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Abstract: Generally, the continuous and discrete TS fuzzy systems’ control is studied independently.
Unlike the discrete systems, stability results for the continuous systems suffer from conservatism
because it is still quite difficult to apply non-quadratic Lyapunov functions, something which is much
easier for the discrete systems. In this paper and in order to obtain new results for the continuous
case, we proposed to connect the continuous with the discrete cases and then check the stability of the
continuous TS fuzzy systems by means of the discrete design approach. To this end, a novel frame
was proposed using the sum of square approach (SOS) to check the stability of the continuous Takagi
Sugeno (TS) fuzzy models based on the discrete controller. Indeed, the control of the continuous
TS fuzzy models is ensured by the discrete gains obtained from the Euler discrete form and based
on the non-quadratic Lyapunov function. The simulation examples applied for various models,
by modifying the order of the Euler discrete fuzzy system, are presented to show the effectiveness of
the proposed methodology.

Keywords: discretization; continuous Takagi Sugeno (TS) fuzzy models; Euler approximation; non
quadratic Lyapunov function; sum of square approach (SOS); polynomial Lyapunov function

1. Introduction

Since their introduction in 1985, Takagi Sugeno fuzzy models have been studied
for the control of a wide class of nonlinear systems owing to their ability to deal with
complex behaviors [1]. In this case, the nonlinear systems can be represented by a set
of linear subsystems linked to nonlinear functions. Based on the Parallel Distributed
Compensation (PDC) controller and the Lyapunov function, the closed loop stability is
verified leading to a Linear Matrix Inequality (LMI) that can be solved to obtain the
controller gains. The LMI conditions suffer from conservatism. Therefore, to relax the LMI
conditions of stability and stabilization using the candidate Lyapunov functions, many
stability studies have been carried out for the continuous and discrete systems [2–7]. Since
it is difficult to use the non-quadratic Lyapunov functions for the continuous systems,
this type of functions can be used in the discrete case leading to LMI problems that can
be solved easily. For the continuous systems, a similar approach allows for producing
Bilinear Matrix Inequality (BMI) conditions that are difficult to resolve. In the work of
References [8–12], a relaxed scheme for controller synthesis of continuous-time systems
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in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC
control law, is presented, which is proved to reduce conservativeness compared with
common Lyapunov functions. The obtained results suffer from conservatism. In fact,
the provided relaxations allow state and input dependence of the membership functions’
derivatives, as well as independence on initial conditions when input constraints are
needed. It is true that nonquadratic Lyapunov functions may be used with continuous
approaches, but either they assume hypothesis about the derivative of the membership
functions that must be checked a posteriori during experiments or simulations, or they
are very complex, or they provide only local results [8–12]. Since it is not possible to
enforce such constraints in the control law through LMIs, the validity of such approaches
can be questioned. Indeed, a valid simulation does not imply the same validity for other
initial conditions.

Several research studies tried to fuse continuous and discrete systems based on the
discrete controller [13,14]. In Reference [15], the authors studied a particular class of
continuous fuzzy models, i.e., the ones that can be exactly discretized. Of course, this is a
restricted class, but, for this class, the continuous model behaves exactly as the discretized
one. Through examples, continuous control laws may be outperformed in some cases by
means of discrete control laws, including the regulator problem. In addition, the authors of
Reference [16] proposed an idea for the continuous stability system by merging the two
cases in order to reach new continuous results. Contrary to Reference [15], they attempted
to deal with all continuous models and defined their discretized forms based on the Euler
approximation method limited to the first order.

This led to two sets of LMIs conditions: one for the discrete case in order to determine
the discrete control laws obtained from the Euler discretized model, and the other for the
continuous case when checking the continuous stabilization systems based on the obtained
discrete controller. This proposed solution led to use non-quadratic Lyapunov functions in
the continuous case to avoid BMI since some parameters of the discrete control law were
saved. Based on the last controller, the LMI stability conditions of the continuous models
were checked using a candidate Lyapunov function. Several attempts have been made,
in this context, using a quadratic and non-quadratic Lyapunov function but no solution
is found by solving the LMI conditions. In Reference [16], the authors used the quadratic
Lyapunov function that does not guarantee the feasibility of the solutions at all times.
The last result may be explained by the choice of the Lyapunov function since the quadratic
Lyapunov function cannot check the stability of the continuous model via the discrete
gains obtained from its Euler discretized model, which is restricted to one. Therefore, it is
important to choose the right Lyapunov function so as to achieve interesting results.

