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Abstract: In this paper, we prove a Sehgal-Guseman-type fixed point theorem in b-rectangular metric
spaces which provides a complete solution to an open problem raised by Zoran D. Mitrovi¢ (A note
on a Banach’s fixed point theorem in b-rectangular metric space and b-metric space). The result
presented in the paper generalizes and unifies some results in fixed point theory.
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1. Introduction and Preliminaries

Fixed point theory is one of the most important and useful tools in nonlinear func-
tional analysis and applied mathematics. Since the publication of the Banach contraction
principle, many scholars have generalized and extended it. One of the generalizations
is given by Sehgal. In [1], Sehgal initiated the study of fixed points for mappings with
contractive iterates at a point. The main result of [1] is the following theorem.

Theorem 1. Let (X, d) be a metric space and let T : X — X be a continuous mapping which
satisfies the condition that there exists a real number k,0 < k < 1 such that for each x there exists a
positive integer 1(x) such that, for each y € X,

d(T!®)x, TN y) < kd(x, y).
Then, T has a unique fixed point.

Later, Guseman [2], Matkowsk [3] and others [4] discussed it in depth.

On the other hand, many authors discussed the Banach contraction principle in
different generalized metric spaces. For example, Branciari [5] introduced the concept of
rectangular metric spaces and proved an analogue of the Banach contraction principle
in the setting of such a space. In [6], Bakhtin introduced the concept of b-metric spaces
and also proved an analogue of the Banach contraction principle in the setting of such a
space. In 2015, George et al. [7] introduced the concept of a b-rectangular metric space
as a generalization of both rectangular metric space and b-metric space. Additionally,
an analogue of the Banach contraction principle and Kannan'’s fixed point theorem have
been proven in such a space. In the end of [7], the authors raised several open questions,
one of which is whether analogues of the Chatterjee contraction, Reich contraction, Ciric
contraction and Hardy—-Rogers contraction theorems can be proven in b-rectangular metric
spaces. Some other fixed point theorems in b-rectangular metric spaces can be seen [8,9].
In 2018, Mitrovi¢ [10] relaxed the contraction coefficient in the Banach contraction principle
from k € (0,1) to k € (0,1) in a b-rectangular metric space. Furthermore, in the end
of [10], the author raised an open question, which was to prove or disprove the following
(Sehgal-Guseman theorem) in a b-rectangular metric space:
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Let (X, d) be a complete b-rectangular metric space with coefficient s > 1, and let
T : X — X be a mapping satisfying the condition: for each x there exists a positive integer
I(x) such that
d(T'®x, T'0y) < kd(x,y),

forall y € X, where k € (0,1). Then, T has a unique fixed point.

In this paper, we prove the Sehgal-Guseman-type theorem in b-rectangular metric
spaces, which answers an open question raised by Mitrovi¢. The result presented in the
paper generalizes and unifies some results in fixed point theory.

Let us recall some definitions that will be used in the paper.

Definition 1 ([6,11]). Let X be a nonempty set, s > 1 be a given real number and let d :
X x X — [0, c0) be a mapping, such that for all x,y,z € X, the following conditions hold:
(b1) d(x,y) =O0ifand onlyif x = y;
(b2) d(x,y) =d(y, x);
(b3) d(x,y) <sld(x,z)+d(z,y)] (b-triangular inequality).
Then the pair (X, d) is called a b-metric space (metric type space).

For all definitions of such notions as b-convergence, b-completeness, and b-Cauchy in
the frame of b-metric spaces, see [6,11].

In the last twenty years, many authors have discussed the fixed point theory on
b-metric spaces. For instance, in [12], the author gave a survey of the recent fixed point
results on b-metric spaces.

Definition 2 ([5]). Let X be a nonempty set, and let d : X x X — [0, 00) be a mapping such
that for all x,y € X and distinct points u,v € X, each distinct from x and y:
(r1) d(x,y) =O0ifand only if x = y;
(r2) d(x,y) =d(y,x);
(r3) d(x,y) <d(x,u)+d(u,v)+d(v,y) (rectangular inequality).
Then, (X, d) is called a rectangular metric space or generalized metric space.

