematic view of the pipeline implemented for the trajectory image reconstruction.
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Figure 4. U-Net-based autoencoder architecture used in the experiments. Before both the last layer
of the encoder stage and the input layer of the decoder stage, two dropout layers with rate = 0.5 has
been used, to force the model not to learn identity function and to prevent overfitting during the
training procedure.

In the encoder stage of the network, the spatial dimension is reduced by convolu-
tional blocks followed by a maxpool downsampling layer, while the channel dimension
is increased, to encode the input image into a hidden representation at multiple different
levels, by means of a series of convolutional layers which use filters to get the so-called
feature maps. A single feature map provides an insight into the internal representation
for the specific input for each of the convolutional layers in the model, capturing some
specific information from the input data, such as curves, straight lines or a combination of
them. The decoder stage, instead, increases the latent spatial dimension while reducing the
number of channels, using convolution blocks followed by an upsampling layer. Generally,
the U-Net architecture implies a series of concatenation operations between the output of a
layer of the encoder and the input of the corresponding layer in the decoder, by means of
residual connections. As the model used acts as an autoencoder, the residual connections
have been eliminated, so that the decoder can use only the output of the encoding stage,
without including in the reconstruction phase the additional information given by this type
of connections. This, also, allows us to avoid overfitting of the reconstruction network,
given the small amount of images available. More specifically, 1024 feature maps, each
of size 67 × 120 pixels, are obtained from a binarised image of shape 1920 × 1080 × 1, as
shown in Figure 5. As a single feature map captures certain aspects from the input data,
all the aforementioned 1024 feature maps have been therefore flattened and concatenated
to obtain the image embedding representation of shape 1× 8,232,960. Some examples of
intermediate representations obtained for a random image for each class are shown in
Figure 6.

The model was developed in Python version 3.9.5 with Tensorflow 2.4.0 (Keras back-
end), and trained using Adam optimizer with an initial learning rate equal to 10−4. All
the experiments were performed on a Linux–based machine equipped with an Intel Core
i9-10920X CPU, 128 GB DDR4 RAM and a Titan RTX GPU with 24 GB GDDR6 VRAM.
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Figure 5. Examples of feature maps from the encoder output for a single input image.

Figure 6. Examples of intermediate representations for three images of healthy controls, extrapyra-
midal and chronic pain patients, respectively. Each of them has a shape of 1024 × 8040, which is
obtained stacking 1024 feature maps composed by 67 × 120 pixels. These latent representations are
further flattened to obtain the final embedding of dimension 1 × 8,232,960.

2.4.3. K-Means Clustering

As a proof of concept, we performed clustering in both the original and latent space,
obtained with our U-Net based model. This would in fact allows to show the ability of
the image reconstruction architecture to efficiently compress and maintain the information
contained in the original images, producing latent representations which are easier to
be distinguished in the three different cohorts [35]. With this intent, we used the K-
means [36] algorithm, one of the best known and most used partition clustering methods.
The algorithm is based on an optimisation process whose aim is to minimise the intra-
cluster variance. The number of clusters, K, needs to be specified in advance. On the
first iteration, K clusters are created. Thereafter, the representatives for each cluster are
calculated iteratively, until convergence. We used the Scikit-learn Python (Version 3.1).

The K-means algorithm has been applied to input data (belonging to the ETT dataset)
as well as to the reconstructed data: all the examples in both settings have been grouped in
a single cluster, except for only three examples—all belonging to the chronic pain patient
category—which have been assigned to the other two clusters. A different strategy was
then applied, based on the latent space representations and K-means, to determine if
collecting the different feature maps, resulting from image compression, was able to lead
to a correct grouping of the three categories of patients.
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3. Results and Discussion
3.1. Statistical Analysis of Pupil and Blinking Data

First, the Kruskall–Wallis test was applied to the distributions of the blinking rate,
maximum pupil size variations and mean blinking duration. In Figure 7, we show the
distributions of the three indicators, for healthy, chronic and extrapyramidal individu-
als. Similarly, in Figure 8, we show boxplots for the three indicators, comparing the
three groups.

Figure 7. Probability density plots of blinking rate, blinking average duration and maximum variation of the pupil size
over the three classes of individuals.

We further performed the Kruskall–Wallis test, to compare the three groups’ distribu-
tions. The level of statistical significance chosen is p-value = 0.05.

As shown in Table 1, no significant differences are found between healthy subjects and
patients affected by extrapyramidal syndrome considering the three indicators. Conversely,
a significant statistical difference between healthy controls and chronic pain patients was
found for the rate of blinking and the variation of pupil size. Concerning the comparison
between patients affected by chronic pain and extrapyramidal syndrome, a significant
difference was detected both in the maximum pupil size variation and in the blinking
average duration. In Table 1, also the H statistic value is reported, which represents the test
statistic for the Kruskal–Wallis test. Under the null hypothesis, the χ-square distribution
approximates the distribution of H.



