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Abstract: In this paper, we present a new modified iteration process in the setting of uniformly convex
Banach space. The newly obtained iteration process can be used to approximate a common fixed
point of three nonexpansive mappings. We have obtained strong and weak convergence results for
three nonexpansive mappings. Additionally, we have provided an example to support the theoretical
proof. In the process, several relevant results are improved and generalized.
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1. Introduction

Nonlinear analysis is a natural mixture of Topology, Analysis and Linear Algebra.
Fixed-point theory is a very challenging and rapidly growing area of nonlinear functional
analysis. Obviously, results dealing with the existence of fixed points are termed as fixed
point theorems. Such theorems are very important tools for proving the existence and
uniqueness of the solutions to various mathematical models representing phenomena aris-
ing in different fields such as: optimization theories, variational inequalities, equilibrium
problems, economic theories, chemical equations, neutron transport theory, epidemics and
flow of fluids besides facilitating existence and uniqueness theories of differential, integral
and partial differential equations etc. Historically, the origin of fixed point theorem is
attributed to the work on differential equations by the French mathematicians H. Poincare
and Emile Picard. At the end of the 19th century, this theorem was moulded into several
successive versions. The general case was first proved in 1910 by Jacques Hadamard and
then in 1912 by Luitzen Egbertus Jan Brouwer [1]. Fixed-point theory is relatively old
but still a young area of research. There exists a vast literature on fixed-point theory and
this is still growing [2–6]. Banach Contraction Principle [7] is one of the prime results of
fixed-point theory. The early findings in fixed-point theory revolve around generalization
of Banach Contraction Principle. The entire mathematics community had to wait for the
first fixed-point theorem for nonexpansive mapping for 43 years. Let J be a nonempty
closed convex subset of a uniformly convex Banach space P. Then, a mapping G : J → J is
said to be nonexpansive if ‖Gc− Gb‖ ≤ ‖c− b‖ for all c, b ∈ J. A point c ∈ J is said to be a
fixed point of G if Gc = c. We will denote the set of fixed points of G by F(G). G is called
quasi-nonexpansive if F(G) 6= ∅ and ‖Gc− e‖ ≤ ‖c− e‖ for all c ∈ J with e ∈ F(G). It is
well known that every nonexpansive mapping with a fixed point is quasi-nonexpansive
mapping. It is well known Banach Contraction Principle does not hold good for nonexpan-
sive mappings i.e. nonexpansive mapping need not admit a fixed point on complete metric
space. Additionally, Picard iteration need not be convergent for a nonexpansive map in
a complete metric space. This led to the beginning of a new era of fixed-point theory for
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nonexpansive mappings using geometric properties. In 1965, Browder [8], Göhde [9] and
Kirk [10] gave three basic existence results in respect of nonexpansive mappings.

Approximation of fixed points in different domains for nonlinear mappings using the
different iterative processes is the thrust of fixed-point theory. Owing to its importance,
fixed-point theory is attracting young researchers across the world and in the last few years
many iterative processes have been obtained in different domains. To name a few, we
have Mann iteration [11], Ishikawa iteration [12], Halpern iteration [13], Noor iteration [14],
S-iteration [15] and Abbas et al. iteration process [16]. In 2016, Thakur et al. [17] obtained
a new iteration process and proved some convergence results. The authors also claimed
that their process converges faster than Picard, Mann, Ishikawa, Noor, S and Abbas et
al. iteration process. In order to define their iteration, let G : J → J be a nonexpansive
mapping, then a sequence {cn} is constructed from arbitrary c1 ∈ J by:

an = (1− κn)cn + κnGcn

bn = (1− δn)an + δnGan

cn+1 = (1− µn)Gan + µnGbn, n ∈ N
(1)

where {µn}, {δn} and {κn} are real sequences in (0, 1).
Motivated and inspired by the research going on in this direction, we introduce

a new iteration process for approximating common fixed point of three nonexpansive
mappings. Let G1, G2, G3 : J → J be three nonexpansive mappings, then the sequence {cn}
is generated iteratively by c1 ∈ J and

an = (1− κn)cn + κnG1cn

bn = (1− δn)an + δnG2an

cn+1 = (1− µn)G2an + µnG3bn, n ∈ N
(2)

where {µn}, {δn} and {κn} are real sequences in (0, 1).
The aim of this paper is to prove some weak and strong convergence results involving

the iteration process (2) for three nonexpansive mappings. Furthermore, we provide a
numerical example to support our theoretical claims. Our results extend the corresponding
results of [17].