For all definitions of notions in the frame of rectangular metric spaces, see [5].

Definition 3 ([7]). Let X be a nonempty set, s > 1 be a given real number and letd : X x X —»
[0, 00) be a mapping such that for all x,y € X and distinct points u,v € X, each distinct from x
and y:

(rb1) d(x,y) = Oifand only if x = y;
(rb2) d(x,y) = d(y, x);
(rb3) d(x,y) <sld(x,u)+d(u,v) +d(v,y)] (b-rectangular inequality).
Then, (X, d) is called a b-rectangular metric space or b-generalized metric space.

Several authors have defined different contractive mappings for b-rectangular metric
spaces and discussed the fixed point theory on them (for details, see [9,13,14] and the
references therein).

From the above definitions, we know that every metric space is a rectangular metric
space and a b-metric space. Additionally, every rectangular metric space or every b-metric
space is a b-rectangular metric space. However the converse is not necessarily true [15].
To illustrate this, we give the following example, which is a modification of the example
of [15].
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Example 1. Let A = {0,2},B= {1 :n € N} and X = AUB. Defined : X x X —» [0, +o0)
as follows:

fx=y

0,
d(x,y) = 1, ifxF#yand{x,y} C Aor{x,y} CB
V=Y 2 ifxeAyeB
x?, ifx € B,y € A.

Then, (X,d) is a complete b-rectangular metric space with coefficient s = 3, but which is
neither a b-metric space nor a rectangular metric space. Meanwhile, it is easy to see that [15]:

(i) The sequence {%}ne nconverges to both 0 and 2, and it is not a Cauchy sequence;

(i)  There is no r > 0 such that B,(0) N B,(2) = @. Hence, the corresponding topology is not
Hausdorff;

(iii) Bys3(3) = {0,2, 1}, however, there does not exist r > 0 such that B,(0) C By3(1);

(iv) limy—eo % =0, but lim;, 0 d(%, %) #d(0, %) Hence, d is not a continuous function.

2. Main Results
Theorem 2. Let (X, d) be a b-rectangular metric space with coefficient s > 1, and let T : X — X

be a mapping which satisfies the condition that there exists a real number k,0 < k < 1 such that for
each x there exists a positive integer 1(x) such that, for each y € X,

d(T'Wx, T'Oy) < kd(x,y). )
Then, T has a unique fixed point.

Proof. We first prove the theorem in case 0 < k < %

Let x( be an arbitrary point in X. Consider a sequence {x,} by x; = T/(¥)xg, ... ... ,
Xpi1 = TGy,

Step 1: If x,,; = x;,,41 for some ng € N, then xy, is a fixed point of T.

Since x,, = Tl<x”0)xn0, Xp, is a fixed point of o),

To prove that x,, is a fixed point of T, we firstly show that x,,, is the unique fixed
point of T (o) Indeed, if T!Gn9) gy = v for some v # Xp,, then

d(xp,,v) = d(Tl(x”O)xno, Tl(x”o)v) < kd(xp,,0),

which is a contradiction, since 0 < k < 1.

Then, Txp, = TT! (X”O)xno =T (""O)TXn0 ; that is, Txy, is also a fixed point of T (xng)

By the uniqueness of fixed point of T’ (1), we have Txp, = Xpn,, which shows that x;,
is a fixed point of T.

In what follows, we can suppose that x, # x,1; foralln € N.

Step 2: We show that x,, # x, for n # m.

Without loss of generality, suppose m > n.

If x, = xy, for n # m, then

d(Tl(xmfl)xm_l, Tl(xm) Tl(xmfl)xm_l)
d(Tl(xm—l)xmil’ Tl(xm—l) Tl(xm)xmil)

d(xm/ xm+1)

< kd(xpy—1, T x,,_q)

= kd(Tl(x"’*z)xm_z, Tl(xm)Tl(xmfZ)xm_z)
— kd(Tl(x'"*Z)xm,z, Tl(xm—Z)Tl(xm)xmiz)
< K2d(xp_o, T2, o)

S ......

