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Abstract: The Jensen inequality has been reported as one of the most consequential inequalities that
has a lot of applications in diverse fields of science. For this reason, the Jensen inequality has become
one of the most discussed developmental inequalities in the current literature on mathematical
inequalities. The main intention of this article is to find some novel bounds for the Jensen difference
while using some classes of twice differentiable convex functions. We obtain the proposed bounds by
utilizing the power mean and Höilder inequalities, the notion of convexity and the prominent Jensen
inequality for concave function. We deduce several inequalities for power and quasi-arithmetic
means as a consequence of main results. Furthermore, we also establish different improvements for
Hölder inequality with the help of obtained results. Moreover, we present some applications of the
main results in information theory.

Keywords: convex function; Jensen’s inequality; means; Hölder inequality; information theory
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1. Introduction

The notion of convexity has played a very fundamental role in the last century with
a dynamic impact on the several areas of science including Engineering [1], Statistics [2],
Economics [3], Optimization [4] and Information Theory [5], etc. The most diligent and
dynamic area for the notion of convexity is the field of mathematics [6]. Moreover, the class
of convex functions has a vital history and has been an intense topic for the researchers dur-
ing the last century [7,8]. Due to its extensive importance and gravity, different extensions,
generalizations, expansions and variations of this class have been introduced in diverse
directions while utilizing some techniques and behavior of convex functions [9]. In the
classical approach, a real valued function Ψ : I → R will be convex on the interval I, if

Ψ(αx + (1− α)y) ≤ αΨ(x) + (1− α)Ψ(y) (1)

holds, for all x, y ∈ I and α ∈ [0, 1]. If the inequality (1) holds in the reverse direction, then
Ψ will be concave.

The class of convex functions has some interesting properties and due to such prop-
erties and its behavior dealing with problems a lot of inequalities have been established
for this class of functions. Some of the well-known inequalities for the class of convex
functions are majorization [10], Hermite–Hadamrd [6] and Favard [11] inequalities, etc.
Among these inequalities, one of the most dynamic and favorable inequalities is the Jensen
inequality [5]. Jensen’s inequality and convex functions have a very deep pertinency in
the view that they generalize the definition of the convex function. Furthermore, this
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inequality also generalized the renowned triangular inequality. In addition to this, Jensen’s
inequality is also of great importance in the sense that many classical inequalities can easily
be deduced from this inequality. In an elegant manner, Jensen’s inequality can be stated in
the following way:

Theorem 1. Assume that Ψ is a real valued convex function defined on interval I and xi ∈ I,

pi > 0 for i = 1, 2, · · ·, n with Pn :=
n
∑

i=1
pi. Then

Ψ
(

1
Pn

n

∑
i=1

pixi

)
≤ 1

Pn

n

∑
i=1

piΨ(xi). (2)

Inequality (2) will become true in the opposite sense, if the function Ψ is concave.

In the continuous case, Jensen’s inequality can be verbalized in the following fashion:

Theorem 2. Assume that Ψ is a real valued convex function defined on interval [a, b] and ρ, ϕ :
I → [a, b] are integrable functions such that ρ > 0, then

Ψ

(
1∫ b

a ρ(x)dx

∫ b

a
ρ(x)ϕ(x)dx

)
≤ 1∫ b

a ρ(x)dx

∫ b

a
ρ(x)Ψ

(
ϕ(x)

)
dx. (3)

For the concave function Ψ, the inequality (3) will hold in the opposite direction.

Jensen’s inequality has a variety of applications in almost all areas of science. Particu-
larly, Jensen’s inequality has recorded very good performance in mathematics, statistics and
information theory. Due to vast applications of Jensen’s inequality, many researchers have
worked on this inequality and several important and useful refinements, improvements
and generalizations of this inequality have been established in several directions. Ivelić
and Pečarić [12] substantiated a generalization for the converse of Jensen’s inequality by
exploiting a convex function defined on convex hulls and also gave generalizations of the
Hermite–Hadamard inequality as a consequence of main results. They also presented some
more results, which are actually the generalizations of some existing results. Zabandan
and Kilicman [13] utilized a convex function defined on rectangles and established an
extension of Jensen’s inequality under uniform circumstances and also obtained some
more important inequalities. Nakasuji and Takahasi [14] used a convex function from
topological abelian semi group to topological ordered abelian semigroup and obtained a
finite form of Jensen’s inequality. Moreover, they also gave an application of their main
result in the form a refinement of mean inequality. Dragomir et al. [15] presented a re-
finement of Jensen’s inequality and its generalization for linear functionals. They also
provided some applications of their work in information theory. In 2019, Bibi et al. [16]
utilized k-convex functions and obtained several inequalities of the Jensen type and its
converses for the diamond integrals. Khan et al. [17] proposed a new method of finding
estimates for the Jensen differences by choosing differentiable functions and discussed
some improvements of Hermite–Hadamard and Hölder inequalities. They also deliberated
inequalities for different means and granted applications of their main results in informa-
tion theory. In 2021, Deng et al. [5] proved some refinements of Jensen’s inequality with
the help of majorization results while using the notion of convexity. Furthermore, they
provided some refinements for classical inequalities and also presented applications of
main results. Bakula and Pečarić [18] used a convex function on rectangles and obtained
several inequalities of Jensen’s type which are basically the generalizations of some results
already subsistent in the literature. For some important literature concerns regarding
Jensen’s inequality, see [19–21].



Mathematics 2021, 9, 3132 3 of 29

2. Main Results

In the present section, we attempt to procure some vital bounds for the Jensen differ-
ence. For the obtaining of proposed bounds, we shall use the notion of convexity, Jensen’s
inequality for concave functions, Hölder and power mean inequalities. Now, we com-
mence this section with the following theorem, in which a bound for the Jensen difference
is obtained with the help of Hölder inequality and definition of convex function.

Theorem 3. Let Ψ : [a, b] → R be a twice differentiable function such that |Ψ′′ |q be convex for

q > 1. Additionally, suppose that xi ∈ [a, b], pi ∈ R, for each i = 1, 2, · · ·, n with Pn :=
n
∑

i=1
pi 6= 0

and x := 1
Pn

n
∑

i=1
pixi ∈ [a, b]. Then

∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(
(q + 1)

∣∣Ψ′′(x)
∣∣q + ∣∣Ψ′′(xi)

∣∣q
(q + 1)(q + 2)

) 1
q

. (4)

Proof. Without misfortune of sweeping statement, assume that x 6= xi for all i = 1, 2, · · ·, n.
By using integration by parts, we have

1
Pn

n

∑
i=1

pi(x− xi)
2
∫ 1

0
tΨ
′′
(tx + (1− t)xi)dt

=
1
Pn

n

∑
i=1

pi(x− xi)
2
(

t
x− xi

Ψ
′
(tx + (1− t)xi)

∣∣∣1
0

− 1
x− xi

∫ 1

0
Ψ
′
(tx + (1− t)xi)dt

)
=

1
Pn

n

∑
i=1

pi(x− xi)
2
(

Ψ
′
(x)

x− xi
− 1

(x− xi)2 Ψ(tx + (1− t)xi)
∣∣∣1
0

)

=
1
Pn

n

∑
i=1

pi(x− xi)
2
(

Ψ
′
(x)

x− xi
− 1

(x− xi)2

(
Ψ(x)−Ψ(xi)

))
=

1
Pn

n

∑
i=1

pi(x− xi)Ψ
′
(x)− 1

Pn

n

∑
i=1

pi

(
Ψ(x)−Ψ(xi)

)
=

1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x),

which implies that,

1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x) =
1
Pn

n

∑
i=1

pi(x− xi)
2
∫ 1

0
tΨ
′′
(tx + (1− t)xi)dt. (5)

Now, taking absolute of (5) and then applying triangular inequality, we get∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣ ≤ n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∫ 1

0

∣∣tΨ′′(tx + (1− t)xi)
∣∣dt. (6)

Inequality (6) can also be written as∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣ ≤ n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∫ 1

0
t
∣∣Ψ′′(tx + (1− t)xi)

∣∣dt. (7)
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Instantly, applying Hölder inequality on the right-hand side of (6), we obtain∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0

∣∣tΨ′′(tx + (1− t)xi)
∣∣qdt

) 1
q

=
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
tq∣∣Ψ′′(tx + (1− t)xi)

∣∣qdt
) 1

q

. (8)

Thus, the function |Ψ′′ |q is convex on [a, b]. Therefore, utilizing the definition of convex
function on the right side of (8), we obtain∣∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
tq
(

t
∣∣Ψ′′(x)

∣∣q + (1− t)
∣∣Ψ′′(xi)

∣∣q)dt
) 1

q

=
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
(∣∣Ψ′′(x)

∣∣q ∫ 1

0
tq+1dt +

∣∣Ψ′′(xi)
∣∣q ∫ 1

0
(tq − tq+1)dt

) 1
q

=
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
(∣∣Ψ′′(x)

∣∣q
q + 2

+

∣∣Ψ′′(xi)
∣∣q

(q + 1)(q + 2)

) 1
q

,

which is equivalent to (4).