2. Preliminaries

For making our paper self-contained, we collect some basic definitions and needed
results.

Definition 1. A Banach space P is said to be uniformly convex if for each ε ∈ (0, 2] there is a
α > 0 such that for c, b ∈ P with ‖c‖ ≤ 1, ‖b‖ ≤ 1 and ‖c− b‖ > ε, we have∥∥∥ c + b

2

∥∥∥ < 1− α.

Definition 2. A Banach space P is said to satisfy the Opial’s condition if for any sequence {cn} in
P which converges weakly to c ∈ P i.e., cn ⇀ c implies that

lim sup
n→∞

‖cn − c‖ < lim sup
n→∞

‖cn − b‖

for all b ∈ P with b 6= c.

Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp

spaces (1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p 6= 2 fail to satisfy Opial’s
condition.
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A mapping G : J → P is demiclosed at b ∈ P if for each sequence {cn} in J and each
c ∈ P, cn ⇀ c and Gcn → b imply that c ∈ J and Gc = b.

Let J be a nonempty closed convex subset of a Banach P, and let {cn} be a bounded
sequence in P. For c ∈ P write:

r(c, {cn}) = lim sup
n→∞

d(c, cn).

The asymptotic radius of {cn} relative to J is given by

r({cn}) = inf{r(c, cn) : c ∈ J}

and the asymptotic center A(J, {cn}) of {cn} is defined as:

A(J, {cn}) = {c ∈ J : r(c, {cn}) = r({cn})}.

It is known that in a uniformly convex Banach space, A(J, {cn}) consists of exactly
one point.

Next, we list a lemma which will be useful in our subsequent discussion.

Lemma 1 ([8]). Let J be a nonempty closed convex subset of a uniformly convex Banach space P
and G a nonexpansive mapping on J. Then, I − G is demiclosed at zero.

The following lemma due to Schu [18] is very useful in our subsequent discussion.

Lemma 2. Let P be a uniformly convex Banach space and {tn} be any sequence such that 0 <
p ≤ tn ≤ q < 1 for some p, q ∈ R and for all n ≥ 1. Let {cn} and {bn} be any two sequences of
P such that lim sup

n→∞
‖cn‖ ≤ r, lim sup

n→∞
‖bn‖ ≤ r and lim sup

n→∞
‖tncn + (1− tn)bn‖ = r for some

r ≥ 0. Then, lim
n→∞

‖cn − bn‖ = 0.

3. Convergence results

Lemma 3. Let J be a nonempty closed convex subset of a Banach space P and G1, G2, G3 : J → J
be three nonexpansive mappings with F(G1) ∩ F(G2) ∩ F(G3) 6= ∅. Let {cn} be defined by the
iteration process (1.2). Then
(i) lim

n→∞
||cn − e|| exists for all e ∈ F(G1) ∩ F(G2) ∩ F(G3),

(ii) lim
n→∞

||G1cn − cn|| = lim
n→∞

||G2cn − cn|| = lim
n→∞

||G3cn − cn|| = 0.

Proof. (i) Let e ∈ F(G1) ∩ F(G2) ∩ F(G3). Then, using (2) we get

||an − e|| = ||(1− κn)cn + κnG1cn − e||
≤ (1− κn)||cn − e||+ κn||G1cn − e||
≤ (1− κn)||cn − e||+ κn||cn − e||
= ||cn − e||

(3)

and
||bn − e|| = ||(1− δn)an + δnG2an)− e||

≤ (1− δn)||an − e||+ δn||G2an − e||
≤ (1− δn)||an − e||+ δn||an − e||
= ||an − e||
≤ ||cn − e||.

(4)
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Using (3) and (4) we obtain

||cn+1 − e|| = ||(1− µn)G2an + µnG3bn − e||
≤ (1− µn)||G2an − e||+ µn||G3bn − e||
≤ (1− µn)||an − e||+ µn||bn − e||
≤ ||an − e||
≤ ||cn − e||.