While some studies focused on the LMI conditions, another trend studied the stability
analysis of polynomial fuzzy models based on the sum of squares techniques (SOS). In this
case, convex optimization problems as LMI conditions are reformulated as sum of square
decomposition problems [17–24]. This approach was intended for modeling and controlling
nonlinear systems using polynomial fuzzy models.

Based on the polynomials’ techniques, the originality of this research work is to check
the continuous stability model, controlled by the discrete gains obtained from its Euler
discretized model, using the sum of squares approach. In this context, the second set of
LMIs is replaced by the candidate Lyapunov polynomial function in order to show the
stability of the TS continuous closed loop based on the obtained discrete controller.

Contrarily to References [15,16], in our present paper, we tried to work for all types of
fuzzy continuous models, which is an advantage, and defined their discretized fuzzy mod-
els using the Euler discretization method for an order of approximation greater than one to
determine the controller gains. Moreover, the stability conditions of the sum of squares
do not require the derivative hypothesis of the membership functions. In addition, they
guarantee the global asymptotical stability when a solution to the SOS-based optimization
problem holds. Therefore, one of the advantages of our methodology is that the drawbacks
of LMI conditions based on non-quadratic approaches would be overcome.
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The remaining of this paper is structured as follows. Section 2 presents the materials
and methods. First, the literature on the Takagi Sugeno continuous fuzzy models is
reviewed. Second, the sum of squares approach (SOS) with its stability conditions based on
the polynomial Lyapunov function is introduced. Then, the proposed methodology based
on the Euler discretization method and SOS approach is described. Section 4 provides
the illustrations of two numerical examples to prove the effectiveness of this method and
exposes the simulation results and the discussions.

2. Materials and Methods
2.1. Takagi Sugeno Continuous Systems
2.1.1. Notations

Considering function hi(z(·)) ≥ 0, and matrice Yi with i ∈ {1, . . . , r}, we suggest
these notations:

• Yz =
r
∑

i=1
hi(z(t))Yi, in the discrete case Yz =

r
∑

i=1
hi(z(k))Yi

•

Yz+ =
r
∑

i=1
hi(z(k + 1))Yi,

Yzz+ =
r
∑

i=1

r
∑

j=1
hi(z(k))hj(z(k + 1))Yij,

Y−1
z =

(
r
∑

i=1
hi(z(k))Yi

)−1
,

Y ∈ {A, B, K, G, P}

.

The (∗) indicates a transpose quantity. For example, YT
z Pz(∗) − Pz < 0 stands for

YT
z PzYz − Pz < 0, and

[
−Pz (∗)
Yz −Pz

]
< 0 for

[
−Pz YT

z
Yz −Pz

]
< 0.

Based on these forms, a TS continuous is presented as follows [1]:
.
x(t) = Acz(t)x(t) + Bcz(t)u(t). (1)

The index c designates the continuous case, x(t) ∈ Rn is the vector of states, z(t) is the
vector of premises, u(t) ∈ Rm is the vector of inputs, r is the number of rules, and Acz(t)
and Bcz(t) are the continuous matrices of appropriate dimensions. The weights hi satisfy
the following convex sum:

r

∑
i=1

hi(z(t)) = 1. (2)

2.1.2. Quadratic Stabilization Conditions

This paragraph aims to remind the reader of some results obtained by applying the
Takagi Sugeno continuous model using the classical PDC law [25]. The last is defined in
Equation (3):

u(t) = −Fcz(t)x(t). (3)

Based on Equation (3), the Takagi-Sugeno continuous fuzzy system is as follows:
.
x(t) =