In the succeeding theorem, another bound for the Jensen difference is acquired by
utilizing the definition of convex function and the famous Hölder inequality.

Theorem 4. Assume that all the hypotheses of Theorem 3 are true. Additionally, if p > 1 such
that 1

p + 1
q = 1, then∣∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∣∣Ψ′′(x)
∣∣q + ∣∣Ψ′′(xi)

∣∣q
2

) 1
q

. (9)

Proof. Applying Hölder inequality on the right-hand side of (6), we obtain∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
tp dt

) 1
p
( ∫ 1

0

∣∣Ψ′′(tx + (1− t)xi)
∣∣qdt

) 1
q

=
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
(

1
p + 1

) 1
p
( ∫ 1

0

∣∣Ψ′′(tx + (1− t)xi)
∣∣qdt

) 1
q

. (10)
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Since, the function |Ψ′′ |q is convex. Therefore, utilizing the definition of convex function
on the right hand side of (10), we obtain∣∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
(∣∣Ψ′′(x)

∣∣q ∫ 1

0
tdt +

∣∣Ψ′′(xi)
∣∣q ∫ 1

0
(1− t)dt

) 1
q

=

(
1

p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∣∣Ψ′′(x)
∣∣q

2
+

∣∣Ψ′′(xi)
∣∣q

2

) 1
q

, (11)

which is the required inequality.

The following bound for the Jensen difference is achieved by exploiting the Hölder
inequality the Jensen inequality for concave function.

Theorem 5. Let Ψ : [a, b] → R be a twice differentiable function such that |Ψ′′ |q be concave for

q > 1. Furthermore, assume that xi ∈ [a, b], pi ∈ R, for each i = 1, 2, · · ·, n with Pn :=
n
∑

i=1
pi 6= 0

and x := 1
Pn

n
∑

i=1
pixi ∈ [a, b]. Then

∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

=

(
1

q + 1

) 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

∣∣∣∣∣Ψ′′
(
(q + 1)x + xi

q + 2

)∣∣∣∣∣. (12)

Proof. Utilizing (8), we can write that:∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
tq∣∣Ψ′′(tx + (1− t)xi)

∣∣qdt
) 1

q

=
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∫ 1
0 tq

∣∣Ψ′′(tx + (1− t)xi)
∣∣qdt

(q + 1)
∫ 1

0 tqdt

) 1
q

. (13)

As, the function |Ψ′ |q is concave. Therefore applying the integral Jensen inequality on the
right side of (13), we obtain∣∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(
1

q + 1

∣∣∣∣∣Ψ′′
(

x
∫ 1

0 tq+1dt + xi
∫ 1

0 (t
q − tq+1)dt∫ 1

0 tqdt

)∣∣∣∣∣
q) 1

q

=

(
1

q + 1

) 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∣∣∣∣∣Ψ′′
( x

q+2 + xi
(q+1)(q+2)

1
q+1

)∣∣∣∣∣
q) 1

q

=

(
1

q + 1

) 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

∣∣∣∣∣Ψ′′
(
(q + 1)x + xi

q + 2

)∣∣∣∣∣,
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which is the inequality (12).

We receive a bound for the Jensen difference, which is given in the next theorem.

Theorem 6. Let all the conditions of Theorem 5 be satisfied. Moreover, if p > 1 such that
1
p + 1

q = 1, then∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∣∣∣∣Ψ′′( x + xi

2

)∣∣∣∣. (14)

Proof. Since the function |Ψ′′ |q is concave. Therefore, applying the integral Jensen inequal-
ity on the right-hand side of (10), we get∣∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
(∣∣∣∣Ψ′′( ∫ 1

0

(
tx + (1− t)xi

))
dt
∣∣∣∣q) 1

q

=

(
1

p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∣∣∣∣Ψ′′(x

∫ 1

0
t dt + xi

∫ 1

0
(1− t)dt

)∣∣∣∣
=

(
1

p + 1

) 1
p n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∣∣∣∣Ψ′′( x

2
+ xi(1−

1
2
)dt
)∣∣∣∣,

which is equivalent to (14).

In the next theorem, we secure a bound for the Jensen difference while utilizing the
power mean inequality and definition of convex function.

Theorem 7. Suppose that all the hypotheses of Theorem 3 are true, then∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣

≤
(

1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(
2
∣∣Ψ′′(x)

∣∣q + ∣∣Ψ′′(xi)
∣∣q

6

) 1
q

. (15)

Proof. Applying power mean inequality on the right hand side of (7), we obtain∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
t dt
)1− 1

q
( ∫ 1

0
t
∣∣Ψ′′(tx + (1− t)xi)

∣∣qdt
) 1

q

=

(
1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
t
∣∣Ψ′′(tx + (1− t)xi)

∣∣qdt
) 1

q

. (16)

Since, the function |Ψ′′ |q is convex. Therefore, utilizing the definition of convex function
on the right hand side of (16), we arrive at
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∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
t
∣∣Ψ′′(tx + (1− t)xi)

∣∣qdt
) 1

q

=

(
1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
( ∫ 1

0
t
(

t
∣∣Ψ′′(x)

∣∣q + (1− t)
∣∣Ψ′′(xi)

∣∣q)dt
) 1

q

=

(
1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
(∣∣Ψ′′(x)

∣∣q ∫ 1

0
t2dt +

∣∣Ψ′′(xi)
∣∣q ∫ 1

0
t(1− t)dt

) 1
q

=

(
1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∣∣Ψ′′(x)
∣∣q

3
+
∣∣Ψ′′(xi)

∣∣q(1
2
− 1

3

)) 1
q

. (17)

Now, simplifying (17), we obtain (15).

Another bound for the Jensen difference is acquired with the support of power mean
inequality and Jensen inequality for the concave function. This is formally stated in the
below theorem.

Theorem 8. Let all the assumptions of Theorem 5 be valid. Then∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣
≤ 1

2

n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

∣∣∣∣∣Ψ′′
(

2x + xi
3

)∣∣∣∣∣. (18)

Proof. From inequality (16), we can write that:∣∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
2

)1− 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∫ 1
0 t
∣∣Ψ′′(tx + (1− t)xi)

∣∣qdt

2
∫ 1

0 t dt

) 1
q

. (19)

Since, the function |Ψ′′ |q is concave. Therefore, applying the integral Jensen inequality on
the right-hand side of (19), we obtain∣∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ(x)
∣∣∣∣

≤
(

1
2

)1− 1
q
(

1
2

) 1
q n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

(∣∣∣∣∣Ψ′′
(∫ 1

0 t(tx + (1− t)xi)dt∫ 1
0 t dt

)∣∣∣∣∣
q) 1

q

=
1
2

n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2

∣∣∣∣∣Ψ′′
(

x
∫ 1

0 t2dt + xi
∫ 1

0 t(1− t)dt
1
2

)∣∣∣∣∣
=

1
2

n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∣∣∣∣Ψ′′

(
x
3 + xi

6
1
2

)∣∣∣∣
=

1
2

n

∑
i=1

∣∣∣ pi
Pn

∣∣∣(x− xi)
2
∣∣∣∣Ψ′′

(
2x + xi

3

)∣∣∣∣. (20)

Hence, (18) is proved.
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3. Applications for the Hölder Inequality

The Hölder inequality is one of the distinguished inequalities in the current literature
of mathematical inequalities due its vast applications in the fields of pure and applied
mathematics. Additionally, due to the structural importance of this inequality many
researchers dedicated their work to this fundamental inequality and obtained several
extensions, improvements and generalizations in various ways. This section of the paper is
devoted to the improvements of the Hölder inequality. The intended improvements shall
be obtained by keeping some particular functions in the main results.