< kK""d(xy, Tl("m)xn)

K™= d(xyy, Tl(xm)xm)
K™= (X, Xnt1),

which is a contradiction since 0 < k < 1.
Step 3: For x € X, r(x) = sup, d(T"x, x) is finite.
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Let x € X and let

z(x) = max{d(T*x,x) : k=1,2,--- ,1(x),1(x) +1,---,21(x)}.

If n is a positive integer, then there exists an integer t > 0 such that t/(x) < n < (t +
1)I(x). We can assume that T"x, T'(¥)x, T?(*) x, x are different from each other. Otherwise,
the conclusion is obvious.

d(T"x, x) s[d(T"x, T x) 4+ d(TH O x, T2 x) + d(T2 ™)y, x)]

slkd(T" 1™ x, x) + kd(x, T'®x) + d(T?®)x, x)]

skd(T" ') x, x) + skz(x) + sz(x)

S2k[d(T" 1)y, TI®) x) 4 d(T!®) x, T2 %) + d (T2 0 x, x)] + skz(x) + sz(x)
$2k2d (T2 x, x) + s2k2d (x, T x) + $2kd (T x, x) + skz(x) + sz(x)
$2k2d (T2 ) x, x) 4 s2k2z(x) + s2kz(x) + skz(x) + sz(x)
stitd(T" 10 x, x) + (sz(x) + s2kz(x) + 3k%z(x) 4 - - - )

(skz(x) + s?k?z(x) + s°k3z(x) + - - )

stktz(x) + 9 + ?4;;3

X

2(x) + £ + 5

IN

VAN VAN VAN VANN VANR VANR VAN VAN VA

Hence, r(x) = sup, d(T"x, x) is finite.
Step 4: limy, 0 d(xp, x,11) = 0.

d(xn/ xYl-‘r]) — d(Tl(x"*l)xn_l, Tl(xn)Tl(xnfl)xn_l)
d(Tl(x”—l)xn,l, Tl(xn—l)Tl(xn)xnil)
kd(xn_1, Tl(x")xn_1)

k”d(xo, Tl(x")xo)

k"r(xo)

INIAINIA

Then limy, 0 d(xy, X11) = 0.

Step 5: {x,} is a Cauchy sequence in X.

For the sequence {x; }, we consider d(x,, x,+p) in two cases. For the sake of conve-
nience, we denote r(xg) by 7.

If p is odd, say 2m + 1, then by step 2 and (rb3)

d(xn, Xpyome1) < sld(xn, Xpp1) +d(Xng1, Xng2) +d(Xnt2, Xnpoms1)]
< skro + sk"rg + $2[d (X2, Xng3) + A(Xng3, Xnta) + d(Xnpa, Xnomin)]
< e
< sk”ro 4 Sk”+11’0 + San+2rO + Szkn+3ro + S3k”+41’0 + s3kn+5r0 et smkn+2mr0
< sk™[1+sk? + sk 4 - Jrg + sk 4 sk 4 82k 4 - - - g
< 11_4;1152 SknTO
If p is even, say 2m, then by step 2 and (rb3)
d(xnr xn+2m) < S[d(xnr xn+1) + d(xn+1/ xn+2) + d(xn+2/ xn+2m)]
< sk'ro+ SknJrer + 57 [d(xny2, Xn13) +d(Xn13, Xnpa) +d(Xn1 4, Xny2m)]
< e
< skrg + sk lrg + s2k 21y + s2K 31y + s3k g + 3K
4+t Sm—lkn+2m—41,0 + Sm—lkn+2m—3;,0 + +Sm_1d(xn+2m72, xn+2m)
< sk'rg + sk lrg + s2K2rg + s2k 3o + 3K g + s3k
+ o+ smflkn+2m74r0 + Smflkn+2m73r0 + Smflkn+2m72d(x0’ Tn+2m71Tn+2m72x0)
< sk'[1+4sk? 4 s2k 4 - Jrg + sKMTU[1 4 sk? + %kt + - - - Jrg + s L2y
< 11:;]1; Sknl’o + SmflknJerfzro
< —11:;]]:2 sk™ro + (sk)2"kK" 21
< Ak ggnyg 4 k2.