(
Acz(t) − Bcz(t)Fcz(t)

)
x(t). (4)

The synthesis of the controller (3) allows finding the gains Fci, which ensures the
continuous fuzzy system closed loop stabilization (4). The quadratic Lyapunov function is
mainly used:

V(x(t)) = xT(t)Px(t), P = PT > 0. (5)



Mathematics 2021, 9, 3129 4 of 18

Theorem 1 ([2]). The equilibrium of the system (4) is globally asymptotically stable if a common
matrix X = XT > 0 and matrices Mi satisfy these LMIs:{

Yii < 0 i = 1, 2, . . . , r
2

r−1 Yii + Yij + Yji < 0 i, j = 1, 2, . . . , r, i 6= j
, (6)

with: Yij = AciX− Bci Mj + (∗), X = P−1, Fci = M−1
i X.

2.2. Continuous Stability Conditions from the Sum of Square Approach
2.2.1. Definition

A scalar polynomial is g(x(t)), a sum of squares if there are polynomials
gi(x(t)) ∀ i ∈ {1, . . . , v} and x ∈ Rn such that [17]:

f (x(t)) =
v

∑
i=1

g2
i (x(t)). (7)

If g(x(t)) is a sum of squares, it implies that g(x(t)). Thus, this last condition will be
replaced by g(x(t)) as a sum of squares that can be rewritten as a convex problem. In this
case, the standard solvers for LMIs can be used. The free toolbox of MATLAB, called
SOSTOOLS, aims to translate these conditions into LMIs [26].

The condition that g(x(t)) � 0 can be transformed into g(x(t))− ε � 0, ∀ε � 0, and,
consequently, g(x(t))− ε is a sum of squares. Then, g(x(t)) can be shown equivalent to a
quadratic form presented in the following lemma.

Lemma 1 ([17]). Let
_
x (x(t)) ∈ RN be a column vector whose entries are all monomials in x(t)

having a degree less than d. In addition, let g(x(t)) be a polynomial of degree 2d. Then, g(x(t)) is
sum of squares if there exists a positive semi definite matrix P such that

g(x(t)) =
_
x

T
(x(t))P (x(t))

_
x (x(t)). (8)

A monomial in x(t) is a function of the form xα1
1 xα2

2 . . . xαn
n , while ζ1, ζ2, . . . , ζn are

nonnegative integers that the monomial degree is given by ζ1 + ζ2 + . . . + ζn, and xi are the
components of the vector x(t). Thus, the polynomial model is expressed by Equation (9):

.
x(t) = Apz(t)(x(t))

_
x (x(t)) + Bpz(t)(x(t))u(t), (9)

where Apz(t)(x(t)) and Bpz(t)(x(t)) are polynomial matrices in x(t).

2.2.2. Stability Conditions

The purpose of this section is to remind the readers of the stability conditions of the
SOS approach, which is based on the following polynomial Lyapunov function [18]:

V(x(t)) =
_
x

T
(x(t))P(x(t))

_
x (x(t)). (10)

In what follows, the stability problem was investigated using u(t) = 0 and Theo-
rem 2 would be introduced. In order to simplify the mathematical equations, the time
t was omitted.

Theorem 2 ([18]). The polynomial T-S model (9) is globally asymptotically stable if there exists a
symmetric polynomial matrix P(x) ∈ RN×N and the polynomial ε1(x) � 0 and ε2i(x) � 0 such
that the following polynomials are the sum of squares for i = 1, . . . , r:

_
x

T
(x){P(x)− ε1(x)I }_x (x), (11)
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and

−_
x

T
(x)

 P(x)T(x)Apz(x) + (∗) +
n
∑

k=1

∂P
∂xk

Ak
pz(x)

_
x (x)

+ε2i(x)I

_
x (x), (12)

where T(x) ∈ RN×n is a polynomial matrix in which entries are defined as: Tij(x) = ∂
_
x i(x)
∂xj

and

Ak
pz(x) denote the k-th line of a matrix Apz(x).