We commence this section with the following proposition, in which an improvement
of reverse of Hölder inequality is acquired with the help of Theorem 3.

Proposition 1. Let m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) be two positive n-tuples and
q > 1. If α > 1 with α 6∈ (2, 2 + 1

q ) and β > 1 such that 1
α + 1

β = 1, then

( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

≤
[ (

α(α− 1)
)

(
(q + 1)(q + 2)

) 1
q

n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(
(q + 1)

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)q(α−2)

+
(

ζiγ
− β

α
i

)q(α−2)
) 1

q
] 1

α ( n

∑
i=1

γ
β
i

) 1
β . (21)

Proof. Let Ψ(x) = xα, x ∈ (0, ∞). Then Ψ
′′
(x) = α(α− 1)xα−2 and

(
|Ψ′′(x)|q

)′′
= q2(α(α−

1)
)q
(α − 2)

(
(α − 2) − 1

)
xq(α−2)−2. Clearly both Ψ

′′
and

(
|Ψ′′ |q

)′′
are non-negative on

(0, ∞). This substantiates the convexity of Ψ and |Ψ′′ |q. Hence, substitute Ψ(x) = xα,

|Ψ′′(x)|q =
(
α(α− 1)

)qxq(α−2), pi = γ
β
i and xi = ζiγ

− β
α

i in (4), we receive

( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1
−
( n

∑
i=1

γiζi

)α

≤ α(α− 1)(
(q + 1)(q + 2)

) 1
q

n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(
(q + 1)

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)q−2

+
(

ζiγ
− β

α
i

)q−2
) 1

q ( n

∑
i=1

γ
β
i

)α−1
. (22)
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Now, taking power 1
α of (22), we acquire

(( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1
−
( n

∑
i=1

γiζi

)α
) 1

α

≤
[

α(α− 1)(
(q + 1)(q + 2)

) 1
q

n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(
(q + 1)

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)q(α−2)

+
(

ζiγ
− β

α
i

)q(α−2)
) 1

q
] 1

α ( n

∑
i=1

γ
β
i

) 1
β . (23)

Since, the inequality
cl − dl ≤ (c− d)l (24)

holds for all c, d ∈ (0, ∞) and l ∈ (0, 1). Therefore, substituting c =
( n

∑
i=1

ζα
i

)
( n

∑
i=1

γ
β
i

)α−1
, d =

( n
∑

i=1
γiζi

) 1
α

and l = 1
α in (24), we obtain

( n

∑
i=1

ζα
i

)α( n

∑
i=1

γ
β
i

)β

−
n

∑
i=1

γiζi

≤
(( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1

−
( n

∑
i=1

γiζi

)α
) 1

α

. (25)

Now, comparing (23) and (25), we get (21).

We obtain another improvement of the Hölder inequality by taking the particular
convex function Ψ(x) = x

1
α , x > 0 in (4).

Corollary 1. Let m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) be two n-tuples such that ζi, γi ∈
(0, ∞) for each i = 1, 2, · · ·, n and q > 1. If α ∈ (0, 1) with 1

α 6∈ (2, 2 + 1
q ) and β = α

α−1 , then

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

≤
1
α (

1
α − 1)(

(q + 1)(q + 2)
) 1

q

n

∑
i=1

γ
β
i

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

− ζα
i γ
−β
i

)2

×
(
(q + 1)

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

)q( 1
α−2)

+

(
ζα

i γ
−β
i

)q( 1
α−2)

) 1
q

. (26)

Proof. Consider the function Ψ(x) = x
1
α , where x > 0. Then certainly the functions Ψ

and |Ψ′′ |q both are convex on (0, ∞). Therefore, applying (4) while choosing Ψ(x) = x
1
α ,

|Ψ′′(x)|q =
(

1
α (

1
α − 1)

)q
xq
(

1
α−2
)

, pi = γ
β
i and xi = ζα

i γ
−β
i , we get (26).

We utilized inequality (9) for a particular convex function and obtain an improvement
of the Hölder inequality, which is verbal in the below proposition.
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Proposition 2. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such
that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and p, q > 1 such that 1

p + 1
q = 1. If α, β ∈ (1, ∞)

such that α 6∈ (2, 2 + 1
q ) and 1

α + 1
β = 1, then

( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

≤
[(

1
p + 1

) 1
p (

α(α− 1)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(
( n

∑
i=1

γiζi

n
∑

i=1
γ

β
i

)q(α−2)

+
(

ζiγ
− β

α
i

)q(α−2)

2

) 1
q
] 1

α ( n

∑
i=1

γ
β
i

) 1
β . (27)

Proof. Since the functions Ψ(x) = xα and |Ψ′′(x)|q =
(

α(α− 1)
)q

xq(α−2) both are convex

on (0, ∞) for the mentioned value of α and q. Therefore, utilizing (9) for Ψ(x) = xα,

|Ψ′′(x)|q =
(
α(α − 1)

)qxq(α−2), pi = γ
β
i and xi = ζiγ

− β
α

i , and then taking power 1
α ,

we acquire

(( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

) 1
α

≤
[(

1
p + 1

) 1
p (

α(α− 1)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(
( n

∑
i=1

γiζi

n
∑

i=1
γ

β
i

)q(α−2)

+
(

ζiγ
− β

α
i

)q(α−2)

2

) 1
q
] 1

α ( n

∑
i=1

γ
β
i

) 1
β . (28)

Now, comparing (28) and (25), we deduce (27).

The following corollary is the consequence of Theorem 4, in which an improvement of
the Hölder inequality is achieved.
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Corollary 2. Assume that, m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such
that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and p, q > 1 such that 1

p + 1
q = 1. If α ∈ (0, 1) with

1
α 6∈

(
2, 2 + 1

q

)
and β = α

α−1 , then

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

≤
( 1

α
(

1
α
− 1)

) n

∑
i=1

γ
β
i

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

− ζα
i γ
−β
i

)2

×
(
( n

∑
i=1

ζα
i

n
∑

i=1
γ

β
i

)q( 1
α−2)

+

(
ζα

i γ
−β
i

)q( 1
α−2)

2

) 1
q

. (29)

Proof. The functions Ψ(x) = x
1
α and |Ψ′′(x)|q =

( 1
α (

1
α − 1)

)qxq
(

1
α (

1
α−1)

)
both are convex

on (0, ∞). Therefore, inequality (29) can easily be obtained from inequality (9) by just

putting Ψ(x) = x
1
α , |Ψ′′(x)|q =

( 1
α (

1
α − 1)

)qxq
(

1
α (

1
α−1)

)
, pi = γ

β
i and xi = ζα

i γ
−β
i .

We consider the concave function Ψ(x) = xα, α ∈
(

2, 2 + 1
q

)
, q > 1 in (12) and

receive an improvement of the Hölder inequality, which is given in the coming proposition.

