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Abstract: This study investigates the characteristics of free and submerged hydraulic jumps on the
triangular bed roughness in various T/I ratios (i.e., height and distance of roughness) using CFD
modeling techniques. The accuracy of numerical modeling outcomes was checked and compared
using artificial intelligence methods, namely Support Vector Machines (SVM), Gene Expression
Programming (GEP), and Random Forest (RF). The results of the FLOW-3D® model and experimental
data showed that the overall mean value of relative error is 4.1%, which confirms the numerical
model’s ability to predict the characteristics of the free and submerged jumps. The SVM model
with a minimum of Root Mean Square Error (RMSE) and a maximum of correlation coefficient (R2),
compared with GEP and RF models in the training and testing phases for predicting the sequent
depth ratio (y2/y1), submerged depth ratio (y3/y1), tailwater depth ratio (y4/y1), length ratio of
jumps (Lj/y∗2) and energy dissipation (∆E/E1), was recognized as the best model. Moreover, the best
result for predicting the length ratio of free jumps (Lj f /y∗2) in the optimal gamma is γ = 10 and the
length ratio of submerged jumps (Ljs/y∗2) is γ = 0.60. Based on sensitivity analysis, the Froude number
has the greatest effect on predicting the (y3/y1) compared with submergence factors (SF) and T/I. By
omitting this parameter, the prediction accuracy is significantly reduced. Finally, the relationships
with good correlation coefficients for the mentioned parameters in free and submerged jumps were
presented based on numerical results.

Keywords: artificial intelligence; energy dissipation; FLOW-3D; hydraulic jumps; bed roughness;
sensitivity analysis

1. Introduction

The hydraulic jump is a natural phenomenon in an open channel, sometimes regarded
as an effective method of energy dissipation near structures such as gates, chutes, and
spillways [1]. The hydraulic jump is specified by the expansion of large-scale turbulence,
surface waves and spray, energy dissipation, and air entrainment [2]. If the tailwater depth
equals the subcritical sequent depth, it is called a free hydraulic jump. Furthermore, if
the tailwater depth is greater than the subcritical sequent depth, the jump is submerged
(submerged hydraulic jump). A hydraulic jump has been widely studied, but only a few
investigations have regarded the effect of bed roughness on the characteristics of hydraulic
jumps. Enormous research studies dealing with the free and submerged hydraulic jumps
such as McCorquodale and Khalifa [3], Smith [4], Graber et al. [5], Vallé and Pasternack [6],
Dey and Sarkar [7], Tokyay et al. [8], and Samadi-Boroujeni et al. [9] were carried out. Ead
and Rajaratnam [10] experimentally studied hydraulic jumps on corrugated beds.
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The results showed that the length of jumps was about half of those on smooth beds.
Carollo et al. [11] investigated the hydraulic jump properties on a bed roughened by
gravel particles. The results indicate that the roughness reduces the sequent depth and the
length of the jump. Pagliara et al. [12] studied the hydraulic jump on homogeneous and
non-homogeneous rough beds. The results satisfactorily matched with the experimental
data and presented new equations to estimate the length of jump and sequent depth.
Abbaspour et al. [13] investigated the impact of a corrugated bed on hydraulic jumps. The
results stated that the jump length and tailwater depth on corrugated beds are smaller
than the smooth bed. Chanson [14] observed the flow resistance effects in decreasing the
sequence depth ratio for a given Froude number. The results indicated that the Bélanger
equation is not appropriate. In addition, the cross-sectional properties of irregular channels
have an important influence on the flow characteristics. Ahmed et al. [15] investigated the
effect of bed roughness on the submerged jump. Conclusions show that the length of a
jump and tailwater depth on a bed roughness are smaller than on a smooth bed. Palermo
and Pagliara [16] produced two general equations for evaluating relative energy dissipation
across various hydraulic and geometrical conditions. Pourabdollah et al. [17] studied free
and submerged jumps in different stilling basins. They showed that the sequent depth, the
submerged depth, and the length of the jump decreased compared to the classical jump.
Moreover, the average energy dissipation of the submerged jump on the bed roughness was
more than those of the classical jump. Habibzadeh et al. [18] investigated characteristics
of hydraulic jumps with and without blocks. The mean longitudinal velocity, turbulence
intensity, Turbulent Kinetic Energy (TKE), and shear stress and water surface fluctuations
were studied and compared for various flow regimes.

In addition to laboratory research, numerical works have been done on hydraulic
jumps. Gharangik and Chaudhry [19] solved the 1D Boussinesq equations to simulate a
hydraulic jump in a rectangular channel. The results showed that the equation terms have
little influence in determining the location of the hydraulic jump. Ma et al. [20] investigated
the turbulence characteristics of 2D submerged hydraulic jumps using the k–ε turbulence
model. The results are compared with available experimental data and are acceptable.
Mousavi et al. [21] investigated predictive modeling of the free hydraulic jumps pressure
through advanced statistical methods. It was verified that maximum and minimum
pressure fluctuation are located near the spillway toe and downstream of hydraulic jumps,
respectively. Abbaspour et al. [22] numerically studied hydraulic jump on a corrugated bed
using the standard k-ε and RNG turbulent models. Their results stated that the k-εmodel
was suitable for predicting the jump characteristics. Chern and Syamsuri [23] applied the
Smoothed Particle Hydrodynamics (SPH) model to evaluate characteristics of the hydraulic
jump in different corrugated beds and classified jump. Bayon et al. [24] investigated the
performance of Open-FOAM and FLOW-3D® software in the numerical investigation of
the hydraulic jump. Nikmehr and Aminpour [25] investigated the characteristics of a
hydraulic jump over bed roughness with trapezoidal blocks using the CFD model. The
results state that increasing the distance and the height of the roughness will decrease
the velocity near the bed and increase the shear stress. Ghaderi et al. [26] numerically
investigated the characteristics of the hydraulic jumps over various roughness shapes using
the FLOW-3D® model. The results were compared with previous studies. Relationships
with good correlation coefficients for the mentioned parameters in free and submerged
jumps were presented based on numerical results. Ghaderi et al. [27] studied the effects
of triangular microroughness on the characteristics of the submerged jump with the help
of the FLOW-3D® model. To validate the present model, comparisons between numerical
simulations and experimental results were performed for the smooth bed and triangular
microroughness [27].