The previous stability conditions can be relaxed. We proceeded to a local study leading
to the following lemma:

Lemma 2. A local study was performed to the previously presented stability conditions (11) and
(12) in such a way that they become:

_
x

T
(x)

{
P(x)− ε1(x)I −

r

∑
i=1

σiQi (x)

}
_
x (x), (13)

−_
x

T
(x)


P(x)T(x)Apz(x) + (∗) +

n
∑

k=1

∂P
∂xk

Ak
pz(x)

_
x (x)

+ε2i(x)I −
r
∑

i=1
σiQi (xi)


_
x (x), (14)

with Qi(xi) � 0 are local constraints computed for any monomial, and xi and σi are multipliers.
For example, if xi ∈ [ai, bi], then Qi(xi) = (bi − xi)(xi − ai).

2.3. Discrete Stabilization Conditions from the Euler Method

Several discretization methods have been introduced in the literature, such as Lie
series, Taylor series, Euler approximation, etc. The Euler approximation-based discrete
time model was adopted in this paper because it is the simplest method that allows a close
discretized model to the continuous one. Indeed, it enables maintaining the same structure
of the original model. This makes it possible to prove that the stabilization of the obtained
discrete model leads, obviously, to the stabilization of its exact model. In addition, the
more we increase the order of approximation, the closer we get to the original model [27].

For t ∈ [kδ, (k + 1)δ], where δ is the sampling period, let us consider the following
hypothesis:

Assume that the membership function hi(z(t)) is approximated by its value at time
kδ, that is: hi(z(t))hi(z(kδ)), i ∈ {1, . . . , r}. Consequently, for t ∈ [kδ, (k + 1)δ], the non-

linear matrices
r
∑

i=1
hi(z(t))Ai and

r
∑

i=1
hi(z(t))Bi can be approximated as constant matrices,

respectively,
r
∑

i=1
hi(z(kδ))Ai and

r
∑

i=1
hi(z(kδ))Bi.

Equation (15) gives the Euler discretization of the model (1) for m order:

x((k + 1)δ) =
r

∑
i=1

hi(z(kδ))(Adix(kδ) + Bdiu(kδ)), (15)

with
Adi = I + Aci·δ +

(
Aci
)2· δ2

2! + · · ·+
(

Aci
)m· δm

m! ,

Bdi = Bci·δ + Aci·Bci·
δ2

2! + · · ·+
(

Aci
)m−1·Bci.

δm

m!

. (16)

It is worth noting that the more the order m increases, the closer the discretized
model will be to the original continuous model. Using Equations (17) and (18), the Euler
discretized stabilization model is checked [4]:

V(x(k)) = xT(k)Hz(k)Pz(k)H−1
z(k)x(k), (17)
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u(k) = −Fdz(k) H−1
z(k)x(k) , (18)

with Pz(k) =
r
∑

i=1
hiPi and Pz(k) = Pz(k)

T .

To satisfy the stabilization of system (15), Theorem 3 introduces the stabilization
conditions that will allow to obtain the appropriate gains Fdi and Hi.

Theorem 3 ([4]). The equilibrium of the discrete closed loop system (15) is globally asymptotically
stable if there exist common symmetric and positive definite matrices Pi, Fdi and Hi guaranteeing
these conditions:  Yk

ii < 0 i, k = 1, 2, . . . , r
2

r−1 Yk
ii + Yk

ij + Yk
ji < 0 i, j, k = 1, 2, . . . , r, i 6= j

, (19)

with Yk
ij =

[
−Pi (∗)

Adi Hj − BdiFdj −Hk − HT
k + Pk

]
.

As can be seen in Equation (19), it is much easier to use non-quadratic Lyapunov
function to guarantee the stabilization in the discrete case. In this case, a novel method of
stability analysis for the continuous TS fuzzy models was proposed based on the control
results obtained from the discretized model. The originality of this work is presented in two
axes. The first one is to determine the discrete gains for the continuous TS fuzzy system.
The gains are obtained using the Euler approximation for different values of sampling
period. The second one is to check the stability of the TS continuous closed loop system,
based on the obtained discrete gains, by applying the candidate Lyapunov polynomial
function of the SOS approach. To summarize, the proposed idea can be detailed as follows:

• First step: Using the Euler method, the discrete model corresponding to the continuous
model (1) is obtained. Several models were tried, in this case, by progressively
increasing the Euler approximation order m.