Mathematics 2021, 9, 3159 9 of 14

Table 1. Kruskal–Wallis test results of the pairwise comparison between Healthy (H), Chronic
(C) and Extrapyramidal (E) subjects for blinking rate, maximum pupil size variation and blinking
average duration. Significant p-values are highlighted in bold.

Blinking Rate Maximum Pupil Blinking Average
Size Variation Duration

Classes p-Value H Statistic p-Value H Statistic p-Value H Statistic

H–C 0.0059 7.5880 0.0121 6.2899 0.1079 2.5847
H–E 0.2092 1.5771 0.6534 0.2016 0.5289 0.3966
E–C 0.3258 0.9654 0.0039 8.3394 0.0058 7.6226

Figure 8. Boxplots of the distribution of the blinking rate, blinking average duration and maximum
variation of the pupil size over the three groups. The horizontal line inside the box is located at
the median.

3.1.1. Outliers Detection and Kruskall–Wallis Test

A further step of the analysis, as described in Section 2.4.1, consisted in repeating the
Kruskal–Wallis test on distributions without outliers. The Chebyshev outlier detection
method uses the Chebyshev inequality to calculate the upper and lower outlier detection
limits. Data values outside this range will be considered outliers. The outliers could be
due to an incorrect acquisition procedure or they could indicate that the data are correct
but highly unusual. The results of the Kruskall–Wallis test on the cleaned distributions are
reported in Table 2.

The analysis based on clean samples confirmed the previous results: all the significant
p-values remained such and, in general, they even decreased. As an effect of this reduction,
the difference between Healthy and Chronic subjects in the blinking average duration
became significant.
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Table 2. Kruskal–Wallis test results of the pairwise comparison between Healthy (H), Chronic
(C) and Extrapyramidal (E) subjects for blinking rate, maximum pupil size variation and blinking
average duration. Significant p-values are highlighted in bold.

Blinking Rate Maximum Pupil Blinking Average
Size Variation Duration

Classes p-Value H Statistic p-Value H Statistic p-Value H Statistic

H–C 0.0027 9.0171 0.0075 7.1445 0.0488 3.8814
H–E 0.1877 1.7355 0.4984 0.4584 0.5115 0.4309
E–C 0.2390 1.3867 0.0008 11.3152 0.0016 9.999

3.1.2. Bootstrapping Method

Although the Kruskal–Wallis test is designed for different sample size groups, the
greater number of chronic patients than the other two classes may affect the results to some
extent. To avoid this kind of bias, we performed the analysis described in the following. A
sample of chronic patients was randomly selected from the original distribution, with a
size equal to the others—46 patients, and then the Kruskal–Wallis test was applied. This
resampling operation is repeated 10,000 times. Table 3 reports the percentage of p-values
less than 0.05 over the 10,000 runs.

Table 3. Percentage of p-value below the threshold of significance equal to 0.05 for the Kruskal–Wallis
test of the pairwise comparison of Healthy and Extrapyramidal patients with the resampled Chronic
patients.

Classes Blinking Rate Maximum Pupil Blinking Average
Size Variation Duration

H–C 59.11% 48.06% 10.99%
E–C 2.05% 67.92% 58.42%

The bootstrapping procedure allows us to validate the results in Table 1. Indeed, only
the comparison between Healthy and Chronic patients with respect to the variation of pupil
size has a percentage of significant p-values less than 50% (in particular equal to 48.06%),
while this indicator has shown to be significant in the previous experiments. Therefore,
we can conclude that, based on the considered indicators, healthy and extrapyramidal
subjects look indistinguishable, while chronic pain patients behave significantly different.
This is not an astonishing result as neurophysiological studies [37] suggested that a painful
electrical stimulation is associated with consistent alterations in the eye muscle activity.
Moreover, altered results of the Blink Reflex (BR) test normally stand for a dysfunction
in brain stem and trigeminovascular connections of patients with migraine headache,
supporting the trigeminovascular theory of migraine [38].

3.2. Mapping Latent Space Representations of ETT Images to Phenotypic Groups

For what concerns the analysis of the ETT dataset, three U–Net based autoencoders—
one for each group, all sharing the same architecture and the same set of initial random
weights—were trained for image reconstruction. In particular, the generic U–Neti is trained
only on the data describing the ith class of individuals, which means that the U–NetH has
been trained to reconstruct input images from the healthy class only, while U–NetE and
U–NetC are trained on extrapyramidal and chronic classes, respectively. The workflow of the
analysis is depicted in Figure 9.
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Figure 9. The three autoencoders trained for the three classes of subjects (chronic (C), healthy (H)
and extrapyramidal (E)).