(5)

Thus, {||cn − e||} is bounded and non-increasing for all e ∈ F(G1) ∩ F(G2) ∩ F(G3) which
gives that lim

n→∞
||cn − e|| exists for all e ∈ F(G1) ∩ F(G2) ∩ F(G3).

(ii) Let
lim

n→∞
||cn − e|| = r. (6)

From (3) and (4), we obtain

||cn+1 − e|| ≤ ||an − e|| ≤ ||cn − e||

which gives
lim

n→∞
||an − e|| = r. (7)

Additionally, Since G1 is nonexpansive so, we have

lim sup
n→∞

||G1cn − e|| ≤ lim sup
n→∞

||cn − e|| = r. (8)

Now, (6)– (8) along with Lemma 2 gives

lim
n→∞

||G1cn − cn|| = 0. (9)

From (4) and (7), we have

lim sup
n→∞

||bn − e|| ≤ lim sup
n→∞

||an − e|| = r. (10)

Now, consider
||cn+1 − e|| ≤ (1− µn)||an − e||+ µn||bn − e||

≤ (1− µn)||cn − e||+ µn||bn − e||

which gives

||cn − e|| ≤ ||bn − e||+ 1
µn

(||cn − e|| − ||cn+1 − e||).

Therefore, we get
r ≤ lim inf

n→∞
||bn − e||. (11)

On using (10) and (11), we obtain

lim
n→∞

||bn − e|| = r. (12)

Additionally, nonexpansiveness of G2 and (7) yields

lim sup
n→∞

||G2an − e|| ≤ r. (13)

From (7), (12), (13) and Lemma 2 we obtain

lim
n→∞

||G2an − an|| = 0. (14)
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Consider
||an − cn|| = ||(1− κn)cn + κnG1cn − cn||

= κn||G1cn − cn||.

which on using (9) results into
lim

n→∞
||an − cn|| = 0. (15)

Now,
||G2cn − cn|| ≤ ||G2cn − G2an||+ ||G2an − an||+ ||an − cn||

≤ ||G2an − an||+ 2||an − cn||

which on using (14) and (15) yields

lim
n→∞

||G2cn − cn|| = 0. (16)

Now, since G3 is nonexpansive, so we h

lim sup
n→∞

||G3bn − e|| ≤ lim sup
n→∞

||bn − e|| = r. (17)

On using, (6), (13), (17) and Lemma 2, we obtain

lim
n→∞

||G2an − G3bn|| = 0. (18)

Additionally,

||bn − cn|| = ||(1− δn)an + δnG2an − cn||
≤ (1− δn)||an − cn||+ δn(||G2an − an||+ ||an − cn||)

which along with (14) and (15) results into

lim
n→∞

||bn − cn|| = 0. (19)

Now,

||G3cn − cn|| ≤ ||G3cn − G3bn||+ ||G3bn − G2an||+ ||G2an − an||+ ||an − cn||
≤ ||cn − bn||+ ||G3bn − G2an||+ ||G2an − an||+ ||an − cn||

on using (14), (15), (18) and (19), we obtain

lim
n→∞

||G3cn − cn|| = 0.

Now, we prove the weak convergence of iteration process (2) using Opial property.

Theorem 1. Let J be a nonempty closed convex subset of a uniformly convex Banach space P
which satisfies the Opial’s condition and G1, G2, G3 : J → J be three nonexpansive mapping with
F(G1) ∩ F(G2) ∩ F(G3) 6= ∅. If {cn} is defined by the iteration process (2), then {cn} converges
weakly to a common fixed point of G1, G2 and G3.