• Second step: By applying Theorem 3 on the previously-obtained discretized model, the
discrete gains Fdi and Hi are determined, satisfying the Euler discrete stabilization model.

• Third step: By saving the previously-obtained gains Fdi and Hi, a new continuous
control law, expressed by (20), will be applied to the continuous TS model (1).

u(t) = −Fdz(t) H−1
z(t)x(t) . (20)

It should be noted that this methodology leads to adopting the function (17) for the
Takagi Sugeno continuous models, avoiding BMIs problems at the same time, since some
design parameters of the discrete control law were kept.

• Fourth step: By applying the discrete controller, the closed loop continuous TS fuzzy
model is expressed by Equation (21):

.
x(t) =

(
Acz(t) − Bcz(t)Fdz(t)H−1

z(t)

)
x(t). (21)

From Equation (21), the matrices Acz(t), Bcz(t), Fdz(t), and H−1
z(t) are known, which is

considered an advantage. Then, it will be easy to apply the conditions of the SOS approach
to check the stability of the model (21), which presents one of the contributions of this
research work.

In this case, Theorem 3 is adopted with Apz = Acz − BczFdz H−1
z , and T(x) is the

identity matrix.

3. Simulation Results and Discussion

After introducing the proposed methodology theoretically, three examples are consid-
ered in this section to demonstrate the performance of this proposed idea.
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3.1. Example 1

Use the model (22) described by the following matrices [10,28,29]:

Ac1 =

[
3.6 −1.6
6.2 −4.3

]
, Ac2 =

[
−a −1.6
6.2 −4.3

]
, Bc1 =

[
−0.45
−3

]
, Bc2 =

[
−b
−3

]
h1(z(t)) =

sin(x1(t))
x1(t)

, h2(z(t)) = 1− h1(z(t)), −π
3 ≤ x1(t) ≤ π

3

. (22)

The closed-loop stability system was checked for several values for the pairs (a, b).
Considering a ∈ [0, 25] and b ∈ [0, 1] , feasible solutions were found by solving the con-
ditions of Theorem 1. As for the Euler discrete system, it was obtained using the Euler
approximation (15) and (16). Solving the conditions presented in Theorem 3 leads to feasi-
ble solutions for m � 1 and b ≥ 1. To expand the solutions feasibility that guarantee the
continuous stability model (22), the proposed idea was to apply the previously-described
steps. Indeed, a ∈ [0, 25] was maintained, and parameter b was adjusted as much as
possible to obtain the largest stabilization regions that guarantees the Euler discrete stabi-
lization system. In this case, varying the values of the order m and the sampling period
δ has allowed the study of several models. If the stabilization of the discrete system is
guaranteed, it will also be guaranteed for its continuous system. The last step was verified
by applying the stability conditions presented in Theorem 2.

Some research works in the literature studied this example for a ∈ [0, 25] and b ∈ [0, 3]
to show the stability region [10,28,29]. Using the proposed methodology for the same
values, the feasible solutions can be found for m ∈ [2, 100] . In this case, it is to highlight
that the solutions feasibility depends on the parameter δ since δ varies by adjusting m.
Note that the sampling period δ is not a constraint to be determined, but it is a parameter to
be varied. In our work, the variation of this parameter leads to interesting results because
we are able to use large values for the sampling period δ, which is considered to be an
advantage for our proposed methodology since faster sampling is usually more difficult to
achieve practically, and most of the work existing in the literature has proposed theorems
that are only valid for small values of δ, which is seen as a drawback for several authors.