Recent advancements in data-driven models, i.e., Gene Expression Programming
(GEP) and Artificial Neural Networks (ANN), and their application in hydraulics engi-
neering have challenged the conventional techniques of the analysis. Several researchers
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have shown that soft computing techniques are more feasible and accurate than conven-
tional techniques.

Karbasi and Azamathulla [28] studied free hydraulic jump characteristics in the
bed roughness using Support Vector Regression (SVR), GEP, and ANN methods. The
results showed the GEP model has better accuracy than other methods. Roushangar and
Ghasempour [29] studied hydraulic jump characteristics in sudden expanding channels
using GEP. The results showed the GEP model has better accuracy and was compared with
existing empirical equations. Roushangar and Ghasempour [30] predicted the hydraulic
jump energy dissipation using an SVM with channel geometry and roughness boundary
conditions. The sensitivity analysis results stated that the Froude number had the most
important impact on the modeling. Roushangar and Homayounfar [31] investigated
the characteristics of hydraulic jumps on horizontal and sloping beds using the SVM
method. Results verify that the upstream Froude number is the most critical and influential
parameter for predicting the sequent depth in free and submerged jumps. At the same
time, Naseri and Othman [32] predicted the length of jump on the smooth beds using ANN.
Nasrabadi et al. [33] studied submerged hydraulic jump characteristics using machine
learning methods. According to the evaluation, the Developed Group Method of Data
Handling (DGMDH) model is more accurate than the Group Method Data Handling
(GMDH) model and other previous research predicting the submergence depth and jump
length relative energy dissipation.

Many studies have been carried out on hydraulic jumps over smooth beds. Nev-
ertheless, few studies have investigated the effect of bed roughness and corresponding
characteristics of free and submerged jumps numerically and predicted the outcomes from
the numerical models using novel soft computing techniques. Hence, the main objectives
of this study are the investigation of the effects of bed roughness parameters considering
various roughness arrangements on characteristics of the free and submerged jumps, such
as sequent depth and submerged depth, the length of jumps, and energy dissipation in
triangular bed roughness through different hydraulic conditions with the CFD technique
(CFD is a numerical methodology commonly used in engineering [34]), and verification
of the prediction of this numerical model with the help of soft computing methods (SVM,
GEP, and RF).

2. Materials and Methods
2.1. Dimensional Analysis

The hydraulic jumps characteristics on bed roughness are dependent on fluid proper-
ties, bed dimensions, and hydraulic state of flow. Therefore, subcritical of the free jump
depth (y2) and submerged of the submerged jump depth (y3) will be a function of the
following parameters:

y2 = f1(y1, u1, g, µ, ρ, T, I) (1)

y3 = f2(y1, y2, y4, u1, g, µ, ρ, T, I) (2)

Using the dimensional analysis, the following relationships are obtained:

y2

y1
= f3(Fr1 =

u1√
gy1

, Re1 =
y1 u1

ν
,

T
y1

,
T
I
) (3)

y3

y1
= f4(Fr1 =

u1√
gy1

, Re1 =
y1 u1

ν
, SF =

y4 − y2

y2
,

T
y1

,
T
I
) (4)

where y1 and y4 are referred to as supercritical of the free jump depth and tailwater of the
submerged jump depth; u1 is inlet velocity; and g, ρ, µ, SF, and υ are the gravity acceleration,
mass density of water, water dynamic viscosity, submergence factors, and water kinematic
viscosity, respectively. T and I are height and distance of roughness, and Fr1 and Re1 are
Froude and Reynolds numbers, respectively. The values of the Reynolds number (Re1)
were in the range of 39,884–59,825. For large values of the Reynolds number, viscous effects
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can be neglected [35–37]. Based on the Ead and Rajaratnam [10] and Abbaspour et al. [22]
studies, T/y1 does not significantly affect the hydraulic jumps’ depth ratio y2/y1 and y3/y1.
Then, relationships (3) and (4) become:

y2

y1
= f5(Fr1,

T
I
) (5)

y3

y1
= f6(Fr1, SF =

y4 − y2

y2
,

T
I
) (6)

Using the Buckingham Π theorem, for the length of jump on the free and submerged
jumps (Ljf/y2 and Ljs/y2), the following relationships are obtained:

Lj f

y2
= f7(Fr1,

T
I
) (7)

Ljs

y2
= f8(Fr1, SF =

y4 − y2

y2
,

T
I
) (8)

Figure 1 shows a schematic view of free and submerged jumps on the triangular bed
roughness, along with critical hydraulic parameters of the present study. In this figure, d is
gate opening.
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Figure 1. Definition sketch of the free and submerged hydraulic jumps on a triangular bed roughness
after Ghaderi et al. [26].

