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Abstract: In this paper, we prove a Sehgal–Guseman-type fixed point theorem in b-rectangular metric
spaces which provides a complete solution to an open problem raised by Zoran D. Mitrović (A note
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presented in the paper generalizes and unifies some results in fixed point theory.
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1. Introduction and Preliminaries

Fixed point theory is one of the most important and useful tools in nonlinear func-
tional analysis and applied mathematics. Since the publication of the Banach contraction
principle, many scholars have generalized and extended it. One of the generalizations
is given by Sehgal. In [1], Sehgal initiated the study of fixed points for mappings with
contractive iterates at a point. The main result of [1] is the following theorem.

Theorem 1. Let (X, d) be a metric space and let T : X → X be a continuous mapping which
satisfies the condition that there exists a real number k, 0 ≤ k < 1 such that for each x there exists a
positive integer l(x) such that, for each y ∈ X,

d(Tl(x)x, Tl(x)y) ≤ kd(x, y).

Then, T has a unique fixed point.

Later, Guseman [2], Matkowsk [3] and others [4] discussed it in depth.
On the other hand, many authors discussed the Banach contraction principle in

different generalized metric spaces. For example, Branciari [5] introduced the concept of
rectangular metric spaces and proved an analogue of the Banach contraction principle
in the setting of such a space. In [6], Bakhtin introduced the concept of b-metric spaces
and also proved an analogue of the Banach contraction principle in the setting of such a
space. In 2015, George et al. [7] introduced the concept of a b-rectangular metric space
as a generalization of both rectangular metric space and b-metric space. Additionally,
an analogue of the Banach contraction principle and Kannan’s fixed point theorem have
been proven in such a space. In the end of [7], the authors raised several open questions,
one of which is whether analogues of the Chatterjee contraction, Reich contraction, Ciric
contraction and Hardy–Rogers contraction theorems can be proven in b-rectangular metric
spaces. Some other fixed point theorems in b-rectangular metric spaces can be seen [8,9].
In 2018, Mitrović [10] relaxed the contraction coefficient in the Banach contraction principle
from k ∈ (0, 1

s ) to k ∈ (0, 1) in a b-rectangular metric space. Furthermore, in the end
of [10], the author raised an open question, which was to prove or disprove the following
(Sehgal–Guseman theorem) in a b-rectangular metric space:
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Let (X, d) be a complete b-rectangular metric space with coefficient s ≥ 1, and let
T : X → X be a mapping satisfying the condition: for each x there exists a positive integer
l(x) such that

d(Tl(x)x, Tl(x)y) ≤ kd(x, y),

for all y ∈ X, where k ∈ (0, 1). Then, T has a unique fixed point.
In this paper, we prove the Sehgal–Guseman-type theorem in b-rectangular metric

spaces, which answers an open question raised by Mitrović. The result presented in the
paper generalizes and unifies some results in fixed point theory.

Let us recall some definitions that will be used in the paper.

Definition 1 ([6,11]). Let X be a nonempty set, s ≥ 1 be a given real number and let d :
X× X −→ [0, ∞) be a mapping, such that for all x, y, z ∈ X, the following conditions hold:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)] (b-triangular inequality).

Then the pair (X, d) is called a b-metric space (metric type space).

For all definitions of such notions as b-convergence, b-completeness, and b-Cauchy in
the frame of b-metric spaces, see [6,11].

In the last twenty years, many authors have discussed the fixed point theory on
b-metric spaces. For instance, in [12], the author gave a survey of the recent fixed point
results on b-metric spaces.

Definition 2 ([5]). Let X be a nonempty set, and let d : X × X −→ [0, ∞) be a mapping such
that for all x, y ∈ X and distinct points u, v ∈ X, each distinct from x and y:

(r1) d(x, y) = 0 if and only if x = y;
(r2) d(x, y) = d(y, x);
(r3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

Then, (X, d) is called a rectangular metric space or generalized metric space.

For all definitions of notions in the frame of rectangular metric spaces, see [5].