1—sk?
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Then, it follows from the above argument that
nh_r}rgo d(xn, Xnyp) = Oforallp > 0.

Thus, {x,} is a Cauchy sequence in X.
Since X is complete, there exists a point # € X such that
lim x, = u.
n—o0
Step 6: u is a fixed point of T.
By (2.1), d(T!®Wu, T"Wx,) < d(u, x,), then lim,_yeo d(T"®u, T ") x,,) = 0.
On the other hand,

d(T’(”)xn,xn) — d(Tl(”)Tl(xn 1) 1, Tl(xn 1)x 71)
d(Tl(xn 1y Tl(xn 1)) 5 iet)

< kd( 'rl—l/T( ) Xn—1 )
S ......
< k”d(xo, Tl(u)X()).
That is, lim;—seo d(Tl( )xn,xn) =0.
By (rb3),d(Tl(“)u xnﬂ) s(d(T T!() )—i—d(Tl( )xn,xn) +d(xn, Xp11))-

Then, limy oo d(T"®u, x,,,1) = 0.

Therefore, by (rb3) we have

d(u, T y) < s(d(u, xn) +d(xn, xp1) +d(xp21, Tl(”)u)).

Passing the limit to the inequality, we have

d(u, T ) = 0.

This means that T!(")y = u; that is, u is a fixed point of !,

Now, d(u, Tu) = d(T'®u, TT®y) = d(T'®y, TN Tu) < kd(u, Tu), then d(u, Tu) =

0, that is u is a fixed point of T.

Step 7: u is the unique fixed point of T.
To prove that u is the unique fixed point of T, we show that u is the unique fixed point

of THw) firstly. Indeed, if Ty = v for some v # u, then

d(u,v) = d(T"®Wu, T"Wv) < kd(u,v), which is a contradiction since 0 < k < 1.
If w is another fixed point of T, then w = Tw = T2w=------ =T (”)w, thatis, wis a

fixed point of T'(*) too. By the uniqueness of fixed point of T!("), we have u = w.

O

Next, we prove that the theorem is still valid in case ¢ L<k<1
Since 1 < k < 1, there exists 79 € N such that k™ € ( h.
For each x € X, there exists a positive integer /(x) such that, foreachy € X,

d(T!0)x, T y) < kd(x, y).
Write x[1] = T!'Wx, x[2] = Iy [1] = TIEADH )y,
x[ng] = T!xl0=1Mx[ny — 1] = T!(xlno=1+1xlmo=2])+-+1(x) 5
Denote m(x) = I(x[ng —1]) + 1(x[ng —2]) +--- +1(x ),then
d(T")x, T"Ny) < kMd(x, y).

Since k' € (0, %), from the above proof, we know that T has a unique fixed point.

Remark 1. From the proof of Theorem 2, we can see that we do not require T to be continuous.
Using our proof method, we can know that the continuity condition of Theorem 1 can be removed,
as shown in [2].
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To illustrate the validity of our theorem, we give the following example, which is just
a modification of Example 1.

Example 2. Let A= {0,2},B={1:ne N},C={n:n>3andn € N}and X = AUB.
Define d : X x X — [0, +00) as follows:

0, ifx=y
1, ifx #yand {x,y} C Aor{x,y} CB
2 .
_ )y ifxe A,yeB
d(x,y) = X2, ifxeByeA
%, ifx=0yeCory=0,xeC
|

—yl|, otherwise.

Then (X, d) is a complete b-rectangular metric space with coefficient s = 3.