2.2. The FLOW-3D® Model

Numerical simulations were carried out using FLOW-3D, a well-known and estab-
lished computational fluid dynamics software. This software uses the finite volume
method in a Cartesian, staggered grid to solve the RANS equations (Reynolds Average
Navier−Stokes) that describe continuity and momentum and are expressed as:

∂

∂x
(uAx) +

∂

∂y
(vAy) +

∂

∂z
(wAz) = 0 (9)

∂Ui
∂t

+
1

VF

(
uj Aj

∂ui
∂xj

)
= −1

ρ

∂P
∂xi

+ Gi + fi (10)

where u, v, and w represent the components of velocity in the x, y, and z-direction; VF is the
volume fraction of fluid in each cell; Ax, Ay, and Az are the fractional areas open to flow
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in the subscript’s direction; ρ is the fluid density; P is the hydrostatic pressure; Gi is the
gravitational acceleration in subscript direction; and fi is the Reynolds stress. In FLOW-3D,
free surfaces are modeled with the Volume of Fluid (VOF) technique and developed by
Hirt and Nichols [37]. The VOF transport equation is expressed by the following equation:

∂F
∂t

+
1

VF

[
∂(FAxu1)

∂x
+

∂(FAyu2)

∂y
+

∂(FAzu3)

∂z

]
= 0 (11)

Here, F denotes the fraction function. In particular, as already stated, if a cell is empty,
then F = 0, and if a cell is full, then F = 1 [38]. The free surface is determined at a position
related to intermediate amounts of F (i.e., the user may usually determine F = 0.5, or
another intermediate amount).

2.2.1. Turbulence Model

In this study, the RNG k-ε turbulence model is used to simulate the turbulence in the
water flow. The RNG k-εmodel improves the standard k-εmodel (Equations (12) and (13)),
reflecting small-scale effects by large-scale motion and modified viscosity terms, and can
handle the flow with a large degree of curvature well [39]. This model showed satisfactory
outcomes in previous studies on hydraulic engineering studies in complex geometry and
flow fields [26,27,40–46].

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj
(αkµe f f

∂k
∂xj

) + Gk + ρε (12)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj
(αεµe f f

∂ε

∂xj
) +

C∗1εε

k
Gk − C2ερ

ε2

k
(13)

Here, k is called turbulent kinetic energy (TKE); ε is the turbulence dissipation rate; Gk
is the generation of turbulent kinetic energy caused by the average velocity gradient; Gb is
the generation of turbulent kinetic energy caused by buoyancy. Sk and Sε are source terms.
αk, αε and µeff, C2ε, C∗1ε are model constants is effective viscosity.

2.2.2. Boundary Conditions

Corresponding to the physical conditions of the problem, four different boundary
conditions were considered. Hence, the inlet and the exit boundary of the first mesh block
needed to be set in the flow direction. The inlet boundary condition was set as discharge
flow rate (Q) with flow depth at the channel’s beginning. The boundary condition at
the downstream end of the domain was described by a pressure boundary condition (P)
corresponding to the tailwater depth in the flume. No-slip conditions were applied at the
wall boundaries and the bottom, and they were treated as non-penetrative boundaries.
Wall roughness has been neglected due to the slight roughness of the material of the
experimental facility, which was used for validation. An atmospheric boundary condition
is set to the upper boundary of the channel. This allows the flow to enter and leave the
domain as null von Neumann conditions are imposed to all variables except for pressure,
which is set to zero (i.e., atmospheric pressure). The symmetry (S) is used at the inner
boundaries as well. Figure 2 shows the computational domain of the present study and the
boundary conditions governing the simulation.
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2.2.3. Checking Stability and Convergence Criterion

To obtain the correct numerical or experimental model data values, it is necessary to
reach a stable state. A stability criterion similar to the Courant number is used to calculate
the allowed time-step size. The Courant Number tells how fast the fluid passes through
a cell. If the Courant Number is greater than 1, the velocity of the fluid is so high that it
passes through a cell in less than one time step. This leads to numerical instabilities: the
stability criteria leading to time steps between 0.001 s and 0.0016 s. The evolution in time
was used as a relaxation to the final steady state. During the simulations, the solutions’
steady-state convergence was checked by monitoring the flow discharge variations at the
inlet and outlet boundaries. Figure 3 shows that t = 16 s is appropriate to achieve a near
steady-state condition for Q = 0.03 m3/s and Q = 0.045 m3/s. The computational time for
the simulations was between 14–18 h using a personal computer with eight cores of a CPU
(Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).
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2.2.4. Numerical Domain

The research provided by Ahmed et al. [15] compares the numerical model and
laboratory test results. Although the length of the experimental flume was 24.5 m, the
present numerical study is set equal to 4.5 m to improve the performance in terms of
computational effort and reduction in the number of overall cells [26] (for more details, see
Ahmed et al. [15]). Table 1 shows the parameters of the numerical models.

Table 1. The parameters of the numerical models.

