Article

Jensen Functional, Quasi-Arithmetic Mean and Sharp Converses of Hölder's Inequalities

Slavko Simićc ${ }^{1, * \text { © }}$ and Vesna Todorčevićc ${ }^{1,2}$

1 Mathematical Institute SANU, 11000 Belgrade, Serbia; vesna.todorcevic@fon.bg.ac.rs
2 Department of Mathematics, Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia

* Correspondence: ssimic@turing.mi.sanu.ac.rs

Citation: Simić, S.; Todorčević, V. Jensen Functional, Quasi-Arithmetic Mean and Sharp Converses of Hölder's Inequalities. Mathematics 2021, 9, 3104. https://doi.org/ 10.3390/math 9233104

Academic Editor: Marius Radulescu

Received: 15 November 2021
Accepted: 28 November 2021
Published: 1 December 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Abstract

In this article, we give sharp two-sided bounds for the generalized Jensen functional $J_{n}(f, g, h ; p, x)$. Assuming convexity/concavity of the generating function h, we give exact bounds for the generalized quasi-arithmetic mean $A_{n}(h ; p, x)$. In particular, exact bounds are determined for the generalized power means in terms from the class of Stolarsky means. As a consequence, some sharp converses of the famous Hölder's inequality are obtained.

Keywords: quasi-arithmetic means; power means; convex functions; Hölder's inequality

1. Introduction

Recall that the Jensen functional $J_{n}(\phi ; \boldsymbol{p}, \boldsymbol{x})$ is defined on an interval $I \subseteq \mathbb{R}$ by

$$
J_{n}(\phi ; p, x):=\sum_{1}^{n} \boldsymbol{p}_{i} \phi\left(x_{i}\right)-\phi\left(\sum_{1}^{n} p_{i} x_{i}\right),
$$

where $\phi: I \rightarrow \mathbb{R}, \boldsymbol{x}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right) \in I^{n}$ and $\boldsymbol{p}=\left\{\boldsymbol{p}_{i}\right\}_{1}^{n}, \sum_{1}^{n} \boldsymbol{p}_{i}=1$, is a positive weight sequence.

If ϕ is a convex function on I, then the inequality

$$
0 \leq J_{n}(\phi ; \boldsymbol{p}, \boldsymbol{x})
$$

holds for each $x \in I^{n}$ and any positive weight sequence p.
Jensen's inequality plays a fundamental role in many parts of mathematical analysis and applications. For example, well known $\mathcal{A}-\mathcal{G}-\mathcal{H}$ inequality, Hölder's inequality, Ky Fan inequality, etc., are proven by the help of Jensen's inequality (cf. [1-4]).

Assuming that $x \in[a, b]^{n} \subset I^{n}$, our aim in this paper is to determine some sharp bounds for the generalized Jensen functional

$$
J_{n}(f, g, h ; p, x):=f\left(\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\boldsymbol{x}_{i}\right)\right)-g\left(h\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right)\right)
$$

for suitably chosen functions f, g and h, such that

$$
c_{f, g, h}(a, b) \leq J_{n}(f, g, h ; p, x) \leq C_{f, g, h}(a, b),
$$

i.e., the bounds which does not depend on p or x, but only on a, b and functions f, g and h.

Our global bounds will be entirely presented in terms of elementary means.
Recall that the mean is a map $M: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, with a property

$$
\min (x, y) \leq M(x, y) \leq \max (x, y)
$$

for each $x, y \in \mathbb{R}_{+}$.

In order to make our results condensed and applicable, we shall use in the sequel the class of so-called Stolarsky (or extended) two-parametric mean values, defined for positive values of $x, y, x \neq y$ by the following:

$$
E_{r, s}(x, y)= \begin{cases}\left(\frac{r\left(x^{s}-y^{s}\right)}{s\left(x^{r}-y^{r}\right)}\right)^{1 /(s-r)}, & r s(r-s) \neq 0 \\ \exp \left(\frac{-1}{s}+\frac{x^{s} \log x-y^{s} \log y}{x^{s}-y^{s}}\right), & r=s \neq 0 \\ \left(\frac{x^{s}-y^{s}}{s(\log x-\log y)}\right)^{1 / s}, & s \neq 0, r=0 \\ \sqrt{x y}, & r=s=0 \\ x, & y=x>0\end{cases}
$$