Proposition 3. Assume that, m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples
such that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and q > 1. If α ∈ (2, 2 + 1

q ) and β ∈ (1, ∞) such

that 1
α + 1

β = 1, then

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

≤
[(

1
q + 1

) 1
q (

α(1− α)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
( (q + 1)

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)
+ ζiγ

− β
α

i

q + 2

)(α−2)] 1
α ( n

∑
i=1

γ
β
i

) 1
β . (30)

Proof. Let Ψ(x) = xα, x ∈ (0, ∞). Then Ψ
′′
(x) = α(α− 1)xα−2 and

(
|Ψ′′(x)|q

)′′
= q2(α(α−

1)
)q
(α− 2)

(
(α− 2)− 1

)
xq(α−2)−2. Clearly, Ψ

′′
(x) > 0 and

(
|Ψ′′ |q(x)

)′′
< 0 on (0, ∞) for

α ∈
(

2, 2 + 1
q

)
. This substantiates the convexity of Ψ and concavity of |Ψ′′ |q. Therefore, use

Ψ(x) = xα, |Ψ′′(x)| = α(α− 1)xα−2, pi = γ
β
i and xi = ζiγ

− β
α

i in (12), we receive
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( n

∑
i=1

γiζi

)α
−
( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1

≤
(

1
q + 1

) 1
q (

α(1− α)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
( (q + 1)

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)
+ ζiγ

− β
α

i

q + 2

)(α−2)( n

∑
i=1

γ
β
i

)α−1
. (31)

Now, taking power 1
α of (31), we acquire

(( n

∑
i=1

γiζi

)α
−
( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1
) 1

α

≤
[(

1
q + 1

) 1
q (

α(1− α)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
( (q + 1)

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)
+ ζiγ

− β
α

i

q + 2

)(α−2)] 1
α ( n

∑
i=1

γ
β
i

) 1
β . (32)

Since, the inequality
cl − dl ≤ (c− d)l (33)

holds for all c, d ∈ (0, ∞) and l ∈ (0, 1). Therefore, substituting c =
( n

∑
i=1

γiζi

)α
, d =( n

∑
i=1

ζα
i

)( n
∑

i=1
γ

β
i

)α−1
and l = 1

α in (33), we obtain

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

)α( n

∑
i=1

γ
β
i

)β

≤
(( n

∑
i=1

γiζi

)α

−
( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1
) 1

α

. (34)

Now, comparing (32) and (34), we obtain (30).

The following is another improvement for the Hölder inequality.
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Corollary 3. Let m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) be two n-tuples such that ζi, γi ∈
(0, ∞) for each i = 1, 2, · · ·, n and q > 1. If α ∈ (0, 1) such that 1

α ∈
(

2, 2 + 1
q

)
and β = α

α−1 .
Then ( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

≤
(

1
q + 1

) 1
q 1

α

(
1− 1

α

) n

∑
i=1

γ
β
i

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

− ζα
i γ
−β
i

)2

×
( (q + 1)

n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

+ ζα
i γ
−β
i

q + 2

)( 1
α−2)

. (35)

Proof. Consider the function Ψ(x) = x
1
α , where x > 0. Then certainly the function Ψ

is convex and the function |Ψ′′ |q is concave on (0, ∞) for 1
α ∈

(
2, 2 + 1

q

)
and q > 1.

Therefore, applying (12) while choosing Ψ(x) = x
1
α , |Ψ′′(x)| = 1

α (
1
α − 1)x

1
α−2, pi = γ

β
i and

xi = ζα
i γ
−β
i , we obtain (35).

Utilizing the inequality (14), we deduce an improvement of the Hölder inequality,
which is stated in the below proposition.

Proposition 4. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such
that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and p, q > 1 such that 1

p + 1
q = 1. If β ∈ (1, ∞) and

α ∈
(

2, 2 + 1
q

)
, such that 1

α + 1
β = 1, then

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

≤
[(

1
p + 1

) 1
p (

α(1− α)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(

n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

+ ζiγ
− β

α
i

2

)(α−2)] 1
α ( n

∑
i=1

γ
β
i

) 1
β . (36)
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Proof. Since the function Ψ(x) = xα is convex and the function |Ψ′′(x)|q is concave on
(0, ∞) for the given value of α and q. Therefore, utilizing (14) for Ψ(x) = xα, |Ψ′′(x)| =(

α(α− 1)
)

x(α−2), pi = γ
β
i and xi = ζiγ

− β
α

i and then taking power 1
α , we acquire

(
n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

) 1
α

≤
[(

1
p + 1

) 1
p (

α(1− α)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(

n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

+ ζiγ
− β

α
i

2

)(α−2)] 1
α ( n

∑
i=1

γ
β
i

) 1
β . (37)

To deduce inequality (36), compare (37) and (34).

As a consequence of Theorem 6, we obtain the following improvement of the Hölder
inequality.

Corollary 4. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such
that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and , p, q > 1 such that 1

p + 1
q = 1. If α ∈ (0, 1) such

that 1
α ∈

(
2, 2 + 1

q

)
and β = α

α−1 satisfy 1
α + 1

β = 1, then

( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

≤
(

1
p + 1

) 1
p ( 1

α

(
1− 1

α

)) n

∑
i=1

γ
β
i

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(

n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

+ ζiγ
− β

α
i

2

)( 1
α−2
)

. (38)

Proof. The function Ψ(x) = x
1
α is convex and the function |Ψ′′(x)|q is concave on (0, ∞)

for the given value of α and q. Therefore, utilizing (14) for Ψ(x) = x
1
α , |Ψ′′(x)| = 1

α

(
1
α −

1
)

x
1
α−2, pi = γ

β
i and xi = ζα

i γ
−β
i , we acquire (38).

In the following proposition, we acquire a relation with the help of Theorem 7 which
gives an improvement of the Hölder inequality.
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Proposition 5. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such

that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and q > 1. If α, β ∈ (1, ∞) and α 6∈
(

2, 2 + 1
q

)
, such

that 1
α + 1

β = 1, then

( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

≤
[(

1
2

) 1
p (

α(α− 1)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(2

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)q(α−2)

+
(

ζiγ
− β

α
i

)q(α−2)

6

) 1
q
] 1

α ( n

∑
i=1

γ
β
i

) 1
β . (39)

Proof. Let us take the function Ψ(x) = xα, where x > 0. Then, clearly, both the functions
Ψ(x) and |Ψ′′(x)|q are convex for the specified values of α and q. Therefore, utilizing (15)

by choosing Ψ(x) = xα, |Ψ′′(x)|q =
(
α(α− 1)

)q xq(α−2), pi = γ
β
i and xi = ζiγ

− β
α

i and then
taking power 1

α , we get

(( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1
−
( n

∑
i=1

γiζi

)α
) 1

α

≤
[(

1
2

) 1
p (

α(α− 1)
) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(2

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

)q(α−2)

+
(

ζiγ
− β

α
i

)q(α−2)

6

) 1
q
] 1

α ( n

∑
i=1

γ
β
i

) 1
β . (40)

Instantly, comparing (40) and (25), we obtain (39).

The next corollary provides an improvement of the Hölder inequality, which has been
deduced from Theorem 7.
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Corollary 5. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such

that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and q > 1. If α ∈ (0, 1) with 1
α 6∈

(
2, 2 + 1

q

)
and

β = α
α−1 , then

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

≤
(

1
2

) 1
p ( 1

α
(

1
α
− 1)

) n

∑
i=1

γ
β
i

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

− ζα
i γ
−β
i

)2

×
(2

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

)q( 1
α−2)

+

(
ζα

i γ
−β
i

)q( 1
α−2)

6

) 1
q

. (41)

Proof. Inequality (41) can easily be acquired by putting Ψ(x) = x
1
α , |Ψ′′(x)|q =

( 1
α (

1
α −

1)
)qxq

(
1
α−2
)

, pi = γ
β
i and xi = ζα

i γ
−β
i in (15).

We use Theorem 8 and achieve the following improvement on the Hölder inequality.

Proposition 6. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such

that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and q > 1. Also, let α ∈
(

2, 2 + 1
q

)
and β ∈ (1, ∞)

such that 1
α + 1

β = 1. Then

n

∑
i=1

γiζi −
( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β

≤
[

1
2

(
α(1− α)

) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(2

n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

+ ζiγ
− β

α
i

3

)(α−2)] 1
α ( n

∑
i=1

γ
β
i

) 1
β . (42)

Proof. Let take the function Ψ(x) = xα, where x > 0. Then, clearly, Ψ
′′
> 0 and

(
|Ψ′′ |q

)′′
<

0 on (0, ∞) for the specified values of α and q. This confirms the convexity of Ψ and
concavity of |Ψ′′ |q. Therefore, utilizing (18) by choosing Ψ(x) = xα, |Ψ′′(x)| = α(α −

1) xα−2, pi = γ
β
i and xi = ζiγ

− β
α

i and then taking power 1
α , we get
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(( n

∑
i=1

γiζi

)α

−
( n

∑
i=1

ζα
i

)( n

∑
i=1

γ
β
i

)α−1
) 1

α

≤
[

1
2

(
α(1− α)

) n

∑
i=1

γ
β
i

( n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

− ζiγ
− β

α
i

)2

×
(2

n
∑

i=1
γiζi

n
∑

i=1
γ

β
i

+ ζiγ
− β

α
i

3

)α−2] 1
α ( n

∑
i=1

γ
β
i

) 1
β . (43)

Instantly, comparing (43) and (34), we obtain (42).