Bed Type Q
(m3/s)

I
(cm) T (cm) d (cm) y1

(cm)
y4

(cm) Fr1 SF

Smooth 0.03, 0.045 - - 5 1.62–3.83 9.64–32.10 1.7–9.3 0.26–0.50
Triangular
roughness 0.03, 0.045 4–8–12–16–20 4 5 1.62–3.84 6.82–30.08 1.7–9.3 0.21–0.44

The geometry of the models is built represented through an STL (stereolithography)
file. The numerical mesh is constructed to adopt two mesh blocks, a containing mesh block
for the entire spatial domain and a nested block with refined cells for the area of interest.
The hydraulic jump occurs (Figure 4). The best practice is to have fixed points aligning the
mesh boxes and for the aspect ratios to be no greater than 2.
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bed roughness.

2.2.5. Mesh Size Sensitivity Analysis

According to the sensitivity mesh results and by comparing y3/y1 and y2/y1 ratios at
Fr1 = 4.5 for a submerged and free hydraulic jump, numerical solutions for five different
mesh sizes at distances close to the computational grid were used. Table 2 provides a
summary list of the results for three different mesh sizes. Figure 5 shows that the simulated
y3/y1 and y2/y1 ratios exhibit better agreement with the measured y3/y1 and y2/y1 for the
finer cell size of 0.60 cm. In addition, the variation of mean relative errors can be neglected
by decreasing the cell size from 0.65 cm to 0.60 cm. As a result, the selected mesh consists
of a containing block with 1.3 cm cells and a nested block with 0.65 cm cells. In the present
research, the same mesh was utilized for all models to reduce the effect of computational
mesh on simulation results. A distance of the first cell from the walls was selected to
prevent computations in the viscous sub-layer.

Table 2. Mesh size sensitivity analysis for simulation.

Test No.
Coarser

Cells
Size (cm)

Finer
Cells

Size (cm)

Total
Cells (y3/y1)Num (y3/y1)Exp (y2/y1)Num (y2/y1)Exp

MAPE
1-y3/y1

(%)

MAPE-
y2/y1
(%)

T1 2.00 0.95 910,358 8.55 6.88 7.43 5.88 26.36 24.27
T2 1.70 0.85 1,285,482 7.85 6.88 6.91 5.88 17.51 14.09
T3 1.50 0.75 1,871,649 7.38 6.88 6.44 5.88 9.52 7.26
T4 1.30 0.65 2,908,596 7.17 6.88 6.20 5.88 5.44 4.21
T5 1.15 0.60 3,812,035 7.10 6.88 6.08 5.88 3.41 3.34

1 Mean Absolute Percentage Error = 100× 1
n

n
∑
1

∣∣∣ XExp−XNum
XExp

∣∣∣. XExp: the experimental value of X; XNum: the numerical value of X; and n: the

total amount of data.
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2.3. Artificial Intelligence Methods
2.3.1. Support Vector Machine (SVM)

SVM algorithm is a data mining algorithm that uses the regression method to solve
classification and prediction problems. Like artificial neural networks, problem-solving
steps are divided into two phases of training and testing (i.e., validation). First, the system
is trained by a part of data, then the problem’s solution is evaluated with test data. The
SVM is based on linear data classification and tries to select a line with a high margin
of confidence in the linear division of data. The training data closer to the separator
page is called the support vector. The maximum distance between the two categories is
known as the optimal separator page [47]. Based on the limited information of the samples,
the SVM algorithm seeks the best option among the models with different complexities
and the ability to train these models [48]. The SVM algorithm consists of four different
kernels, which are presented in Table 3. The most widely used kernel functions in support
vector machine problems are Gaussian (RBF) and ring kernel (ERBF) functions [49]. These
functions are used when information on the data type and their nature is not available
in problem-solving [50]. In the present study, the RBF function has been used to predict
the parameters.

Here, Xi and Xj are two vectors in directions i and j, and a, c, and d are Kernel
parameters. According to Figure 6, first, the input data is entered into the statistical
software. Based on dimensional analysis, the dependent and independent parameters are
defined in the software environment by selecting the function (RBF) and entering the main
feature of the SVM model of this function (i.e., γ by trial-and-error method). Selecting the
appropriate values of γmakes the results accurate and close to reality.
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Table 3. Types of kernel functions [50].

Function Expression

Linear Kernel K
(

xi, xj

)
=
(

xi, xj

)
Polynomial Kernel K

(
xi, xj

)
=
(
(xi, xj) + 1

)d

Radial Basis Kernel K
(

xi, xj

)
= exp

(
− ‖xi − xj‖2

2σ2

)
Sigmoid Kernel K

(
xi, xj

)
= tanh

(
−a(xi, xj) + c

)
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2.3.2. Gene Expression Programming (GEP)

The GEP method is a combined and developed Genetic Algorithm (GA) and Genetic
Programming (GP) developed by Ferreira [51]. This method combines linear and simple
chromosomes with constant length, similar to genetic algorithms, and branch structures
of different sizes and shapes, similar to decomposition trees in genetic programming.
The first step in the GEP is to form the initial population through solutions. Then, the
chromosomes are shown as a tree (ETs). The fitness function determines the degree of
compatibility of each member of the population of chromosomes. Next, the number of
genes and chromosomes must be determined to run the GEP model. One of the strengths
of the GEP is that the criterion for genetic diversity is very simple, so genetic operators
operate at chromosomal levels. Another strength of this method is the unique nature of
its multi-genes, which provides the basis for evaluating complex simulations [52]. The
GEP algorithm consists of five steps: determining the fitness function, selecting the set of
terminals and the set of functions to create the chromosomes, selecting the structure of the
chromosomes, selecting the link function, and selecting the genetic operators and their
rates [50,53]. In the present study, the GeneXproTools program was used to predict the
parameters. The main steps of the GEP method are shown schematically in Figure 7.
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2.3.3. Random Forest (RF)