Definition 3 ([7]). Let X be a nonempty set, s ≥ 1 be a given real number and let d : X× X −→
[0, ∞) be a mapping such that for all x, y ∈ X and distinct points u, v ∈ X, each distinct from x
and y:

(rb1) d(x, y) = 0 if and only if x = y;
(rb2) d(x, y) = d(y, x);
(rb3) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] (b-rectangular inequality).

Then, (X, d) is called a b-rectangular metric space or b-generalized metric space.

Several authors have defined different contractive mappings for b-rectangular metric
spaces and discussed the fixed point theory on them (for details, see [9,13,14] and the
references therein).

From the above definitions, we know that every metric space is a rectangular metric
space and a b-metric space. Additionally, every rectangular metric space or every b-metric
space is a b-rectangular metric space. However the converse is not necessarily true [15].
To illustrate this, we give the following example, which is a modification of the example
of [15].
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Example 1. Let A = {0, 2}, B = { 1
n : n ∈ N} and X = A

⋃
B. Define d : X× X −→ [0,+∞)

as follows:

d(x, y) =


0, if x = y
1, if x 6= y and {x, y} ⊂ A or {x, y} ⊂ B
y2, if x ∈ A, y ∈ B
x2, if x ∈ B, y ∈ A.

Then, (X, d) is a complete b-rectangular metric space with coefficient s = 3, but which is
neither a b-metric space nor a rectangular metric space. Meanwhile, it is easy to see that [15]:

(i) The sequence { 1
n}n∈Nconverges to both 0 and 2, and it is not a Cauchy sequence;

(ii) There is no r > 0 such that Br(0)
⋂

Br(2) = ∅. Hence, the corresponding topology is not
Hausdorff;

(iii) B1/3(
1
3 ) = {0, 2, 1

3}, however, there does not exist r > 0 such that Br(0) ⊆ B1/3(
1
3 );

(iv) limn→∞
1
n = 0, but limn→∞ d( 1

n , 1
2 ) 6= d(0, 1

2 ). Hence, d is not a continuous function.

2. Main Results

Theorem 2. Let (X, d) be a b-rectangular metric space with coefficient s ≥ 1, and let T : X → X
be a mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 such that for
each x there exists a positive integer l(x) such that, for each y ∈ X,

d(Tl(x)x, Tl(x)y) ≤ kd(x, y). (1)

Then, T has a unique fixed point.

Proof. We first prove the theorem in case 0 ≤ k < 1
s .

Let x0 be an arbitrary point in X. Consider a sequence {xn} by x1 = Tl(x0)x0, · · · · · · ,
xn+1 = Tl(xn)xn.

Step 1: If xn0 = xn0+1 for some n0 ∈ N, then xn0 is a fixed point of T.
Since xn0 = Tl(xn0 )xn0 , xn0 is a fixed point of Tl(xn0 ).
To prove that xn0 is a fixed point of T, we firstly show that xn0 is the unique fixed

point of Tl(xn0 ). Indeed, if Tl(xn0 )v = v for some v 6= xn0 , then
d(xn0 , v) = d(Tl(xn0 )xn0 , Tl(xn0 )v) ≤ kd(xn0 , v),
which is a contradiction, since 0 ≤ k < 1.
Then, Txn0 = TTl(xn0 )xn0 = Tl(xn0 )Txn0 ; that is, Txn0 is also a fixed point of Tl(xn0 ).
By the uniqueness of fixed point of Tl(xn0 ), we have Txn0 = xn0 , which shows that xn0

is a fixed point of T.
In what follows, we can suppose that xn 6= xn+1 for all n ∈ N.
Step 2: We show that xn 6= xm for n 6= m.
Without loss of generality, suppose m > n.
If xn = xm for n 6= m, then

d(xm, xm+1) = d(Tl(xm−1)xm−1, Tl(xm)Tl(xm−1)xm−1)

= d(Tl(xm−1)xm−1, Tl(xm−1)Tl(xm)xm−1)

≤ kd(xm−1, Tl(xm)xm−1)

= kd(Tl(xm−2)xm−2, Tl(xm)Tl(xm−2)xm−2)