In this form, it was introduced by Keneth Stolarsky in [5].
Most of the classical two variable means are just special cases of the class E.
For example,

$$
A(x, y)=E_{1,2}(x, y)=\frac{x+y}{2}
$$

is the arithmetic mean;

$$
G(x, y)=E_{0,0}(x, y)=E_{-r, r}(x, y)=\sqrt{x y}
$$

is the geometric mean;

$$
L(x, y)=E_{0,1}(x, y)=\frac{x-y}{\log x-\log y}
$$

is the logarithmic mean;

$$
I(x, y)=E_{1,1}(x, y)=\left(x^{x} / y^{y}\right)^{\frac{1}{x-y}} / e
$$

is the identric mean, etc.
More generally, the r-th power mean

$$
A_{r}(x, y)=\left(\frac{x^{r}+y^{r}}{2}\right)^{1 / r}
$$

is equal to $E_{r, 2 r}(\boldsymbol{x}, \boldsymbol{y})$.
Theory of Stolarsky means is very well developed, cf. [6,7] and references therein.
Some basic properties are listed in the following:
Means $E_{r, s}(\boldsymbol{x}, \boldsymbol{y})$ are
a. symmetric in both parameters, i.e., $E_{r, s}(x, y)=E_{s, r}(x, y)$;
b. symmetric in both variables, i.e., $E_{r, s}(\boldsymbol{x}, y)=E_{r, s}(y, x)$;
c. homogeneous of order one, that is $E_{r, s}(t x, t y)=t E_{r, s}(x, y), t>0$;
d. monotone increasing in either r or s;
e. monotone increasing in either x or y; and
f. logarithmically convex in either r or s for $r, s \in \mathbb{R}_{-}$and logarithmically concave for $r, s \in \mathbb{R}_{+}$.

Let $h: I \rightarrow J$ be a continuous and strictly monotone function on an interval $I \subset \mathbb{R}$. Then, its inverse function $h^{-1}: J \rightarrow I$ exists and generates so-called quasi - arithmetic mean $\mathcal{A}_{h}(\boldsymbol{p}, \boldsymbol{x})$, given by

$$
\mathcal{A}_{h}(\boldsymbol{p}, \boldsymbol{x}):=h^{-1}\left(\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\boldsymbol{x}_{i}\right)\right),
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in I^{n}$ and $\boldsymbol{p}=\left\{\boldsymbol{p}_{i}\right\}_{1}^{n}, \sum_{1}^{n} \boldsymbol{p}_{i}=1$ is a positive weight sequence.

Quasi-arithmetic means are introduced in [1] and then investigated by a plenty of researchers with most interesting results (cf. [8]). In this article, we shall give tight twosided bounds for the difference

$$
\mathcal{A}_{h}(p, x)-\mathcal{A}(p, x)
$$

An important special case is the class of generalized power means $\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})$, generated by $h(x)=x^{s}, s \in \mathbb{R} /\{0\}$,

$$
\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})=\left(\sum_{1}^{n} \boldsymbol{p}_{i} x_{i}^{s}\right)^{1 / s} .
$$

It is well known fact that power means are monotone increasing in $s \in \mathbb{R}$ (cf. [1]).
Some important particular cases are

$$
\begin{gathered}
\mathcal{B}_{-1}(\boldsymbol{p}, \boldsymbol{x})=\left(\sum_{1}^{n} \boldsymbol{p}_{i} / \boldsymbol{x}_{i}\right)^{-1}:=\mathcal{H}(\boldsymbol{p}, \boldsymbol{x}) \\
\mathcal{B}_{0}(\boldsymbol{p}, \boldsymbol{x})=\lim _{s \rightarrow 0} \mathcal{B}_{s}(\boldsymbol{p}, \mathbf{x})=\prod_{1}^{n} x_{i}^{p_{i}}:=\mathcal{G}(\boldsymbol{p}, \boldsymbol{x}) ; \\
\mathcal{B}_{1}(\boldsymbol{p}, \boldsymbol{x})=\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}:=\mathcal{A}(\boldsymbol{p}, \mathbf{x})
\end{gathered}
$$

that is, the generalized harmonic, geometric and arithmetic means, respectively.
Therefore,

$$
\mathcal{H}(p, x) \leq \mathcal{G}(p, x) \leq \mathcal{A}(p, \mathbf{x})
$$

represents the celebrated $\mathcal{A}-\mathcal{G}-\mathcal{H}$ inequalities.
Some converses of these inequalities will be given in this paper.
For arbitrary positive sequences a and b and real numbers s, t with $1 / s+1 / t=1$, the celebrated Hölder's inequalities says that

$$
\sum_{1}^{n} a_{i} b_{i} \leq\left(\sum_{1}^{n} a_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} b_{i}^{t}\right)^{1 / t}, s>1
$$

and

$$
\sum_{1}^{n} a_{i} b_{i} \geq\left(\sum_{1}^{n} a_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} b_{i}^{t}\right)^{1 / t}, 0<s<1
$$