RF algorithm is currently one of the learning algorithms. This is a cumulative learning
algorithm for regression-based problems and grouping based on decision tree develop-
ment [54]. An RF is a collection of unpruned trees in which each tree is generated by a
recursive segmentation algorithm [51]. In other words, an RF is a combination of several de-
cision trees in which several self-organizing samples of data participate. The self-organizing
method is the sampling method with placement. None of the selected data are deleted
from the input samples to generate the following subset. Therefore, some data may be used
more than once in educational branches. Others that have little effect on modeling should
never be used. For the selective self-organizing sample, a classification tree is grown using
the recursive segmentation algorithm. The analysis operation is based on a random sample
of the number of predictor variables in each node. The recursive decomposition algorithm
continues until the tree reaches its maximum size without pruning it [54]. The performance
of the RF algorithm is shown in Figure 8.
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2.4. Evaluation Criteria

In the present study, the evaluation criteria of correlation coefficient (R2), Root Mean
Square Error (RMSE), Normalized Root Mean Square of Error (NRMSE), and Mean Abso-
lute Percentage Error (MAPE) were used to compare the results of prediction models of
hydraulic parameters of hydraulic jumps (Equations (14)–(17)).

R2 =

 n∑ XNumXPre − (∑ XNum)(∑ XPre)√
n(∑ X2

Num)− (∑ XNum)
2
√

n(∑ X2
Pre)− (∑ XPre)

2

2

(14)

RMSE =

√√√√ 1
n

n

∑
1
(XNum − XPre)

2

(15)

NRMSE(%) = 100×

√
1
n

n
∑
1
(XNum − XPre)

2

n
∑
1

XNum

(16)

MAPE(%) = 100× 1
n

n

∑
1

∣∣∣∣XNum − XPre
XNum

∣∣∣∣ (17)

Here, the XPre and the XNum are the predicted and the numerical values. It should
be noted that the best model is the model in which RMSE is zero and R2 is one, and also
NRMSE and MAPE values are less than 10%.

3. Results

In the present study, the output results of the FLOW-3D® model were investigated
using SVM, GEP, and RF methods. For this purpose, a total of 620 output data of numerical
model were used to predict the parameters (y2/y1), (y3/y1), (y4/y1), (Lj/y∗2), and (∆E/E1)
with artificial intelligence methods. To achieve accurate prediction and better results, the
training process was repeated several times. Finally, a pattern of 25% data for testing and
75% data for training was used for all methods.

3.1. Validity of the FLOW-3D® Model Results

Although the CFD technique has been on the rise for more than half a century, com-
puters have only allowed us to solve more complex 3D geometries in the recent decade.
Because of that, it is very important to validate CFD results [55]. Hence, a comparison
between numerical and experimental results on basic parameters including submerged
ratio (y3/y1), tailwater ratio (y4/y1), and relative jump length (Ljs/y1) of a submerged
hydraulic jump and the sequent depth ratio (y2/y1) of a free hydraulic jump on a smooth
bed have been used to validate the numerical model and are plotted in Figure 9.

Moreover, the essential flow variables are summarized in Table 4.
From the graphs, a substantial agreement can be observed between numerical and

experimental results by Ahmed et al. [15] as a function of Fr1. The overall mean value
of relative error is 4.1%, which confirms the ability of the numerical model to predict the
specifications of free and submerged jumps. In general, the CFD model is in excellent
agreement with the experimental data [56].
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Table 4. Basic flow variables for the numerical and physical models after Ahmed et al. [15].

Models Bed Q (m3/s) d (cm) y1 (cm) u1 (m/s) Fr1

Numerical
and physical Smooth 0.045 5 1.62–3.83 1.04–3.70 1.7–9.3

3.2. Sequent Depth Ratio in the Free Jump (y2/y1)

The y2/y1, which somehow represents the height of the jump, is directly related to
the changes in the Fr1 and the distance of the roughness element. By increasing these
parameters, the value y2/y1 is increased. According to the results of the FLOW-3D® model,
the most significant decrease y2/y1 with increasing Froude number compared to the smooth
bed is at T/I = 0.50 with 17.83% as mean. The results showed that the y2/y1 for the jump
on the bed roughness was smaller than that of the corresponding jumps on a smooth
bed [26,27]. Table 5 summarizes the results of estimating the y2/y1. Comparing the results
of three models, the SVM model with the lowest RMSE = 0.2075 and the highest R2 = 0.9966
for the training phase and RMSE = 0.2990 and R2 = 0.9960 for the testing phase in predicting
the y2/y1 as a model the best was selected.

Figures 10 and 11 compare the results of the FLOW-3D® model and the SVM model to
estimate the y2/y1 in the training and testing phase. It can be seen that the SVM model
has a good performance in predicting this parameter, and the output results of the SVM
model are in good agreement with the FLOW-3D® values and were recognized as the best
model. It is also observed that during predicting y2/y1 in the testing phase, the SVM model
estimates higher values at maximum points than the FLOW-3D® model.
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Table 5. Prediction results for the sequent depth ratio (y2/y1).