Another improvement of the Hölder inequality is given in the next corollary.

Corollary 6. Assume that m1 = (ζ1, ζ2, · · ·, ζn), m2 = (γ1, γ2, · · ·, γn) are two n-tuples such

that ζi, γi ∈ (0, ∞) for each i = 1, 2, · · ·, n and q > 1. If α ∈ (0, 1) such that 1
α ∈

(
2, 2 + 1

q

)
and

β = α
α−1 , then

( n

∑
i=1

ζα
i

) 1
α
( n

∑
i=1

γ
β
i

) 1
β −

n

∑
i=1

γiζi

≤ 1
2

( 1
α

(
1− 1

α

)) n

∑
i=1

γ
β
i

( n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

− ζα
i γ
−β
i

)2

×
(2

n
∑

i=1
ζα

i

n
∑

i=1
γ

β
i

+ ζα
i γ
−β
i

3

)( 1
α−2
)

. (44)

Proof. Inequality (44) can easily be acquired by putting Ψ(x) = x
1
α , |Ψ′′(x)| = 1

α (
1
α −

1)x
1
α−2, pi = γ

β
i and xi = ζα

i γ
−β
i in (18).

4. Applications for Means

The significance of means has been fully accepted since 1930 and a number of re-
searchers then gave full attention to the properties and applications of means [22,23].
A variety of article devoted to means in which they are studied very deeply in all directions.
Recently, many mathematical inequalities have been published for different means and
then these inequalities are generalized, extended and improved in several direction while
utilizing some approaches and techniques [24,25]. This section of the paper is devoted to
power and quasi-arithmetic means. Here, we will establish a number inequalities for the
mentioned means with the help of our main results. The proposed inequalities will be
acquired by putting some particular functions in the main results.

Now, we commence this section with the definition of power mean.
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Definition 1. Let x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) be two n-tuples with Pn :=
n
∑

i=1
pi. Then the power mean of order r ∈ R is defined by

Mr(p; x) =


(

1
Pn

n
∑

i=1
pixr

i

) 1
r

, r 6= 0,(
n
∏
i=1

xpi
i

) 1
Pn

, r = 0.

Instantly, we give some inequalities for the power mean with the support of Theorem 3.

Proposition 7. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are two n-tuples such

that xi, pi > 0 for all i ∈ {1, 2, · · ·, n} with Pn :=
n
∑

i=1
pi. Additionally, suppose that q > 1 and

r, t are non-zero real numbers such that t < r, then the following statements are true:
(i) If both r and t are positive, then

Mt
r(p; x)−Mt

t(p; x) ≤ t(r− t)
r2Pn

n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(
(q + 1)Mq(t−2r)

r (p; x) + xq(t−2r)
i

(q + 1)(q + 2)

) 1
q

. (45)

(ii) If both r and t are negative with t
r 6∈

(
2, 2 + 1

q

)
, then

Mt
t(p; x)−Mt

r(p; x) ≤ t(t− r)
r2Pn

n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(
(q + 1)Mq(t−2r)

r (p; x) + xq(t−2r)
i

(q + 1)(q + 2)

) 1
q

. (46)

(iii) If r is positive and t is negative, then (46) holds.

Proof. First, we prove (i). For this, consider Ψ(x) = x
t
r , (x > 0), then Ψ

′′
(x) = t

r

(
t
r −

1
)

x
t
r−2 and

(
|Ψ′′(x)|q

)′′
=
(
| tr |
(
| tr − 1|

))q
q
( t

r − 2
)(

q
( t

r − 2
)
− 1
)

xq
(

t
r−2
)
−2. Clearly for

the mentioned values of r, t and q, Ψ
′′
(x) ≤ 0 and

(
|Ψ′′(x)|q

)′′
≥ 0, for all x > 0. This

explains that Ψ(x) is a concave function and |Ψ′′(x)|q is a convex function. Therefore,
utilizing (4) for Ψ(x) = x

t
r and xi = xr

i , we get (45).
Now, we prove the case (ii). For the specified values of r, t and q both the functions

Ψ(x) and |Ψ′′(x)|q are convex for all x > 0. Therefore, by copying the procedure of (i), one
can obtain easily the inequality (46).

Instantly, we prove the last case. For the stated conditions on r, t and q both Ψ(x) and
|Ψ′′(x)|q are convex functions. Therefore, inequality (46) can easily be achieved by just
adopting the procedure of case (ii).

As a consequence of Theorem 4, we establish some new inequalities for the difference
of two power means, which are disposed in the following proposition.

Proposition 8. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are two positive n-

tuples with Pn :=
n
∑

i=1
pi. Also, let p, q > 1 such that 1

p + 1
q = 1 and r, t be non-zero real numbers
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with t < r. Then the following statements are true:
(i) If both r and t are positive, then

Mt
r(p; x)−Mt

t(p; x). ≤ t(r− t)
r2Pn

(
1

p + 1

) 1
p n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(

Mq(t−2r)
r (p; x) + xq(t−2r)

i
2

) 1
q

. (47)

(ii) If both r and t are negative with t
r 6∈

(
2, 2 + 1

q

)
, then

Mt
t(p; x)−Mt

r(p; x) ≤ t(t− r)
r2Pn

(
1

p + 1

) 1
p n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(

Mq(t−2r)
r (p; x) + xq(t−2r)

i
2

) 1
q

. (48)

(iii) If r is positive and t is negative, then (48) holds.

Proof. (i) Let Ψ(x) = x
t
r , x > 0. Then for the given value of r, t and q, Ψ

′′ ≤ 0 and(
|Ψ′′(x)|q

)′′
≥ 0. This confirm that the function Ψ(x) is concave and the function |Ψ′′(x)|q

is convex . Therefore, utilizing (9) for Ψ(x) = x
t
r and xi = xr

i , we obtain (47).
(ii) Recently, we have proven the second case. Both the functions Ψ(x) and |Ψ′′(x)|q

are convex for the mentioned values of r, t and q. Therefore, following the procedure of (i),
we obtain (48).

(iii) Now, we proceed for the third case. The functions Ψ(x) and |Ψ′′(x)|q are convex
with the specified conditions. Therefore, adopting the method of (ii), we acquire (48).

The following is the consequence of Theorem 5, in which we obtain an inequality for
power means.

Proposition 9. Let x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) be two n-tuples such that

xi, pi > 0 for all i ∈ {1, 2, · · ·, n} with Pn :=
n
∑

i=1
pi. Also, let r and t be negative real numbers

such that t < r. If q > 1 and t
r ∈

(
2, 2 + 1

q

)
, then

Mt
t(p; x)−Mt

r(p; x) ≤
(

1
q + 1

) 1
q t(t− r)

r2Pn

n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(
(q + 1)Mr

r(p; x) + xr
i

(q + 2)

) t
r−2

. (49)

Proof. Consider the function Ψ(x) = x
t
r defined on (0, ∞), then certainly Ψ(x) is convex

and |Ψ′′(x)|q is concave on (0, ∞) for given values of r, t and q. Therefore, using (12) for
Ψ(x) = x

t
r and xi = xr

i , we get (49).

The following proposition is the consequence of Theorem 6 in which we obtain a
relation for the power means.
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Proposition 10. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are two n-tuples

such that xi, pi > 0 for all i ∈ {1, 2, · · ·, n} with Pn :=
n
∑

i=1
pi. Additionally, let p, q > 1 such that

1
p + 1

q = 1 and r, t be negative real numbers with t < r. If t
r ∈

(
2, 2 + 1

q

)
, then

Mt
t(p; x)−Mt

r(p; x) ≤
(

1
p + 1

) 1
p t(t− r)

r2Pn

n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(

Mr
r(p; x) + xr

i
2

) t
r−2

. (50)

Proof. Let Ψ(x) = x
t
r , x > 0. Then obviously Ψ

′′
(x) ≥ 0 and

(
|Ψ′′(x)|q

)′′
≤ 0 on (0, ∞)

for the given values of r, t and q. This explains that the function Ψ is convex and function
|Ψ′′(x)|q is concave. Therefore, utilizing (14) for Ψ(x) = x

t
r and xi = xr

i , we obtain
(50).