Proof. Let e ∈ F(G1) ∩ F(G2) ∩ F(G3). Then, from Lemma 3 lim
n→∞

||cn − e|| exists. In

order to show the weak convergence of the iteration process (2) to a common fixed point
of G1, G2 and G3, we will prove that {cn} has a unique weak subsequential limit in
F(G1) ∩ F(G2) ∩ F(G3). For this, let {cnj} and {cnk} be two subsequences of {cn} which
converges weakly to w and u respectively. By Lemma 3, we have lim

n→∞
||G1cn − cn|| =

lim
n→∞

||G2cn − cn|| = lim
n→∞

||G3cn − cn|| = 0 and using the Lemma 1, we have I − G1, I − G2

and I − G3 are demiclosed at zero. So w, u ∈ F(G1) ∩ F(G2) ∩ F(G3).
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Next, we show the uniqueness. Since w, u ∈ F(G1) ∩ F(G2) ∩ F(G3), so lim
n→∞

||cn − w|| and

lim
n→∞

||cn − u|| exists. Let w 6= u. Then, by Opial’s condition, we obtain

lim
n→∞

||cn − w|| = lim
n→∞

||cnj − w||
< lim

n→∞
||cnj − u||

= lim
n→∞

||cn − u||
= lim

n→∞
||cnk − u||

< lim
n→∞

||cnk − w||
= lim

n→∞
||cn − w||

which is a contradiction, so w = u. Thus, {cn} converges weakly to a common fixed point
of G1, G2 and G3.

Next, we establish some strong convergence results for iteration process (2).

Theorem 2. Let J be a nonempty closed convex subset of a uniformly convex Banach space P and
G1, G2, G3 : J → J be three nonexpansive mappings with F(G1) ∩ F(G2) ∩ F(G3) 6= ∅. If {cn}
is defined by the iteration process (2), then {cn} converges to a point of F(G1) ∩ F(G2) ∩ F(G3) if
and only if lim inf

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0.

Proof. If the sequence {cn} converges to a point e ∈ F(G1) ∩ F(G2) ∩ F(G3), then it is
obvious that lim inf

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0.

For the converse part, assume that lim inf
n→∞

d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0. From

Lemma 3, we have lim
n→∞

||cn − e|| exists for all e ∈ F(G1) ∩ F(G2) ∩ F(G3), which gives

||cn+1 − e|| ≤ ||cn − e|| for any e ∈ F(G1) ∩ F(G2) ∩ F(G3)

which yields

d(cn+1, F(G1) ∩ F(G2) ∩ F(G3)) ≤ d(cn, F(G1) ∩ F(G2) ∩ F(G3)). (20)

Thus, {d(cn, F(G1) ∩ F(G2) ∩ F(G3))} forms a decreasing sequence which is bounded
below by zero as well, so we obtain lim

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) exists. As, lim inf

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0 so lim

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0.

Next, we prove that {cn} is a Cauchy sequence in J. Let ε > 0 be arbitrarily chosen.
Since lim

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0, there exists n0 such that for all n ≥ n0, we

have
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) <

ε

4
.

In particular,

inf{||cn0 − e|| : e ∈ F(G1) ∩ F(G2) ∩ F(G3)} <
ε

4
,

so there must exist a b ∈ F(G1) ∩ F(G2) ∩ F(G3) such that

||cn0 − b|| < ε

2
.

Thus, for m, n ≥ n0, we have

||cn+m − cn|| ≤ ||cn+m − b||+ ||cn − b|| < 2||cn0 − b|| < 2
ε

2
= ε
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which shows that {cn} is a Cauchy sequence. Since J is a closed subset of a Banach
space P, therefore {cn} must converge in J. Let, lim

n→∞
cn = s for some s ∈ J. Now using

lim
n→∞

||G1cn − cn|| = 0, we obtain

||s− G1s|| ≤ ||s− cn||+ ||cn − G1cn||+ ||G1cn − G1s||
≤ ||s− cn||+ ||cn − G1cn||+ ||cn − s||
→ 0 as n→ ∞

and hence s = G1s. Similarly, we can show that s = G2s and s = G3s, thus s ∈ F(G1) ∩
F(G2) ∩ F(G3). This proves our result.

Three mappings G1, G2, G3 : J → J are said to satisfy the Condition (A) ([19]) if there
exists a nondecreasing function t : [0, ∞) → [0, ∞) with t(0) = 0 and t(r) > 0 for all
r ∈ (0, ∞) such that

‖u− G1u‖ ≥ t(d(u, F(G1) ∩ F(G2) ∩ F(G3)))

or
‖u− G2u‖ ≥ t(d(u, F(G1) ∩ F(G2) ∩ F(G3)))

or
‖u− G3u‖ ≥ t(d(u, F(G1) ∩ F(G2) ∩ F(G3)))

for all u ∈ J.