We shall give in the sequel precise estimations of the difference

$$
\sum_{1}^{n} a_{i} b_{i}-\left(\sum_{1}^{n} a_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} b_{i}^{t}\right)^{1 / t}
$$

and the quotient

$$
\left(\sum_{1}^{n} a_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} b_{i}^{t}\right)^{1 / t} / \sum_{1}^{n} a_{i} b_{i}
$$

that is,

$$
\sum_{1}^{n} a_{i} b_{i} \leq\left(\sum_{1}^{n} a_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} b_{i}^{t}\right)^{1 / t} \leq \frac{E_{s+t, s}(a, b) E_{s+t, t}(a, b)}{G^{2}(a, b)} \sum_{1}^{n} a_{i} b_{i}
$$

for $1 / s+1 / t=1, s, t>1 ; a \leq a_{i}^{1 / t} / b_{i}^{1 / s} \leq b, i=1,2, \ldots, n$.

2. Results and Proofs

Our main result concerning the generalized Jensen functional $J_{n}(f, g, h ; \boldsymbol{p}, \boldsymbol{x})$ is given by the following:

Theorem 1. Let $f: J \rightarrow \mathbb{R}, g: J \rightarrow \mathbb{R}, h: I \rightarrow J$ be continuous and eventually differentiable functions on their domains.

For $x \in[a, b]^{n} \subset I^{n}$, let h be convex on I and f be an increasing function on J.
Then,

$$
\begin{gathered}
c_{f, g, h}(a, b):=\min _{p}[(f \circ h+g \circ h)(p a+(1-p) b)] \\
\leq J_{n}(f, g, h ; p, \boldsymbol{x}) \leq \\
\max _{p}[f(p h(a)+(1-p) h(b))-g(h(\boldsymbol{p} a+(1-p) b))]:=C_{f, g, h}(a, b) .
\end{gathered}
$$

Both bounds $c_{f, g, h}(a, b)$ and $C_{f, g, h}(a, b)$ are sharp.
Proof. Since $a \leq x_{i} \leq b$, there exist non-negative numbers $\lambda_{i}, \mu_{i} ; \lambda_{i}+\mu_{i}=1$, such that $x_{i}=\lambda_{i} a+\mu_{i} b, i=1,2, \ldots, n$.

Hence,

$$
\begin{gathered}
J_{n}(f, g, h ; \boldsymbol{p}, \boldsymbol{x})=f\left(\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\boldsymbol{x}_{i}\right)\right)-g\left(h\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right)\right)=f\left(\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\lambda_{i} a+\mu_{i} b\right)\right)-g\left(h\left(\sum_{1}^{n} \boldsymbol{p}_{i}\left(\lambda_{i} a+\mu_{i} b\right)\right)\right) \\
\left.\leq f\left(\sum_{1}^{n} \boldsymbol{p}_{i}\left(\lambda_{i} h(a)+\mu_{i} h(b)\right)\right)-g\left(h\left(a \sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}+b \sum_{1}^{n} \boldsymbol{p}_{i} \mu_{i}\right)\right)\right) \\
=f(\boldsymbol{p} h(a)+(1-\boldsymbol{p}) h(b))-g(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b)) \leq \max _{\boldsymbol{p}}[f(\boldsymbol{p} h(a)+(1-\boldsymbol{p}) h(b))-g(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b))],
\end{gathered}
$$

where we denoted $\sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}:=\boldsymbol{p} \in[0,1]$.
The above estimate is valid for arbitrary sequences p and x. To prove its sharpness, suppose that the maxima is reached at the point $p=p_{0}$, i.e.,

$$
\begin{gathered}
\max _{\boldsymbol{p}}[f(\boldsymbol{p h}(a)+(1-\boldsymbol{p}) h(b))-g(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b))] \\
=f\left(\boldsymbol{p}_{0} h(a)+\left(1-\boldsymbol{p}_{0}\right) h(b)\right)-g\left(h\left(\boldsymbol{p}_{0} a+\left(1-\boldsymbol{p}_{0}\right) b\right)\right)=C_{f, g, h}(a, b)
\end{gathered}
$$