Considering a ∈ [0, 25] and b ∈ [0, 3] , Table 1 presents the variation results of m and δ.
As shown in Table 1, δ increases by increasing m. By comparing our proposed idea

with the existing results in the literature, the stability regions of the continuous model (22)
in the plan a–b are presented in Figures 1–8. Figures 1–3 show the existing results:

Table 1. Variation results of m and δ.

m δ(sec)

4 ∈ [0.08, 0.1]
10 ∈ [0.1, 0.2]
35 ∈ [0.2, 0.5]
50 ∈ [0.2, 0.8]
70 ∈ [0.2, 1.1]
100 ∈ [0.2, 1.4]
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Based on the above-displayed figures, and in comparison with the literature, our
methodology offers larger stability regions. Furthermore, note that the more the values
of m and δ are increased, the wider the solutions feasibility becomes. Undoubtedly, these
figures have demonstrated the merits of increasing the order of approximation on the
stability results. The simulation results for the different cases are shown while varying the
different parameters.

Case 1: For a = 25, b = 3, m = 10, and δ = 0.2 s, the discrete gains are given by:

Fd1 =
[

0.7058 −54.3352
]
,

Fd2 =
[

12.0349 −8.9390
]
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H1 =

[
3.0053 8.0087
10.9714 42.5153

]
,

H2 =

[
3.9759 2.8216
14.7871 40.3630

]
.

Applying the previously-obtained discrete gains, the stability of the continuous model
(22) can be checked based on Theorem 3, which leads to feasible solutions given by the
following Lyapunov polynomials:

P(x) =
[

α(x) (∗)
β(x) σ(x)

]
.

• The Lyapunov Polynomials function of the first-order are:

α(x) = 0.1061+0.0874x1+0.0759x2

β(x) = −0.0128− 0.0019x1 − 0.0030x2

σ(x) = −0.5036× 10−3+0.7617× 10−3x1+0.0101x2

.

Considering the initial conditions presented by x(0) = [−0.5 0.5], Figure 9 illustrates
the continuous closed-loop results for model (22) controlled by the law in (20).
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Figure 9. The state variables evolutions x1(t), x2(t) and the controller u(t).

Figure 9 shows the fast convergence of the Takagi Sugeno continuous system (22).
Therefore, it can be noted that the continuous closed loop state response is asymptotically
stabilized using the law obtained from the non-PDC controller, satisfying its discrete
stabilization model.

Case 2: For a = 25, b = 3, m = 100, and δ = 0.4, the discrete gains are given by:

Fd1 =
[

3.7432 −14.6680
]
, Fd2 =

[
0.4117 −15.1675

]
,

H1 =

[
2.7966 7.1999
9.5659 33.6534

]
, H2 =

[
3.0839 7.3414
8.6791 32.8930

]
.

The Lyapunov polynomials function of the second-order is given by:

α(x) = 0.0356+0.1001x1+0.1290x2+0.026639x1
2+0.15508x1x2+0.7037x2

2

β(x) = −0.0090− 0.0284x1 − 0.0313x2 − 0.0072x1
2 − 0.0531x1x2 − 0.1721x2

2

σ(x) = 0.0013 + 0.0118x1+0.0109x2+0.0042x1
2+0.0145x1x2+0.0458x2

2

.

Figure 10 shows the stability of the continuous model (22) using the discrete gains.
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Figure 10. The state variables evolutions x1(t), x2(t) and the controller u(t).

The feasibility region solutions of the continuous model (22) can be expanded for
a ∈ [0, 60] and b ∈ [0, 15] , as shown in Figures 11–13. In this case, it is clear that the pro-
posed approach provides larger feasible regions compared to the results of Reference [25],
where the stability of the closed-loop system (22) was checked for a ∈ [0, 60] and b ∈ [0, 4] .
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As previously stated, the feasibility regions depend on the values of m and δ since the
more the order of Euler approximation is increased, the larger stability region we obtain.

For, a = 60, b = 15, m = 100, and δ = 0.4 s, the following gains are obtained:

Fd1 =
[

1.8868 −15.4389
]
, Fd2 =

[
2.9929 −12.1275

]
H1 =

[
2.9982 6.9936
10.7455 33.1903

]
, H2 =

[
3.1588 8.1046
8.5528 31.8310

]
.