Theorem 3. Let J be a nonempty closed convex subset of a uniformly convex Banach space P. Let
G1, G2, G3 : J → J be three nonexpansive mapping such that F(G1) ∩ F(G2) ∩ F(G3) 6= ∅ and
{cn} be the sequence defined by (2). If G1, G2 and G3 satisfies Condition (A), then {cn} converges
strongly to a point of F(G1) ∩ F(G2) ∩ F(G3).

Proof. From (20) we obtain lim
n→∞

d(cn, F(G1) ∩ F(G2) ∩ F(G3)) exists.

Additionally, by Lemma 3, we have lim
n→∞

||cn−G1cn|| = lim
n→∞

||cn−G2cn|| = lim
n→∞

||cn−
G3cn|| = 0.

It follows from condition (A) that

lim
n→∞

t(d(cn, F(G1) ∩ F(G2) ∩ F(G3))) ≤ lim
n→∞

||cn − G1cn|| = 0,

or
lim

n→∞
t(d(cn, F(G1) ∩ F(G2) ∩ F(G3))) ≤ lim

n→∞
||cn − G2cn|| = 0,

or
lim

n→∞
t(d(cn, F(G1) ∩ F(G2) ∩ F(G3))) ≤ lim

n→∞
||cn − G3cn|| = 0,

so that lim
n→∞

t(d(cn, F(G1) ∩ F(G2) ∩ F(G3))) = 0.

Since t is a nondecreasing function satisfying t(0) = 0 and t(r) > 0 for all r ∈ (0, ∞),
therefore lim

n→∞
d(cn, F(G1) ∩ F(G2) ∩ F(G3)) = 0.

By Theorem 2, the sequence {cn} converges strongly to a point of F(G1) ∩ F(G2) ∩
F(G3).
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4. Numerical Example

In this section, with the help of an example we will show the convergence of (1.2) to
common fixed point of three nonexpansive mappings.

Example 1. Let P = R with the usual norm, J = [0, ∞) and G1, G2, G3 : J → J be defined as:
G1 = c

3 , G2 = c
4 and G3 = c

5 .
It is very easy to show that G1, G2 and G3 are nonexpansive mappings and 0 is their common

fixed point. Set µn = 1
3n+7 , δn = 2n

5n+2 and κn = n
n+2 . We obtain the following tables and graphs

for different initial values.

It is evident from below Tables 1 and 2, Figures 1 and 2 that our Algorithm (1.2)
converges efficiently to common fixed point of three above mentioned nonexpansive
mappings.

Figure 1. Graph corresponding to Table 1.

Figure 2. Graph corresponding to Table 2.
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Table 1. Values of the iteration corresponding different initial values near 0.

Step When c1 = 0.5 When c1 = 0.7 When c1 = 0.9

1 0.5 0.7 0.9
2 0.09361111 0.1310556 0.1685
3 0.01512179 0.02117051 0.02721923
4 0.002209895 0.003093853 0.00397781
5 0.0003001744 0.0004202442 0.000540314
6 0.00003855415 0.00005397581 0.00006939747
7 4.737341× 10−6 6.632277× 10−6 8.527214× 10−6

8 5.615388× 10−7 7.861544× 10−7 1.01077× 10−6

Table 2. Values of the iteration corresponding different initial values which is away from 0.

Step When c1 = 10 When c1 = 100 When c1 = 1000

1 10 100 1000
2 1.872222 18.72222 187.2222
3 0.3024359 3.024359 30.24359
4 0.04419789 0.44197897 4.419789
5 0.006003488 0.06003488 0.6003488
6 0.000771083 0.00771083 70.0771083
7 0.00009474682 0.0009474682 0.009474682
8 0.00001123078 0.0001123078 0.001123078
9 1.292143× 10−6 0.00001292143 0.0001292143

10 1.449783× 10−7 1.449783× 10−6 0.00001449783

5. Conclusions

A new iteration process is proposed in the framework of uniformly convex Banach
space dealing with the common fixed point of three nonexpansive mappings. Some
convergence results are also proved along with a numerical example. It should be noted
that G1 = G2 = G3 = G is a special case of (2), so our main results extend the results of [17]
from one nonexpansive mapping to three nonexpansive mappings.
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