Then

$$
J_{n}\left(f, g, h ; p_{0}, x_{0}\right)=C_{f, g, h}(a, b)
$$

where

$$
p_{0}=\left(p_{0}, p_{2}, \ldots, p_{n}\right), x_{0}=(a, b, \ldots, b)
$$

On the other hand, since h is a convex function on I, by Jensen's inequality we get

$$
\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\boldsymbol{x}_{i}\right) \geq h\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right)
$$

Because f is an increasing function, it follows that

$$
\begin{gathered}
J_{n}(f, g, h ; \boldsymbol{p}, \boldsymbol{x})=f\left(\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\boldsymbol{x}_{i}\right)\right)-g\left(h\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right)\right) \geq f\left(h\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right)\right)-g\left(h\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right)\right) \\
=f(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b))-g(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b)) \geq \min _{\boldsymbol{p}}[(f \circ h+g \circ h)(\boldsymbol{p} a+(1-\boldsymbol{p}) b)]:=c_{f, g, h}(a, b) .
\end{gathered}
$$

A simple analysis of the constant $c_{f, g, h}(a, b)$ reveals the next: if minima of the function $(f \circ h+g \circ h)(t)$ exists for $t=t_{0} \in[a, b]$, then $c_{f, g, h}(a, b)=(f \circ h+g \circ h)\left(t_{0}\right)$, taken for $\boldsymbol{p}=\boldsymbol{p}_{0}=\left(b-t_{0}\right) /(b-a)$.

Otherwise, we have that $c_{f, g, h}(a, b)=\min \{(f \circ h+g \circ h)(a),(f \circ h+g \circ h)(b)\}$.
Those results are evidently sharp, since

$$
J_{n}\left(f, g, h ; p, x_{0}\right)=c_{f, g, h}(a, b)
$$

with $x_{0}=\left(t_{0}, \ldots, t_{0}\right), x_{0}=(a, \ldots, a)$ or $x_{0}=(b, \ldots, b)$, respectively.

Theorem 1 with its variants (a decreasing function f, concave function h) is the source of a plenty of interesting inequalities. Further investigations are left to the reader.

Sometimes, it is a difficult problem to evaluate exact maxima in this theorem.
For this cause, we shall give in the sequel two estimations of $J_{n}(f, g, h ; p, \mathbf{x})$ with the unique maxima, which could be easily calculated.

Theorem 2. Under the conditions of Theorem 1, assume firstly that f is a convex function on J. Then,

$$
J_{n}(f, g, h ; \boldsymbol{p}, \mathbf{x}) \leq \max _{p}[\boldsymbol{p}(f \circ h)(a)+(1-\boldsymbol{p})(f \circ h)(b)-(g \circ h)(\boldsymbol{p} a+(1-\boldsymbol{p}) b)]
$$

Assuming that $g \circ h$ is a concave function, we obtain

$$
J_{n}(f, g, h ; \boldsymbol{p}, \mathbf{x}) \leq \max _{p}[f(p h(a)+(1-\boldsymbol{p}) h(b))-(\boldsymbol{p}(g \circ h)(a)+(1-\boldsymbol{p})(g \circ h)(b))]
$$

Now, both maxima can be easily determined by the standard technique.
Proof. By Theorem 1, we know that there exists $\boldsymbol{p} \in[0,1]$ such that

$$
J_{n}(f, g, h ; \boldsymbol{p}, \mathbf{x}) \leq f(\boldsymbol{p} h(a)+(1-\boldsymbol{p}) h(b))-g(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b))
$$

If additionally f is convex on J, then

$$
f(p h(a)+(1-\boldsymbol{p}) h(b)) \leq \boldsymbol{p}(f \circ h)(a)+(1-\boldsymbol{p})(f \circ h)(b) .
$$

Hence,

$$
\begin{aligned}
& \left.J_{n}(f, g, h ; \boldsymbol{p}, \mathbf{x}) \leq \boldsymbol{p}(f \circ h)(a)+(1-\boldsymbol{p})(f \circ h)(b)-(g \circ h)(\boldsymbol{p} a+(1-\boldsymbol{p}) b)\right) \\
& \left.\quad \leq \max _{p}[\boldsymbol{p}(f \circ h)(a)+(1-\boldsymbol{p})(f \circ h)(b)-(g \circ h)(\boldsymbol{p} a+(1-\boldsymbol{p}) b))\right]
\end{aligned}
$$