The Lyapunov polynomials having the order two are given by:

α(x) = 0.0735+0.0843x1 + 0.0357x2 + 0.0412x1
2 − 0.0512x1x2 + 0.1467x2

2

β(x) = −0.0177− 0.0200x1 − 0.0072x2 − 0.0091x1
2+0.0115x1x2 − 0.0348x2

2

σ(x) = −0.0020 + 0.0195x1+0.0199x2+0.0153x1
2 − 0.0149x1x2+0.0323x2

2
.
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For x(0) = [−0.5, 0.5], the simulations results are shown below, in Figure 14.
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Figure 14. State variables evolution x1(t), x2(t) and the controller u(t) (a = 60, b = 15, m = 100, and
δ = 0.4).

3.2. Example 2

Let us present the following model [30]:

Ac1 =

[
−a −4
−1 −2

]
, Ac2 =

[
−2 −4
20 −2

]
, Bc1 =

[
1
10

]
, Bc2 =

[
1
b

]
,

h1(z(t)) =
1+sin(x1(t))

2 , h2(z(t)) = 1− h1(z(t)), −π
2 ≤ x1(t) ≤ π

2

. (23)

For b = 1 and a ≤ −4, the continuous approach based on Theorem 1 does not allow
feasible solutions. However, the proposed method in this paper achieved feasible solutions.
In fact, for b = 1, the parameter a can be expanded to −14. Table 2 below shows some
results about the feasibility solutions region of the parameter a related to the variations
of m and δ. It should be noted that any feasible solution was found with the first order
of approximation.

Table 2. Feasibility region of solutions of the parameter a related to m and δ.

m δ(sec) a

2 0.05 [−5, −4]
10 [0.05, 0.3] [−7, −4]
20 [0.05, 0.9] [−5, −4]
50 [0.05, 1] [−15, −4]

From Table 2, it can be concluded that the more the value of m increases, the larger the
feasibility region of the solutions of parameter a becomes.

This interesting result was validated by the application of the stability conditions from
Theorem 3 to verify the continuous stability of the model (23) using the discrete gains.

Let us consider the case of b = 1, a = −14, m = 50, and δ = 0.7 s, and the Lyapunov
polynomials function of order two is given by:

α(x) = 0.6649+0.7296x1+0.3991x2+0.5293x1
2 − 0.0317x1x2+1.4384x2

2

β(x) = −0.1620− 0.1668x1 − 0.0850x2 − 0.1198x1
2+0.1952×10−3x2x1 − 0.331x2

σ(x) = 0.0351+0.0474x1+0.0265x2+0.0335x1
2 − 0.0036x1x2+0.0863x2

2

.
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Figure 15 presents the continuous closed loop curves for the model (23) controlled by
the discrete law and using x(0) =

[
−0.1 0.1

]
.
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where ( )1 tx  is the angle of the pendulum from the vertical, ( )2 tx  is the angular veloc-
ity, and ( )u t is the force applied to the cart. 

• M  cart mass ( )20 kg , 

• m  pendulum mass ( )0.025 kg , 
• g gravity constant ( )29.81m s−⋅ , 

• 2l  length of the pendulum ( )1 m . 
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Figure 15. Evolution of the state variables x1(t), x2(t) and the controller u(t) (b = 1, a = −14,
m = 50, and δ = 0.7 s).

3.3. Example 3

The following example is presented to illustrate the applicability of our proposed
methodology. Consider the problem of balancing and swing-up of an invented pendulum
on a cart. The dynamics of its non-linear model is given by the following equations [31]:

•
x1(t) = x2(t)
•

x2(t) =
g sin(x1(t))−amlx2(t)

2 sin(2x1(t))
2 −a cos(x1(t))u(t)

4l
3 −aml cos(x1(t))

2

, (24)

where x1(t) is the angle of the pendulum from the vertical, x2(t) is the angular velocity,
and u(t) is the force applied to the cart.

• M cart mass (20 kg),
• m pendulum mass (0.025 kg),
• g gravity constant

(
9.81 m · s−2),

• 2l length of the pendulum (1 m).