Training Testing

Model R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.9953 0.2356 4.03 5.35 0.9933 0.3335 5.56 8.83
RF 0.9682 0.5924 10.97 11.91 0.9275 1.0811 14.73 11.26

SVM 0.9966 0.2075 3.5481 5.07 0.9960 0.2990 4.98 8.46
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In general, based on the numerical data of the present study, the equation provided
for the y2/y1 in the free jump with a correlation coefficient equal to 0.997 is expressed as:

y2

y1
= 1.338Fr1 − 2.458(

T
I
) + 0.0528 (18)

3.3. Submerged Depth Ratio in Submerged Jump (y3/y1)

Based on dimensional analysis, the submerged depth ratio (y3/y1) and the tailwater
ratio (y4/y1) depend on the Fr1, T/I, and SF. According to the results of the FLOW-3D®,
the most significant decrease y3/y1 and y4/y1 with increasing Froude number compared
to the smooth bed are at T/I = 0.50 with 20.88% and 23.34% as mean, respectively [26,27].
Comparing the results of the three models presented in Table 6 shows that among the three
models, for the y3/y1, the SVM model with values of RMSE = 0.3391 and R2 = 0.9964 for the
testing phase is close to the FLOW-3D® numerical model. The SVM model also performed
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better in predicting y4/y1 and had very little error. After the SVM model, the GEP model
also provided acceptable results in estimating (y3/y1) and (y4/y1).

Table 6. Prediction results for the submerged depth ratio (y3/y1) and the tailwater depth ratio (y4/y1).

Training Testing

y3/y1 R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.9903 0.4016 5.96 8.63 0.9895 0.5379 7.61 9.92
RF 0.9815 0.5679 8.43 11.97 0.9750 0.7804 11.04 23.03

SVM 0.9978 0.2024 3.01 2.67 0.9964 0.3391 4.80 4.93
y4/y1 R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.9972 0.2811 3.41 3.34 0.9963 0.3923 4.54 6.84
RF 0.9901 0.5157 6.26 9.68 0.9899 0.6462 7.48 10.04

SVM 0.9991 0.1639 1.99 1.63 0.9988 0.2806 3.25 5.08

Figures 12 and 13 present the results of comparing the FLOW-3D® model and predict-
ing the SVM, GEP, and RF models in the testing phase (y3/y1) and (y4/y1). According to
the graphs, it is clear that the SVM model has a better prediction than the other two models.
At the maximum and minimum points, the (y3/y1) and (y4/y1), always accompanied
by turbulence in the water surface, it can be seen that the SVM model has the highest
efficiency and the lowest error over other models. The predicted values of these parameters
by the SVM model have good adaptation. They overlap with the output values of the
numerical model.
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In general, based on the results drawn from this study, the following equation for the
y3/y1 and y4/y1 in the submerged jump with a correlation coefficient equal to 0.993 and
0.989, respectively, on the triangular bed roughness was obtained:

y3

y1
= 1.538Fr1 + 3.263SF− 3.219(

T
I
)− 0.915 (19)

y4

y1
= 1.909Fr1 + 3.015SF− 3.961(

T
I
)− 0.977 (20)

3.4. The Length Ratio of Jumps (Lj/y∗2)

In the present study, the subcritical depth of the classical hydraulic jump (y∗2) can be
obtained by the Bélanger equation, as explained by French [57]:

y∗2 =
y1

2

[√
(1 + 8Fr2

1)− 1
]

(21)

According to the results of the FLOW-3D® model, the (Lj/y∗2) for the bed roughness
is less than the smooth bed, and for the submerged jump it is larger than the free jump.
For T/I = 0.5, the ratio length of free and submerged jumps decreases by about 25.52%
and 21.65% as a mean, respectively [27]. Estimating the jump length reduces the volume
of construction operations and ultimately reduces the project’s overall cost. Therefore,
an accurate estimation of the hydraulic jump length is essential to design the length of
the stilling basin based on this parameter. The results of predicting (Lj/y∗2) along with
the evaluation criteria are presented in Table 7. According to the results, the SVM model
has good statistical criteria among other models and has high accuracy in predicting the
relative length of free and submerged hydraulic jumps.



Mathematics 2021, 9, 3135 17 of 24

Table 7. Prediction results for the length of the jumps (Lj/y∗2).

Training Testing

Lj f /y∗2 R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.829 0.234 4.39 3.66 0.766 0.249 4.54 4.54
RF 0.752 0.278 5.08 3.92 0.741 0.319 6.32 5.21

SVM 0.919 0.169 3.16 2.74 0.881 0.174 3.19 2.90
Ljs/y∗2 R2 RMSE NRMSE (%) MAPE% R2 RMSE NRMSE (%) MAPE (%)
GEP 0.878 0.273 3.88 3.17 0.867 0.336 4.71 4.33
RF 0.787 0.316 4.37 3.51 0.764 0.425 6.50 5.46