In the below proposition, some relations for the power means is achieved by utilizing
Theorem 7.

Proposition 11. Suppose that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are positive n-tuples

with Pn :=
n
∑

i=1
pi. Additionally, assume that q > 1 and r, t are non-zero real numbers such that

t < r. Then the following statements are valid:
(i) If both r and t are positive, then

Mt
r(p; x)−Mt

t(p; x) ≤ t(r− t)
r2Pn

(
1
2

)1− 1
q n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(

2Mq(t−2r)
r (p; x) + xq(t−2r)

i
3

) 1
q

. (51)

(ii) If both r and t are negative with t
r 6=

(
2, 2 + 1

q

)
, then

Mt
t(p; x)−Mt

r(p; x) ≤ t(t− r)
r2Pn

(
1
2

)1− 1
q n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(

2Mq(t−2r)
r (p; x) + xq(t−2r)

i
3

) 1
q

. (52)

(iii) If r is positive and t is negative, then (52) holds.

Proof. (i) The function Ψ(x) = x
t
r is concave and the function |Ψ′′(x)|q =

(
| tr |
(
| tr −

1|
))q

xq
(

t
r−2
)

is convex on (0, ∞) for the given values of r, t and q. Therefore, applying

inequality (15) by choosing Ψ(x) = x
t
r and xi = xr

i , we obtain (51).
(ii) For the mentioned values of r, t and q both the functions Ψ(x) = x

t
r and |Ψ′′(x)|q =(

| tr |
(
| tr − 1|

))q
xq
(

t
r−2
)

are convex. Therefore, inequality (52) can easily be deduced

from (15) by picking Ψ(x) = x
t
r and xi = xr

i .
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(iii) For the given values of r, t and q both the functions Ψ(x) = x
t
r and |Ψ′′(x)|q =(

| tr |
(
| tr − 1|

))q
xq
(

t
r−2
)

are convex. Therefore, following case (ii), we acquire the required
inequality.

The following is the consequence of Theorem 8 for power means.

Proposition 12. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are two n-tuples

such that xi, pi > 0 for all i ∈ {1, 2, · · ·, n} with Pn =
n
∑

i=1
pi. Additionally, let r and t are negative

real numbers such that t < r. If q > 1 and t
r ∈

(
2, 2 + 1

q

)
, then

Mt
t(p; x)−Mt

r(p; x) ≤ t(t− r)
2r2Pn

n

∑
i=1

pi

(
Mr

r(p; x)− xr
i

)2

×
(

2Mr
r(p; x) + xr

i
3

) t
r−2

. (53)

Proof. Consider the function Ψ(x) = x
t
r defined on (0, ∞), then certainly Ψ is convex

and |Ψ′′(x)|q is concave on (0, ∞) for given values of r, t and q. Therefore, using (18) for
Ψ(x) = x

t
r and xi = xr

i , we get (53).

In the rest of this section, we shall discuss some interesting consequences of our main
results for quasi–arithmetic mean. These consequences shall provide different estimates
for quasi-arithmetic mean.

Definition 2. Let x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) be two positive n-tuples with

Pn :=
n
∑

i=1
pi. If the function φ is both continuous and strictly monotonic, then quasi-arithmetic

mean is defined by:

Mφ(p, x) = φ−1
(

1
Pn

n

∑
i=1

piφ(xi)

)
.

Now, let us initiate with the following result in which a relation for the quasi mean is
secured while utilizing Theorem 3.

Corollary 7. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are positive n-tuples

with Pn :=
n
∑

i=1
pi and φ is a strictly monotonic continuous function. Additionally, suppose that

q > 1 and Ψ ◦ φ−1 is a twice differentiable function such that |(Ψ ◦ φ)
′′ |q is convex, then

∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(Mφ(p, x))
∣∣∣ ≤ 1

Pn

n

∑
i=1

pi

(
φ(Mφ(p, x))− φ(xi)

)2

×
(
(q + 1)|(Ψ ◦ φ−1)

′′
(φ(Mφ(p, x)))|q + |(Ψ ◦ φ−1)

′′
(φ(xi))|q

(q + 1)(q + 2)

) 1
q

. (54)

Proof. Inequality (54) can easily be deduced by taking Ψ = Ψ ◦ φ−1 and xi = φ(xi)
in (4).

A relation for the quasi mean is achieved with the support of Theorem 4, which is
given in the following corollary.
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Corollary 8. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are positive n-tuples

with Pn :=
n
∑

i=1
pi and φ is a strictly monotonic continuous function. Additionally, let Ψ ◦ φ−1 be a

function such that its double derivative exists. If q, p > 1 such that 1
p + 1

q = 1 and the function

|(Ψ ◦ φ)
′′ |q is convex, then

∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ(Mφ(p, x))
∣∣∣

≤
(

1
p + 1

) 1
p 1

Pn

n

∑
i=1

pi

(
φ(Mφ(p, x))− φ(xi)

)2

×
(
|(Ψ ◦ φ−1)

′′
(φ(Mφ(p, x)))|q + |(Ψ ◦ φ−1)

′′
(φ(xi))|q

2

) 1
q

. (55)

Proof. To acquire (55), just put Ψ = Ψ ◦ φ−1 and xi = φ(xi) in (9).

As a consequence of Theorem 5, we give the following relation for quasi mean.

Corollary 9. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are positive n-tuples

with Pn :=
n
∑

i=1
pi and φ is a strictly monotonic continuous function. Additionally, let Ψ ◦ φ−1 be a

twice differentiable function such that |(Ψ ◦ φ)
′′ |q is concave for q > 1. Then∣∣∣ 1

Pn

n

∑
i=1

piΨ(xi)−Ψ
(

Mφ(p, x)
)∣∣∣

≤
(

1
q + 1

) 1
q 1

Pn

n

∑
i=1

pi

(
φ
(

Mφ(p, x)
)
− φ(xi)

)2

×
∣∣∣∣∣(Ψ ◦ φ−1)

′′
(
(q + 1)φ

(
Mφ(p, x)

)
+ φ(xi)

q + 2

)∣∣∣∣∣. (56)

Proof. Utilize (12) for Ψ = Ψ ◦ φ−1 and xi = φ(xi), we get (56).

We present a consequence of Theorem 6 in next corollary in the form of bound for the
quasi mean.

Corollary 10. Assume that x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are positive n-tuples

with Pn :=
n
∑

i=1
pi and φ is a strictly monotonic continuous function. Furthermore, let q, p > 1 such

that 1
p + 1

q = 1 and Ψ ◦ φ−1 is a twice differentiable function such that |(Ψ ◦ φ)
′′ |q be concave.

Then ∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ
(

Mφ(p, x)
)∣∣∣

≤
(

1
p + 1

) 1
p 1

Pn

n

∑
i=1

pi

(
φ
(

Mφ(p, x)
)
− φ(xi)

)2

×
∣∣∣∣∣(Ψ ◦ φ−1)

′′
(

φ
(

Mφ(p, x)
)
+ φ(xi)

2

)∣∣∣∣∣. (57)

Proof. Applying (14) while choosing Ψ = Ψ ◦ φ−1 and xi = φ(xi), we obtain (57).
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We extract the following result from Theorem 7 for the quasi mean.

Corollary 11. Assume φ is a strictly monotonic continuous function and Ψ ◦ φ−1 is a twice
differentiable function such that |(Ψ ◦ φ)

′′ |q is convex for q > 1. Additionally, suppose that

x = (x1, x2, · · ·, xn) and p = (p1, p2, · · ·, pn) are positive n-tuples with Pn :=
n
∑

i=1
pi. Then

∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ
(

Mφ(p, x)
)∣∣∣ ≤ 1

Pn

n

∑
i=1

pi

(
φ
(

Mφ(p, x)
)
− φ(xi)

)2

×
(

2
∣∣∣(Ψ ◦ φ−1

)′′(
φ
(

Mφ(p, x)
))∣∣∣q + ∣∣∣(Ψ ◦ φ−1

)′′
(φ(xi))

∣∣∣q
6

) 1
q

. (58)

Proof. Inequality (58) can easily be obtained by putting Ψ = Ψ ◦ φ−1 and xi = φ(xi)
in (15).