= kd(Tl(xm−2)xm−2, Tl(xm−2)Tl(xm)xm−2)

≤ k2d(xm−2, Tl(xm)xm−2)
≤ · · · · · ·
≤ km−nd(xn, Tl(xm)xn)

= km−nd(xm, Tl(xm)xm)
= km−nd(xm, xm+1),

which is a contradiction since 0 ≤ k < 1.
Step 3: For x ∈ X, r(x) = supn d(Tnx, x) is finite.
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Let x ∈ X and let

z(x) = max{d(Tkx, x) : k = 1, 2, · · · , l(x), l(x) + 1, · · · , 2l(x)}.

If n is a positive integer, then there exists an integer t ≥ 0 such that tl(x) < n ≤ (t +
1)l(x). We can assume that Tnx, Tl(x)x, T2l(x)x, x are different from each other. Otherwise,
the conclusion is obvious.

d(Tnx, x) ≤ s[d(Tnx, Tl(x)x) + d(Tl(x)x, T2l(x)x) + d(T2l(x)x, x)]
≤ s[kd(Tn−l(x)x, x) + kd(x, Tl(x)x) + d(T2l(x)x, x)]
≤ skd(Tn−l(x)x, x) + skz(x) + sz(x)
≤ s2k[d(Tn−l(x)x, Tl(x)x) + d(Tl(x)x, T2l(x)x) + d(T2l(x)x, x)] + skz(x) + sz(x)
≤ s2k2d(Tn−2l(x)x, x) + s2k2d(x, Tl(x)x) + s2kd(T2l(x)x, x) + skz(x) + sz(x)
≤ s2k2d(Tn−2l(x)x, x) + s2k2z(x) + s2kz(x) + skz(x) + sz(x)
≤ · · · · · ·
≤ stktd(Tn−tl(x)x, x) + (sz(x) + s2kz(x) + s3k2z(x) + · · · )
+ (skz(x) + s2k2z(x) + s3k3z(x) + · · · )
≤ stktz(x) + sz(x)

1−sk + skz(x)
1−sk

≤ z(x) + sz(x)
1−sk + skz(x)

1−sk

Hence, r(x) = supn d(Tnx, x) is finite.
Step 4: limn→∞ d(xn, xn+1) = 0.

d(xn, xn+1) = d(Tl(xn−1)xn−1, Tl(xn)Tl(xn−1)xn−1)

= d(Tl(xn−1)xn−1, Tl(xn−1)Tl(xn)xn−1)

≤ kd(xn−1, Tl(xn)xn−1)
≤ · · · · · ·
≤ knd(x0, Tl(xn)x0)
≤ knr(x0)

Then limn→∞ d(xn, xn+1) = 0.
Step 5: {xn} is a Cauchy sequence in X.
For the sequence {xn}, we consider d(xn, xn+p) in two cases. For the sake of conve-

nience, we denote r(x0) by r0.
If p is odd, say 2m + 1, then by step 2 and (rb3)

d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)]
≤ sknr0 + skn+1r0 + s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]
≤ · · · · · ·
≤ sknr0 + skn+1r0 + s2kn+2r0 + s2kn+3r0 + s3kn+4r0 + s3kn+5r0 + · · ·+ smkn+2mr0
≤ skn[1 + sk2 + s2k4 + · · · ]r0 + skn+1[1 + sk2 + s2k4 + · · · ]r0
≤ 1+k

1−sk2 sknr0

If p is even, say 2m, then by step 2 and (rb3)

d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]
≤ sknr0 + skn+1r0 + s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m)]
≤ · · · · · ·
≤ sknr0 + skn+1r0 + s2kn+2r0 + s2kn+3r0 + s3kn+4r0 + s3kn+5r0
+ · · ·+ sm−1kn+2m−4r0 + sm−1kn+2m−3r0 ++sm−1d(xn+2m−2, xn+2m)
≤ sknr0 + skn+1r0 + s2kn+2r0 + s2kn+3r0 + s3kn+4r0 + s3kn+5r0
+ · · ·+ sm−1kn+2m−4r0 + sm−1kn+2m−3r0 + sm−1kn+2m−2d(x0, Tn+2m−1Tn+2m−2x0)
≤ skn[1 + sk2 + s2k4 + · · · ]r0 + skn+1[1 + sk2 + s2k4 + · · · ]r0 + sm−1kn+2m−2r0
≤ 1+k

1−sk2 sknr0 + sm−1kn+2m−2r0

≤ 1+k
1−sk2 sknr0 + (sk)2mkn−2r0

≤ 1+k
1−sk2 sknr0 + kn−2r0.