SVM 0.961 0.154 2.19 1.93 0.940 0.212 2.97 2.37

Graphs of changes in R2 and RMSE versus different gammas are presented for the best
model of the Lj f /y∗2 and the Ljs/y∗2 in the testing phase (Figure 14). In the support vector
machine, selecting the appropriate gamma is one of the main parameters in determining
the best model, which has been done by trial and error. Finally, the best result for predicting
the Lj f /y∗2 in the optimal gamma is 10 (γ = 10), and for Ljs/y∗2 in the optimal gamma it is
0.60 (γ = 0.60).
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Figures 15 and 16 show the results of the FLOW-3D® and the predicted models
of Lj f /y∗2 and the Ljs/y∗2 data for the best SVM model in the training and testing phases.
According to Figure 15, it can be seen that when the values of the Lj f /y∗2 reach the maximum
and minimum points, the prediction accuracy of the SVM model decreases. In other words,
when the Lj f /y∗2 reaches the maximum and minimum jump values, the prediction error of
the SVM model increases. Moreover, as shown in Figure 16 for the Ljs/y∗2 , it can be seen
that the SVM model always has values close to the FLOW-3D® model and has a better
performance compared to the Lj f /y∗2 . On the other hand, most SVM model errors in both
parameters occurred in the initial range of testing data. In the middle to the end of the data,
the prediction error decreased.

The following equation shows the relationship between the Lj/y∗2 with a correlation
coefficient equal to 0.724 and 0.944, respectively, for the free and submerged jumps:

Lj f

y∗2
= 0.065Fr1 − 3.757(

T
I
) + 6.103 (22)

Ljs

y∗2
= 0.037Fr1 + 5.568SF− 2.556(

T
I
) + 5.579 (23)
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3.5. The Energy Dissipation (∆E/E1)

The energy dissipation of hydraulic jumps based on free and submerged is calculated
as follows by Pourabdollah et al. [17]:

(
∆E
E1

)
f
= (

E1 − E2

E1
)

f
= (

(y1 + V2
1 /2g)− (y2 + V2

2 /2g)
y1 + V2

1 /2g
)

f
(24)

(
∆E
E1

)
s
= (

E3 − E4

E3
)

s
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(y3 + V2
1 /2g)− (y4 + V2

4 /2g)
y3 + V2

1 /2g
)

s
(25)

E1, E2, E3, and E4 are specific energies upstream and downstream of the free and
submerged jumps, respectively (see Figure 1). According to the results of the FLOW-3D®,
the ∆E/E1 increases with increasing the Fr1. The highest ∆E/E1 occurs with T/I = 0.50 in
the free and submerged jumps compared to other distances between the roughnesses of
the corresponding T/I ratios [26,27]. Determining the amount of ∆E/E1 that occurs due
to hydraulic jumps will lead to the stilling basin’s more efficient and economical design.
The results of predicting energy dissipation due to free jump (∆E/E1)f and submerged
jump (∆E/E1)S are presented in Table 8. The results showed that for energy dissipation
for (∆E/E1)f, the SVM model with R2 = 0.9848 and RMSE = 0.0313, and for the testing
phase (∆E/E1)S, R2 = 0.9843 and RMSE = 0.0238, these were recognized as the best models.
Therefore, the best prediction with the least possible error among the three models is
obtained by the SVM model.
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Table 8. Prediction results for the energy dissipation (∆E/E1).

Training Testing

(∆E/E1)f R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)
GEP 0.980 0.029 6.76 6.59 0.977 0.040 10.19 16.04
RF 0.855 0.069 16.5 25.61 0.801 0.072 16.32 21.22

SVM 0.985 0.027 6.37 6.58 0.984 0.031 7.80 9.04
(∆E/E1)S R2 RMSE NRMSE (%) MAPE (%) R2 RMSE NRMSE (%) MAPE (%)

GEP 0.980 0.025 7.22 8.85 0.969 0.033 10.07 11.63
RF 0.912 0.051 12.94 13.83 0.916 0.047 13.53 13.43

SVM 0.985 0.022 6.22 6.43 0.984 0.023 7.25 9.05

Two radar graphs of the R2 and RMSE of energy dissipation due to free and submerged
jumps are presented for the testing phase (Figure 17). Radar graphs can show the accuracy
of predictions of different models compared to each other. It can be seen that the SVM
model has provided acceptable performance and has a much better prediction than the
GEP and RF models. Furthermore, because RMSE values are small and their changes are
not visible in the graph, by multiplying the RMSE by 10, the range of changes became
broader and more precise.
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The distribution graph between numerical and predicted values is plotted for the best
energy dissipation model due to free and submerged jumps (Figures 18 and 19). Changes in
energy dissipation for jumps during the testing and training phase indicate good agreement
and overlap between the values of the numerical model and the predicted. According to
the figure, it can be seen that the data of the numerical model had less dispersion with
the predicted data. In other words, the output data are very well matched to each other.
Additionally, during the model simulation process, the network training did not fail, and
the training values were always higher than the testing.

The following equations show the relationship between the ∆E/E1 and Fr1 with a cor-
relation coefficient equal to 0.963 and 0.946, respectively, for the free and submerged jumps:

(
∆E
E1

)
f
= −0.009Fr2

1 + 0.184Fr1 − 0.177 (26)

(
∆E
E1

)
s
= −0.007Fr2

1 + 0.146Fr1 − 0.143 (27)
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3.6. Sensitivity Analysis

Sensitivity analysis is the best solution to achieve the effectiveness of the input vari-
ables of a statistical model in a study. Sensitivity analysis is used when sufficient inputs
are changed in an organized statistical model to observe the effects of the presence or
absence of these variables in the predictive output model. The present study omitted the
one-by-one parameters to predict the submerged depth ratio (y3/y1). The parameter that
had the most impact was identified, and its results are presented in Table 9.

Table 9. Sensitivity analysis results for the submerged depth ratio (y3/y1).