In the below corollary, we obtain a bound for the quasi mean as a consequence of
Theorem 8.

Corollary 12. Assume that the function φ is a strictly monotonic and continuous and Ψ ◦ φ−1 is a
twice differentiable function such that |(Ψ ◦ φ)

′′ |q is convex for q > 1. Let also x = (x1, x2, · · ·, xn)

and p = (p1, p2, · · ·, pn) be positive n-tuples with Pn :=
n
∑

i=1
pi. Then

∣∣∣ 1
Pn

n

∑
i=1

piΨ(xi)−Ψ
(

Mφ(p, x)
)∣∣∣

≤ 1
Pn

n

∑
i=1

pi

(
φ
(

Mφ(p, x)
)
− φ(xi)

)2

×
∣∣∣∣∣(Ψ ◦ φ−1

)′′(2φ
(

Mφ(p, x)
)
+ φ(xi)

3

)∣∣∣∣∣. (59)

Proof. By taking Ψ = Ψ ◦ φ−1 and xi = φ(xi) in (18), we obtain (59).

5. Applications in Information Theory

This section is dedicated to the applications of main results. The applications shall
be discuss in information theory. These applications shall provide different bounds for
Csiszár and Rényi divergences, Shannon entropy and Bhattacharyya coefficient.

Now, let us first recall the definition of Csiszár divergence.

Definition 3. Let Ψ : I → R be a function and r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·, ζn)

be positive tuples such that ζi
γi
∈ [a, b] for all i ∈ {1, 2, · · ·, n}. Then the Csiszár divergence is

defined by

D̃c(r, z) =
n

∑
i=1

γiΨ
( ζi

γi

)
.

In the next theorem, we obtain a bound for the Csiszár divergence while using
Theorem 3.
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Theorem 9. Assume that Ψ : I → R is a twice differentiable function such that |Ψ′′(x)|q is
convex for q > 1. Also, let r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·, ζn) be positive tuples with

γ :=
n
∑

i=1
γi and ζ :=

n
∑

i=1
ζi. If ζi

γi
, ζ

γ ∈ [a, b]. then

∣∣∣∣∣ 1
γ

D̃c(r, z)−Ψ
(

ζ

γ

)∣∣∣∣∣ ≤ 1
γ

n

∑
i=1

γi

(
ζ

γ
− ζi

γi

)2

×
(
(q + 1)

∣∣∣Ψ′′( ζ
γ

)∣∣∣q + ∣∣∣Ψ′′( ζi
γi

)∣∣∣q
(q + 1)(q + 2)

) 1
q

. (60)

Proof. Inequality (60) can easily be acquired by putting pi =
γi
γ and xi =

ζi
γi

in (4).

The following result is an application of Theorem 4 for Csiszáar divergence.

Theorem 10. Assume that, all the postulates of Theorem 9 are true. Moreover, if p > 1 such that
1
p + 1

q = 1, then

∣∣∣∣∣ 1
γ

D̃c(r, z)−Ψ
(

ζ

γ

)∣∣∣∣∣ ≤
(

1
p + 1

) 1
p 1

γ

n

∑
i=1

γi

(
ζ

γ
− ζi

γi

)2

×
(∣∣∣Ψ′′( ζ

γ

)∣∣∣q + ∣∣∣Ψ′′( ζi
γi

)∣∣∣q
2

) 1
q

. (61)

Proof. Utilizing (9) while choosing pi =
γi
γ and xi =

ζi
γi

, we obtain (61).

Application of Theorem 5 is given in the coming results in which we get a bound for
Csiszár divergence.

Theorem 11. Let Ψ : I → R be a twice differentiable function such that |Ψ′′(x)|q be concave for
q > 1. Assume also that r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·, ζn) are n-tuples with positive

entries, γ :=
n
∑

i=1
γi and ζ :=

n
∑

i=1
ζi. If ζi

γi
, ζ

γ ∈ [a, b], then

∣∣∣∣∣ 1
γ

D̃c(r, z)−Ψ
(

ζ

γ

)∣∣∣∣∣ ≤
(

1
q + 1

) 1
q 1

γ

n

∑
i=1

γi

(
ζ

γ
− ζi

γi

)2

×
∣∣∣∣∣Ψ′′

(
(q + 1)

(
ζ
γ

)
+ ζi

γi

q + 2

)∣∣∣∣∣. (62)

Proof. Taking pi =
γi
γ and xi =

ζi
γi

in (12), we obtain (62).

We deduce a bound for the Csiszár divergence as an application of Theorem 6, which
is stated in the below theorem.

Theorem 12. Let all the assumptions of Theorem 11 be hold. Furthermore, if p > 1 such that
1
p + 1

q = 1, then

∣∣∣∣∣ 1
γ

D̃c(r, z)−Ψ
(

ζ

γ

)∣∣∣∣∣ ≤
(

1
p + 1

) 1
p 1

γ

n

∑
i=1

γi

(
ζ

γ
− ζi

γi

)2∣∣∣∣∣Ψ′′
( ζ

γ + ζi
γi

2

)∣∣∣∣∣. (63)

Proof. Use (14) for pi =
γi
γ and xi =

ζi
γi

, we deduce (63).
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We acquire the following application of Theorem 7.

Theorem 13. Suppose that, all the conditions of Theorem 9 are valid. Then∣∣∣∣∣ 1
γ

D̃c(r, z)−Ψ
(

ζ

γ

)∣∣∣∣∣ ≤
(

1
2

)1− 1
q 1

γ

n

∑
i=1

γi

(
ζ

γ
− ζi

γi

)2

×
(

2
∣∣∣Ψ′′( ζ

γ

)∣∣∣q + ∣∣∣Ψ′′( ζi
γi

)∣∣∣q
6

) 1
q

. (64)

Proof. Inequality (64) can easily be assumed from (15) by taking pi =
γi
γ and xi =

ζi
γi

.

The following is the application of Theorem 8.

Theorem 14. Let all the assumptions of Theorem 11 be valid. Then∣∣∣∣∣ 1
γ

D̃c(r, z)−Ψ
(

ζ

γ

)∣∣∣∣∣ ≤ 1
2γ

n

∑
i=1

γi

(
ζ

γ
− ζi

γi

)2∣∣∣∣∣Ψ′′
(

2 ζ
γ + ζi

γi

3

)∣∣∣∣∣. (65)

Proof. Choosing pi =
γi
γ and xi =

ζi
γi

in (18), we obtain (65).

Definition 4. Let r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·, ζn) be positive probability distribu-
tions and α ∈ (0, ∞) such that α 6= 1. Then Rényi divergence is defined as

D̃re(r, z) =
1

α− 1
log

(
n

∑
i=1

γα
i ζ1−α

i

)
.

We give some more applications of our results for Rényi divergence, which are given
in the following three corollaries.

Corollary 13. Assume that, r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·, ζn) be positive probability
distributions and α, q > 1. Then

D̃re(r, z)− 1
α− 1

n

∑
i=1

γi log
(γi

ζi

)α−1

≤ 1
α− 1

n

∑
i=1

γi

(
n

∑
i=1

γα
i ζ1−α

i −
(γi

ζi

)α−1
)2

×
( (q + 1)

( n
∑

i=1
γα

i ζ1−α
i

)−2q
+
(

γi
ζi

)−2q(α−1)

(q + 1)(q + 2)

) 1
q

. (66)

Proof. Let Ψ(x) = − 1
α−1 log x, x > 0. Then Ψ

′′
(x) = 1

(α−1)x2 and
(
|Ψ′′(x)|q

)′′
=

2q(2q−1)
(α−1)q x−2q−2. Clearly both Ψ

′′
(x) and

(
|Ψ′′(x)|q

)′′
are positive on (0, ∞) for α, q > 1.

This confirms that the functions Ψ(x) and |Ψ′′(x)|q both are convex on (0, ∞) for α, q > 1.