Mathematics 2021, 9, 3149 5 of 8

Then, it follows from the above argument that

lim
n→∞

d(xn, xn+p) = 0 for all p > 0.

Thus, {xn} is a Cauchy sequence in X.
Since X is complete, there exists a point u ∈ X such that

lim
n→∞

xn = u.

Step 6: u is a fixed point of T.
By (2.1), d(Tl(u)u, Tl(u)xn) ≤ d(u, xn), then limn→∞ d(Tl(u)u, Tl(u)xn) = 0.
On the other hand,

d(Tl(u)xn, xn) = d(Tl(u)Tl(xn−1)xn−1, Tl(xn−1)xn−1)

= d(Tl(xn−1)xn−1, Tl(xn−1)Tl(u)xn−1)

≤ kd(xn−1, Tl(u)xn−1)
≤ · · · · · ·
≤ knd(x0, Tl(u)x0).

That is, limn→∞ d(Tl(u)xn, xn) = 0.
By (rb3), d(Tl(u)u, xn+1) ≤ s(d(Tl(u)u, Tl(u)xn) + d(Tl(u)xn, xn) + d(xn, xn+1)).
Then, limn→∞ d(Tl(u)u, xn+1) = 0.
Therefore, by (rb3) we have
d(u, Tl(u)u) ≤ s(d(u, xn) + d(xn, xn+1) + d(xn+1, Tl(u)u)).
Passing the limit to the inequality, we have
d(u, Tl(u)u) = 0.
This means that Tl(u)u = u; that is, u is a fixed point of Tl(u).
Now, d(u, Tu) = d(Tl(u)u, TTl(u)u) = d(Tl(u)u, Tl(u)Tu) ≤ kd(u, Tu), then d(u, Tu) =

0, that is u is a fixed point of T.
Step 7: u is the unique fixed point of T.
To prove that u is the unique fixed point of T, we show that u is the unique fixed point

of Tl(u) firstly. Indeed, if Tl(u)v = v for some v 6= u, then
d(u, v) = d(Tl(u)u, Tl(u)v) ≤ kd(u, v), which is a contradiction since 0 ≤ k < 1.
If w is another fixed point of T, then w = Tw = T2w = · · · · · · = Tl(u)w, that is, w is a

fixed point of Tl(u) too. By the uniqueness of fixed point of Tl(u), we have u = w.
Next, we prove that the theorem is still valid in case 1

s ≤ k < 1.
Since 1

s ≤ k < 1, there exists n0 ∈ N such that kno ∈ (0, 1
s ).

For each x ∈ X, there exists a positive integer l(x) such that, for each y ∈ X,

d(Tl(x)x, Tl(x)y) ≤ kd(x, y).

Write x[1] = Tl(x)x, x[2] = Tl(x[1])x[1] = Tl(x[1])+l(x)x, ...,
x[n0] = Tl(x[n0−1])x[n0 − 1] = Tl(x[n0−1])+l(x[n0−2])+···+l(x)x.
Denote m(x) = l(x[n0 − 1]) + l(x[n0 − 2]) + · · ·+ l(x), then

d(Tm(x)x, Tm(x)y) ≤ kn0 d(x, y).

Since kno ∈ (0, 1
s ), from the above proof, we know that T has a unique fixed point.

Remark 1. From the proof of Theorem 2, we can see that we do not require T to be continuous.
Using our proof method, we can know that the continuity condition of Theorem 1 can be removed,
as shown in [2].
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To illustrate the validity of our theorem, we give the following example, which is just
a modification of Example 1.