Training Testing

Input
parameter

Omitted
parameter R2 RMSE NRME

(%)
MAPE

(%) R2 RMSE NRMSE
(%)

MAPE
(%)

Fr1, SF, T/I - 0.999 0.163 1.99 1.63 0.998 0.280 3.25 5.08
SF, T/I Fr1 0.787 1.639 24.33 34.63 0.731 2.417 34.21 36.69
Fr1, T/I SF 0.986 0.479 7.12 10.83 0.984 0.664 9.41 15.9
Fr1, SF T/I 0.989 0.415 6.17 9.85 0.988 0.548 7.76 14.66

It can be seen that the best result for predicting the effective parameter of (y3/y1)
is when all three parameters of Fr1, T/I, and SF are involved in the prediction. The Fr1
has the greatest effect on predicting the (y3/y1) based on sensitivity analysis. By omitting
this parameter, the prediction accuracy is significantly reduced. The SF and T/I are also
involved in the study of (y3/y1), but the impact of each is less than the Fr1.
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4. Conclusions

This paper presented and discussed the characteristics of free and submerged hy-
draulic jumps on the triangular bed roughness in various roughness arrangements of the
corresponding T/I ratios with the CFD techniques and compared the prediction of this
numerical model with the help of artificial intelligence methods (SVM, GEP, and RF). To
simulate the free flow surface, the Volume of Fluid (VOF) method, and the turbulence,
the RNG k-ε model in FLOW-3D® software was used. Key findings of the comparative
analysis are given below:

1. By comparing the results of the two experiments (physical and numerical), the FLOW-
3D® software can accurately predict the characteristics of free and submerged hy-
draulic jumps. The overall mean value of relative error between numerical results and
experimental data is 4.1%, which confirms the numerical model’s ability to predict
the characteristics of the free and submerged jumps.

2. The SVM model with the RMSE = 0.2075 and R2 = 0.9966 for the training phase and
RMSE = 0.2990 and R2 = 0.9960 for the testing phase in predicting the y2/y1 is the best
model and close to the FLOW-3D® result.

3. For the y3/y1, the SVM model with values of RMSE = 0.3391 and R2 = 0.9964 for the
testing phase is close to the FLOW-3D® model. The SVM model also performed better
in predicting y4/y1 and had very little error. After the SVM model, the GEP model
also provided acceptable results in estimating (y3/y1) and (y4/y1).

4. The SVM model demonstrated better statistical criteria among other models (i.e., GEP
and RF) and has high accuracy in predicting the relative length of free and submerged
hydraulic jumps. Furthermore, the best result for predicting the Lj f /y∗2 in the optimal
gamma is 10 (γ = 10) and the Ljs/y∗2 in the optimal gamma is 0.60 (γ = 0.60).

5. For energy dissipation due to (∆E/E1)f and (∆E/E1)S, for the testing phase, SVM
model with R2 = 0.9848 and RMSE = 0.031 as well as R2 = 0.9843 and RMSE = 0.0238
were recognized as the best models, respectively.

6. The Fr1 has the greatest effect on predicting the (y3/y1) based on sensitivity analysis.
By omitting this parameter, the prediction accuracy is significantly reduced. The SF
and T/I are also involved in the (y3/y1), but the impact of each is less than the Fr1.

7. Relationships with good correlation coefficients for the mentioned parameters in free
and submerged hydraulic jumps were presented based on numerical results.

Finally, the methodology presented in this study and the solution-oriented result
contributes to helping hydraulic engineers to design and construct cost-effective spillways,
stilling basins, and other hydraulic structures that experience hydraulic jumps. Indeed,
the accurate estimation of the hydraulic jump length, especially in high head spillways,
reduces construction operations’ volume and ultimately reduces the project’s overall cost
of the stilling basin built to dissipate the hydraulic jumps.
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Notation
The following symbols are used in this paper:
Q Discharge (L3T−1)
d Gate opening (L)
E1, E2 Specific energy at the beginning and after the free jump (L)
E3, E4 Specific energy at the beginning and after the submerged jump (L)
∆E Energy dissipation (L)
y1 Inlet depth of the hydraulic jump (L)
y2 Sequent depth of the free jump (L)
y3 Submerged depth (L)
y4 Tailwater depth (L)
Ljf Length of the free jump (L)
Ljs Length of the submerged jump (L)
u1 Inlet horizontal velocity (LT−1)
g Gravitational acceleration (LT−2)
I Distance of triangular roughness (L)
T Roughness height (L)
Fr1 Inlet Froude number (-)
Re1 Inlet Reynolds number (-)
SF Submergence factor (-)
t Time (T)
p Pressure (ML−1T−2)
F Fraction function
ρ Mass density of water (ML−3)
ν Kinematic viscosity of water (LT−1)
µ Dynamic viscosity of fluid (ML−1T−1)
k Turbulence kinetic energy (L2T−3)
ε Turbulence dissipation rate (L2T−3)
µeff Effective viscosity (ML−1T−1)
Gk The generation of turbulent kinetic energy caused by the average velocity gradient
Gb The generation of turbulent kinetic energy caused by buoyancy
Sk, Sε Source terms
SVM Support Vector Machine
GEP Gene Expression Programming
RF Random Forest
R2 Correlation coefficient
RMSE Root Mean Square Error
NRMSE Normalized Root Mean Square of Error
MAPE Mean Absolute Percentage Error
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