The continuous TS fuzzy model is presented by the following matrices:

Ac1 =

[
0 1

g
4l
3 −aml

0

]
, Bc1 =

[
0

− a
4l
3 −aml

]

Ac2 =

[
0 1

g
π( 4l

3 −aml)β2 0

]
, Bc2 =

[
0

− aβ
4l
3 −amlβ2

] , (25)

where a = 1
m+M and β = cos

(
π
2
)
.

For the above parameters, the continuous approach based on Theorem 1 does not
allow feasible solutions. The discretized model of the fuzzy continuous model (25) is
obtained using the Euler approximation. This approximation is performed for various
orders. In this context, various models are studied, and several tests are carried out that
allow determining, for each model, the adequate value of the sampling period δ that
guarantees the feasibility solutions. For example, for m = 2 and δ = 0.2, the discrete gains
are given by:

Fd1 =
[
−1.7584 −6.5252

]
, Fd2 =

[
−1.5607 −5.9628

]
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H1 =

[
0.5345 −0.0942
−0.7407 4.4138

]
, H2 =

[
0.2601 −0.7958
−0.7958 2.4344

]
.

Applying the previously-obtained discrete gains, the stability of the continuous model
(25) can be checked based on Theorem 3, which leads to feasible solutions given by the
following Lyapunov Polynomials function of the first-order:

α(x) = 0.0738+0.1694x1+0.1760x2

β(x) = −0.0186− 0.0459x1 − 0.0436x2

σ(x) = 0.0037+0.0162x1+0.0141x2

.

Figure 16 presents the continuous closed loop curves for the model (25) controlled by
the discrete law using x(0) = [−0.5, 0.5].
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. 

Applying the previously-obtained discrete gains, the stability of the continuous 
model (25) can be checked based on Theorem 3, which leads to feasible solutions given by 
the following Lyapunov Polynomials function of the first-order: 
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Figure 16 presents the continuous closed loop curves for the model (25) controlled by 
the discrete law using x(0) = [−0.5, 0.5]. 
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Figure 16. The continuous closed loop curves for the model (25) controlled by the discrete law using
x(0) = [−0.5, 0.5].

From Figure 16, it can be proved that the evolutions of the state response, driven by
the discrete controller, lead to interesting results regarding their fast stabilization.

To evaluate the stability performance of the discrete controller, a white Gaussian noise
is applied to the states of the pendulum. This noise is characterized by the variance σ.
The value of σ is varied until the system loses its stability performance. Figures 17 and 18
are obtained.
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Figure 17. The state evolution x1(t) with σ = 0.014.



Mathematics 2021, 9, 3129 16 of 18

Figure 18. The state evolution x2(t) with σ = 0.03.

Figure 19 shows that the system loses its stability performance for σ = 0.1.

Figure 19. The state evolutions x1(t), x2(t) with σ = 0.1.

4. Conclusions

The stability results in the continuous case suffer from conservatism since it is still
quite difficult to use the non-quadratic Lyapunov functions, while it is much easier in the
discrete case. To overcome such a problem, a novel method of stability analysis for the
continuous systems was proposed using the controller obtained from the Euler discretized
model. Using this control law, the SOS approach was adopted to check the stability of
continuous systems with discrete gains.

The simulation results showed the advantage of the Euler method with greater order
of approximation. Indeed, the higher the order of approximation is, the longer the sampling
period is augmented, and the solutions’ feasibility becomes guaranteed. Consequently,
the stability regions became broader. The results proved the Euler method influence
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on the continuous stability regions, which was checked on the basis of SOS stability
conditions. Indeed, the stability of the continuous models could be guaranteed using
the obtained discrete controller and the Lyapunov polynomial function. This stability
could not have been guaranteed using the classical quadratic Lyapunov function since it
leads to BMI. In this case, the non PDC control law can be used in the continuous case,
and, consequently, the BMIs problems are avoided, and the LMI drawbacks using the
non-quadratic approaches are overcome.
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