Let
Flx) = 0, ifxe AUBorx =3
|l x—1, ifxeC—{3}.

Ifx € AUB,putl(x) =1;if x = n € C, putl(x) = n. Then, for each x, there exists a
positive integer /(x) such that, for each y € X,

d(T!®y, TH¥y) < %d(x,y).

Therefore, all the hypotheses of Theorem 2 are satisfied; thus, T has a fixed point. In
this example x = 0 is the unique fixed point.

Note that since every rectangular metric space or every b-metric space is a b-rectangular
metric space, then we have the following results.

Corollary 1. Let (X, d) be a rectangular metric space. Let T : X — X be a mapping which satisfies
the condition that there exists a real number k,0 < k < 1 such that for each x there exists a positive
integer 1(x) such that, for each y € X,

d(T'0)x, TH¥y) < kd(x, y).
Then, T has a unique fixed point.

Corollary 2. Let (X,d) be a b-metric space with coefficient s > 1, and let T : X — X be a
mapping which satisfies the condition that there exists a real number k,0 < k < 1 such that for
each x there exists a positive integer (x) such that, for each y € X,

d(T'®x, T'O)y) < kd(x,v).
Then, T has a unique fixed point.

If, for each x € X, there exists a fixed positive integer I such that /(x) = I, then we
have the following results.

Corollary 3. Let (X, d) be a rectangular b-metric space with coefficient s > 1, and let T : X — X
be a mapping which satisfies the condition that there exists a real number k,0 < k < 1 and a fixed
positive integer | such that, for each x,y € X,

d(T'x, T'y) < kd(x,y).

Then, T has a unique fixed point.
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Corollary 4. Let (X,d) be a rectangular metric space with coefficient s > 1, and let T : X — X
be a mapping which satisfies the condition that there exists a real number k,0 < k < 1 and a fixed
positive integer I such that, for each x,y € X,

d(T'x, T'y) < kd(x,y).
Then, T has a unique fixed point.

Corollary 5. Let (X,d) be a b-metric space with coefficient s > 1, and let T : X — X be a
mapping which satisfies the condition that there exists a real number k,0 < k < 1 and a fixed
positive integer | such that, for each x,y € X,

d(T'x, Ty) < kd(x,y).
Then, T has a unique fixed point.

Corollary 6. Let (X,d) be a metric space and let T : X — X be a mapping which satisfies the
condition that there exists a real number k,0 < k < 1 such that, for each x,y € X,

d(T'x, Ty) < kd(x,y).
Then, T has a unique fixed point.
Specifically, if I = 1, then we have

Corollary 7. Let (X, d) be a rectangular b-metric space with coefficient s > 1, and let T : X — X
be a mapping which satisfies the condition that there exists a real number k,0 < k < 1 such that,
foreach x,y € X,

d(Tx, Ty) < kd(x,v).

Then, T has a unique fixed point.

Corollary 8. Let (X,d) be a rectangular metric space with coefficient s > 1, and let T : X — X
be a mapping which satisfies the condition that there exists a real number k,0 < k < 1 such that,
foreach x,y € X,

d(Tx, Ty) < kd(x,y).

Then, T has a unique fixed point.
Corollary 9. Let (X,d) be a b-metric space with coefficient s > 1, and let T : X — X be a
mapping which satisfies the condition that there exists a real number k,0 < k < 1 such that, for

each x,y € X,
d(Tx, Ty) < kd(x,v).

Then, T has a unique fixed point.

Corollary 10. Let (X, d) be a metric space and let T : X — X be a mapping which satisfies the
condition that there exists a real number k,0 < k < 1 such that, for each x,y € X,

d(Tx, Ty) < kd(x,y).
Then, T has a unique fixed point.

3. Conclusions

A Sehgal-Guseman-type fixed point theorem in b-rectangular metric spaces was
proven, which answered an open question raised by Mitrovi¢. The result presented in the
present paper generalized and unified some results in fixed point theory.
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