The experiments were carried out as described in the following. The three U-Net
architectures were originally trained on 46 healthy, 46 extrapyramidal and 284 chronic
pain patients, respectively, i.e., with the entire ETT dataset. Moreover, to obtain a balanced
training set, experiments were also performed with only 46 chronic pain randomly sampled
patients. The three encoder outputs were concatenated in a unique matrix, whose “entries”
(latent representations of ETT images) were then clustered using the K-means algorithm,
with K = 3.

The pipeline of the procedure is depicted in Figure 10. The number of clusters is empir-
ically defined by the structure of the dataset itself, as it contains three types of individuals
known a priori. The K-means algorithm is not used for classification purposes, but with the
intent of evaluating the presence of usueful information in the latent embeddings which
allows to properly discern the three groups. In each of the three groups, only subjects
belonging to the same cohort are present, showing the possibility of properly dividing
patients into groups using the latent space embeddings.

Figure 10. Graphical description of the pipeline for the extraction of latent image representations—via
the U-Net—to which the K-means algorithm is applied.

Considering such preliminary results, we decided to implement a procedure to test
the generalisation capability of the models. Therefore, we trained the three U-Nets only
on 41 samples for each class of individuals. The test set, consisting of five healthy, five
chronic and five extrapyramidal samples, was used as input to the three architectures
separately. Subsequently, we ran the K-means algorithm (K = 3) with respect to the matrix
obtained as the mean values along the embedding dimension of the test embeddings
obtained at the previously described step. Next, we clustered the new mean values matrix,
checking if the three clusters detected correspond to the three groups. In particular, the
mean healthy embeddings obtained with the three architectures ended up in the same
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cluster, with 67% of accuracy. On the other hand, there was no remarkable distinction
for the chronic and extrapyramidal patients. Moreover, as a further proof of concepts,
we averaged the embedding representations, for each group of individuals and for each
model—obtaining the vectors of the mean values for the reconstructed embeddings and
clustering the corresponding matrix with K-means (K = 3) to verify whether the three
averaged embeddings for the generic class could give an insight of the relationship between
the input image class (healthy, chronic and extrapyramidal) in the embedding space. All of
the three resulting mean “Healthy” reconstructed vectors of embeddings were clustered in
the same community. Instead extrapyramidal and chronic patients, were not distinctively
divided in their respective groups. This shows a similar behaviour to what we detected
with the testing procedure. Healthy individuals trajectories are, in fact, more characterisable
comparing to the two other subject categories.

Nonetheless, classifying the three groups of individuals based on DL techniques
applied to ETT images remains a very difficult task, especially because of the scarcity of
data and due to the complexity of the task itself. Indeed, human experts are unable to
recognise different types of patients looking at the “frozen” trajectories they follow to
approach the VSST, both because such trajectories are not so different to the naked eye
and because, in the freezing process, the important temporal information on the way in
which each trajectory is travelled, is irremediably lost. Taking into account, with an ad hoc
preprocessing, of the sequential nature of the data and, most of all, enlarging the training
dataset will surely allow better results.

4. Conclusions

In this paper, we presented some preliminary results on the analysis of VSST data, per-
formed on three groups of individuals: patients affected by the extrapyramidal syndrome
or by chronic pain symptoms and healthy subjects. Starting from the idea that the problem
to be solved is multifaceted—which means that the data collected in a VSST have different
nature and can be analysed from different viewpoints [22]—the goal of the present study is
to detect if some regularities can be found within the data that allow to properly group
them. Such detected differences could be potentially used in clinical practice, and therefore
play an important role in evidencing possible neurological syndromes. The three-stage
statistical analysis has been carried out on the basis of three metrics: the blinking rate, the
maximum pupil size variation and the blinking average duration. The analysis showed
the presence of some statistically significant differences between the groups analysed. In
particular, the relevant difference in blinking rate between healthy and chronic patients
is confirmed by each step of the analysis. Moreover, a statistical difference was detected
between extrapyramidal and chronic patients for what concerns the maximum pupil size
variation and blinking average duration. Conversely, based on the ETT (Eye-Tracking
Trajectory) image dataset, a U-Net ensemble architecture was trained to reconstruct in-
put images, using their latent representations, to appropriately cluster the visual data.
Embeddings were, in fact, divided clearly into three separated groups. We performed
preliminary testing, showing promising generalisation capabilities. Limitations of this
work are mainly due to the small dataset available. Moreover variations of the VSST could
be implemented and standardised, to avoid biases due to the fact that no instructions were
given concerning the number of times the patients should have completed the sequence
during the data acquisition time. Therefore, future research and extensions will concern
new standardised data collection for further testing and a more extensive validation of the
employed approaches based on a wider experimentation. For example a possible extension
of the present study could be to consider more than three mutual exclusive classes, so as
to include co-morbidities, i.e., cases in which additional conditions are concurrent to the
primary one.
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