Example 2. Let A = {0, 2}, B = { 1
n : n ∈ N}, C = {n : n ≥ 3 and n ∈ N} and X = A

⋃
B.

Define d : X× X −→ [0,+∞) as follows:

d(x, y) =



0, if x = y
1, if x 6= y and {x, y} ⊂ A or {x, y} ⊂ B
y2, if x ∈ A, y ∈ B
x2, if x ∈ B, y ∈ A
1
2 , if x = 0, y ∈ C or y = 0, x ∈ C
|x− y|, otherwise.

Then (X, d) is a complete b-rectangular metric space with coefficient s = 3.
Let

f (x) =
{

0, if x ∈ A ∪ B or x = 3
x− 1, if x ∈ C− {3}.

If x ∈ A ∪ B, put l(x) = 1; if x = n ∈ C, put l(x) = n. Then, for each x, there exists a
positive integer l(x) such that, for each y ∈ X,

d(Tl(x)x, Tl(x)y) ≤ 1
2

d(x, y).

Therefore, all the hypotheses of Theorem 2 are satisfied; thus, T has a fixed point. In
this example x = 0 is the unique fixed point.

Note that since every rectangular metric space or every b-metric space is a b-rectangular
metric space, then we have the following results.

Corollary 1. Let (X, d) be a rectangular metric space. Let T : X → X be a mapping which satisfies
the condition that there exists a real number k, 0 ≤ k < 1 such that for each x there exists a positive
integer l(x) such that, for each y ∈ X,

d(Tl(x)x, Tl(x)y) ≤ kd(x, y).

Then, T has a unique fixed point.

Corollary 2. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let T : X → X be a
mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 such that for
each x there exists a positive integer l(x) such that, for each y ∈ X,

d(Tl(x)x, Tl(x)y) ≤ kd(x, y).

Then, T has a unique fixed point.

If, for each x ∈ X, there exists a fixed positive integer l such that l(x) = l, then we
have the following results.

Corollary 3. Let (X, d) be a rectangular b-metric space with coefficient s ≥ 1, and let T : X → X
be a mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 and a fixed
positive integer l such that, for each x, y ∈ X,

d(Tl x, Tly) ≤ kd(x, y).

Then, T has a unique fixed point.
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Corollary 4. Let (X, d) be a rectangular metric space with coefficient s ≥ 1, and let T : X → X
be a mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 and a fixed
positive integer l such that, for each x, y ∈ X,

d(Tl x, Tly) ≤ kd(x, y).

Then, T has a unique fixed point.

Corollary 5. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let T : X → X be a
mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 and a fixed
positive integer l such that, for each x, y ∈ X,

d(Tl x, Tly) ≤ kd(x, y).

Then, T has a unique fixed point.

Corollary 6. Let (X, d) be a metric space and let T : X → X be a mapping which satisfies the
condition that there exists a real number k, 0 ≤ k < 1 such that, for each x, y ∈ X,

d(Tl x, Tly) ≤ kd(x, y).

Then, T has a unique fixed point.

Specifically, if l = 1, then we have

Corollary 7. Let (X, d) be a rectangular b-metric space with coefficient s ≥ 1, and let T : X → X
be a mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 such that,
for each x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y).

Then, T has a unique fixed point.

Corollary 8. Let (X, d) be a rectangular metric space with coefficient s ≥ 1, and let T : X → X
be a mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 such that,
for each x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y).

Then, T has a unique fixed point.

Corollary 9. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let T : X → X be a
mapping which satisfies the condition that there exists a real number k, 0 ≤ k < 1 such that, for
each x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y).

Then, T has a unique fixed point.

Corollary 10. Let (X, d) be a metric space and let T : X → X be a mapping which satisfies the
condition that there exists a real number k, 0 ≤ k < 1 such that, for each x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y).

Then, T has a unique fixed point.

3. Conclusions

A Sehgal–Guseman-type fixed point theorem in b-rectangular metric spaces was
proven, which answered an open question raised by Mitrović. The result presented in the
present paper generalized and unified some results in fixed point theory.
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