Similarly, if $g \circ h$ is a concave function on J, we have

$$
g(h(\boldsymbol{p} a+(1-\boldsymbol{p}) b)=(g \circ h)(\boldsymbol{p} a+(1-\boldsymbol{p}) b) \geq \boldsymbol{p}(g \circ h)(a)+(1-\boldsymbol{p})(g \circ h)(b),
$$

and

$$
J_{n}(f, g, h ; \boldsymbol{p}, \mathbf{x}) \leq \max _{p}[f(\boldsymbol{p h}(a)+(1-\boldsymbol{p}) h(b))-(\boldsymbol{p}(g \circ h)(a)+(1-\boldsymbol{p})(g \circ h)(b))]
$$

An important special case is the converse of Jensen's inequality.
Theorem 3. Let ϕ be a convex function on $I \subset \mathbb{R}$ and, for $[\xi, \eta] \subset I$, let $x \in[\xi, \eta]^{n}$.
Then,

$$
0 \leq J_{n}(\phi ; \boldsymbol{p}, \mathbf{x}) \leq \max _{p}[\boldsymbol{p} \phi(\xi)+(1-\boldsymbol{p}) \phi(\eta)-\phi(p \xi+(1-\boldsymbol{p}) \eta)]:=T_{\phi}(\xi, \eta)
$$

If ϕ is a concave function, then
$0 \leq-J_{n}(\phi ; \boldsymbol{p}, \mathbf{x}) \leq \max _{p}[\phi(\boldsymbol{p} \xi+(1-\boldsymbol{p}) \eta)-(\boldsymbol{p} \phi(\xi)+(1-\boldsymbol{p}) \phi(\eta))]=-T_{\phi}(\xi, \eta)$.
The constant $T_{\phi}(\xi, \eta)$ is sharp since there exist sequences $\boldsymbol{p}_{0}, x_{0}$ such that

$$
J_{n}\left(\phi ; p_{0}, x_{0}\right)=T_{\phi}(\xi, \eta)
$$

Proof. This is a simple consequence of Theorem 1 obtained for $f(x)=g(x)=x ; h=\phi$. If ϕ is a concave function, then $-\phi$ is convex and the proof follows from the first part of this theorem.

In this case, the bound $T_{\phi}(\xi, \eta)$ can be explicitly calculated.

Theorem 4. For a differentiable convex mapping ϕ, we have that

$$
T_{\phi}(\xi, \eta)=\frac{\phi(\eta)-\phi(\xi)}{\eta-\xi} \Theta_{\phi}(\xi, \eta)+\frac{\eta \phi(\xi)-\xi \phi(\eta)}{\eta-\xi}-\phi\left(\Theta_{\phi}(\xi, \eta)\right)
$$

where $\Theta_{\phi}(\xi, \eta)$ is the Lagrange mean value of numbers ξ and η, defined by

$$
\Theta_{\phi}(\xi, \eta):=\left(\phi^{\prime}\right)^{-1}\left(\frac{\phi(\eta)-\phi(\xi)}{\eta-\xi}\right) .
$$

The function T_{ϕ} is positive and symmetric, i.e., $T_{\phi}(\xi, \eta)=T_{\phi}(\eta, \xi)$ and $\lim _{\eta \rightarrow \xi} T_{\phi}(\xi, \eta)=0$.
Proof. If the maximum is taken at the point $p=p_{0}$, by the standard technique we get

$$
\phi^{\prime}\left(\boldsymbol{p}_{0} \xi+\left(1-\boldsymbol{p}_{0}\right) \eta\right)(\xi-\eta)=\phi(\xi)-\phi(\eta)
$$

that is,

$$
p_{0} \xi+\left(1-p_{0}\right) \eta=\Theta_{\phi}(\xi, \eta)
$$

Therefore,

$$
p_{0}=\frac{\Theta_{\phi}(\xi, \eta)-\eta}{\xi-\eta} ; 1-p_{0}=\frac{\xi-\Theta_{\phi}(\xi, \eta)}{\xi-\eta}
$$

and

$$
\begin{aligned}
\max _{\boldsymbol{p}}[\boldsymbol{p} \phi(\xi)+ & (1-\boldsymbol{p}) \phi(\eta)-\phi(\boldsymbol{p} \xi+(1-\boldsymbol{p}) \eta)]=\boldsymbol{p}_{0} \phi(\xi)+\left(1-\boldsymbol{p}_{0}\right) \phi(\eta)-\phi\left(\boldsymbol{p}_{0} \xi+\left(1-\boldsymbol{p}_{0}\right) \eta\right) \\
& =\frac{\Theta_{\phi}(\xi, \eta)-\eta}{\xi-\eta} \phi(\xi)+\frac{\xi-\Theta_{\phi}(\xi, \eta)}{\xi-\eta} \phi(\eta)-\phi\left(\Theta_{\phi}(\xi, \eta)\right)=T_{\phi}(\xi, \eta)
\end{aligned}
$$