Therefore, utilizing (4) for Ψ(x) = − 1
α−1 log x, pi = γi and xi =

(
γi
ζi

)α−1
, we get (66).
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Corollary 14. Let p, q > 1 such that 1
p + 1

q = 1 and r = (γ1, γ2, · · ·, γn), z = (ζ1, ζ2, · · ·, ζn)

be positive probability distributions. If α > 1, then

D̃re(r, z)− 1
α− 1

n

∑
i=1

γi log
(γi

ζi

)α−1

≤ 1
α− 1

(
1

p + 1

) 1
p n

∑
i=1

γi

(
n

∑
i=1

γα
i ζ1−α

i −
(γi

ζi

)α−1
)2

×
(( n

∑
i=1

γα
i ζ1−α

i

)−2q
+
(

γi
ζi

)−2q(α−1)

2

) 1
q

. (67)

Proof. Using (9) by choosing Ψ(x) = − 1
α−1 log x, pi = γi and xi =

(
γi
ζi

)α−1
, we ob-

tain (67).

Corollary 15. Let q > 1 and r = (γ1, γ2, · · ·, γn), z = (ζ1, ζ2, · · ·, ζn) be two positive probability
distributions. Then

D̃re(r, z)− 1
α− 1

n

∑
i=1

γi log
(γi

ζi

)α−1

≤ 1
α− 1

(
1
2

)1− 1
q n

∑
i=1

γi

(
n

∑
i=1

γα
i ζ1−α

i −
(γi

ζi

)α−1
)2

×
(2
( n

∑
i=1

γα
i ζ1−α

i

)−2q
+
(

γi
ζi

)−2q(α−1)

3

) 1
q

. (68)

Proof. Applying (15) while taking Ψ(x) = − 1
α−1 log x, xi =

(
γi
ζi

)α−1
and pi = γi, we

receive (68).

Definition 5. For a positive probability distribution r = (γ1, γ2, · · ·, γn), the Shannon entropy is
defined as

Es(r) = −
n

∑
i=1

γi log γi.

Now, we are going to discuss some applications of our results for Shannon entropy,
which are given in the next three corollaries.

Corollary 16. Assume that q > 1 and r = (γ1, γ2, · · ·, γn) is a positive distribution such that
n
∑

i=1
γi = 1. Then

log n− Es(r) ≤
n

∑
i=1

γi

(
n− 1

γi

)2
(
(q + 1)n−2q − γ

2q
i

(q + 1)(q + 2)

) 1
q

. (69)

Proof. Let Ψ(x) = − log x, x > 0. Then Ψ
′′
(x) = x−2 and |Ψ′′(x)|q = 2q(2q + 1)x−2q−2,

which implies that both Ψ
′′
(x) and

(
|Ψ′′(x)|q

)′′
are positive for all x ∈ (0, ∞) and q > 1.

This confirms the convexity of Ψ
′′
(x) and

(
|Ψ′′(x)|q

)′′
on (0, ∞) for q > 1. Therefore, ap-

plying (60) by picking Ψ(x) = − log x, and ζi = 1 for all i ∈ {1, 2, · · ·, n}, we get (69).



Mathematics 2021, 9, 3132 27 of 29

Corollary 17. Let r = (γ1, γ2, · · ·, γn) be a positive distribution such that
n
∑

i=1
γi = 1. Let also

q, p > 1 such that 1
p + 1

q = 1. Then

log n− Es(r) ≤
(

1
p + 1

) 1
p n

∑
i=1

γi

(
n− 1

γi

)2
(

n−2q − γ
2q
i

2

) 1
q

. (70)

Proof. Utilizing (61) for Ψ(x) = − log x, and ζi = 1 for all i ∈ {1, 2, · · ·, n}, we re-
ceive (70).

Corollary 18. suppose that all the hypotheses of Corollary 16 are true, then

log n− Es(r) ≤
(

1
2

)1− 1
q n

∑
i=1

γi

(
n− 1

γi

)2
(

2n−2q − γ
2q
i

3

) 1
q

. (71)

Proof. Use Ψ(x) = − log x, and ζi = 1 for all i ∈ {1, 2, · · ·, n} in (64) we receive (71).

Definition 6. For any positive probability distributions r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·,
ζn), the Bhattacharyya coefficient is defined as

Cb(r, z) =
n

∑
i=1

√
γiζi.

We extract some bounds for Bhattacharyya coefficient from our results which are
given in the following corollaries.

Corollary 19. Let r = (γ1, γ2, · · ·, γn) and z = (ζ1, ζ2, · · ·, ζn) be positive probability distribu-
tion and q > 1. Then

1− Cb(r, z) ≤ 1
4

n

∑
i=1

γi

(
1− ζi

γi

)2
(

q + 1 +
(

γi
ζi

) 3q
2

(q + 1)(q + 2)

) 1
q

. (72)

Proof. Consider the function Ψ(x) = −
√

x, x ∈ (0, ∞). Clearly the function Ψ is con-
vex because Ψ

′′
(x) = 1

4 x−
3
2 > 0. Additionally, the function |Ψ′′(x)|q is convex because(

|Ψ′′(x)|q
)′′

=
(

1
4

)q 3q
2

(
3q
2 + 1

)
x
−
(

3q
2 +2

)
> 0. Therefore, utilizing (60) by choosing

Ψ(x) = −
√

x, we acquire (72).

Corollary 20. Assume that the hypotheses of Corollary 19 hold. Moreover, if p > 1 such that
1
p + 1

q = 1, then

1− Cb(r, z) ≤ 1
4

(
1

p + 1

) 1
p n

∑
i=1

γi

(
1− ζi

γi

)2
(

1 +
(

γi
ζi

) 3q
2

2

) 1
q

. (73)

Proof. To deduce (73), putting Ψ(x) = −
√

x in (61).

Corollary 21. Suppose that, the conditions of Corollary 19 are true, then

1− Cb(r, z) ≤ 1
4

(
1
2

)1− 1
q n

∑
i=1

γi

(
1− ζi

γi

)2
(

2 +
(

γi
ζi

) 3q
2

3

) 1
q

. (74)
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Proof. Utilize (64) for Ψ(x) = −
√

x, we obtain (74).

6. Conclusions

The field of mathematical inequalities has performed a very consequential role in
all areas of science, especially in mathematics. There were a lot of problems which were
not possible to explain or solve with out mathematical inequalities. There are many
well-known inequalities which have accomplished eminent performance in solving many
problems in the fields of science. Among these inequalities, one of the weighty inequalities
of great interest is the Jensen inequality. This inequality is of sublime importance in the
sense that several inequalities can easily be deduced from it. In this article, we obtained
some interesting bounds for the Jensen difference. We acquired the desired bounds by
utilizing the definition of convex function, the integral Jensen inequality for concave
function, the Hölder and power mean inequalities. By taking some particular functions
in the main results, we deduced several improvements of the Hölder inequalities and
also concluded different inequalities for quasi-arithmetic and power means. Finally, we
presented some useful applications of our main results in information theory. These
applications contain several bounds for Csiszár divergence, Rényi divergence, Shannon
entropy and Bhattacharyya coefficient.
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12. Ivelić, S.; Pečarić, J. Generalizations of converse Jensen’s inequality and related results. J. Math. Ineq. 2011, 5, 43–60.
13. Zabandan, G.; Kilicman, A. A new version of Jensen’s inequality and related results. J. Inequal. Appl. 2012, 2012, 238. [CrossRef]

http://doi.org/10.1016/j.mcm.2009.11.004
http://dx.doi.org/10.1155/2021/1951799
http://dx.doi.org/10.1016/j.jmaa.2006.02.086
http://dx.doi.org/10.1006/jmaa.1995.1075
http://dx.doi.org/10.1186/1029-242X-2012-238


Mathematics 2021, 9, 3132 29 of 29

14. Nakasuji, Y.; Takahasi, S.-E. A reconsideration of Jensen’s inequality and its applications. J. Inequal. Appl. 2013, 2013, 408.
[CrossRef]

15. Dragomir, S.S.; Adil Khan, M.; Abathun, A. Refinement of the Jensen integral inequality. Open Math. 2016, 14, 221–228. [CrossRef]
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