Now, some important inequalities concerning quasi-arithmetic mean can be easily obtained from Theorem 1 by putting $f=g=h^{-1}$. Nevertheless, in order to avoid unnecessary monotonicity issues, we turn another way.

Our main result is contained in the following:
Theorem 5. For $a \leq x_{i} \leq b, i=1,2, \ldots, n ; a, b \in I$, let $h: I \rightarrow J$ be continuous and strictly monotone function and assume that $h^{-1}: J \rightarrow I$ is convex. Then,

$$
0 \leq \mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{A}_{h}(\boldsymbol{p}, \mathbf{x}) \leq T_{h^{-1}}(h(a), h(b)),
$$

where the constant $T_{\phi}(\xi, \eta)$ is defined in Theorems 3 and 4.
If h^{-1} is a concave function, then

$$
0 \leq \mathcal{A}_{h}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{A}(\boldsymbol{p}, \mathbf{x}) \leq-T_{h^{-1}}(h(a), h(b)) .
$$

Proof. We shall give a simple proof of this theorem.
Namely, since h^{-1} is a convex function, applying the first part of Theorem 3 with $\phi=h^{-1}$, we obtain

$$
0 \leq \sum_{1}^{n} \boldsymbol{p}_{i} h^{-1}\left(\boldsymbol{x}_{i}\right)-h^{-1}\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}\right) \leq T_{h^{-1}}(a, b)
$$

Now, by changing variables $\boldsymbol{x}_{i} \rightarrow h\left(\boldsymbol{x}_{i}\right) i=1,2, \ldots, n$, we get $h^{-1}\left(x_{i}\right) \rightarrow h^{-1} \circ h\left(x_{i}\right)=x_{i}$ and $a \rightarrow h(a), b \rightarrow h(b)$.

Hence, $h(a) \leq h\left(x_{i}\right) \leq h(b)$ or $h(b) \leq h\left(x_{i}\right) \leq h(a)$ depending on the monotonicity of h. However, since $T_{\phi}(\xi, \eta)$ is symmetric in variables, we finally get

$$
0 \leq \sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}-h^{-1}\left(\sum_{1}^{n} \boldsymbol{p}_{i} h\left(\boldsymbol{x}_{i}\right)\right) \leq T_{h^{-1}}(h(a), h(b)) .
$$

The second part of this theorem can be proved along the same lines.
The most striking example of quasi-arithmetic means is the class of generalized power means $\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})$, generated by $h(x)=x^{s}, h^{-1}(x)=x^{1 / s}, s \in \mathbb{R} /\{0\}$, i.e.,

$$
\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})=\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}\right)^{1 / s} .
$$

As an application of Theorem 5, we shall estimate the difference $\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{A}(\boldsymbol{p}, \mathbf{x})$.
Theorem 6. Let $a \leq x_{i} \leq b, i=1,2, \ldots, n ; 0<a<b$.
Then,

$$
\begin{aligned}
0 & \leq \mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{A}(\boldsymbol{p}, \boldsymbol{x}) \leq \frac{s-1}{s}\left(E_{s, 1}(a, b)-\frac{G^{2}(a, b)}{E_{s, s-1}(a, b)}\right), s>1 \\
0 & \leq \mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x}) \leq \frac{1-s}{s}\left(E_{1, s}(a, b)-E_{1-s,-s}(a, b)\right), 0<s<1 \\
0 & \leq \mathcal{A}(\boldsymbol{p}, \mathbf{x})-\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x}) \leq \frac{s-1}{s}\left(E_{1-s,-s}(a, b)-E_{1, s}(a, b)\right), s<0
\end{aligned}
$$

Proof. Let $h(x)=x^{s}, h^{-1}(x)=x^{1 / s}, s \in \mathbb{R} /\{0\}$.
If $s>1$ then h^{-1} is a concave function on \mathbb{R}^{+}. Hence, by the second part of Theorem 5, we get

$$
0 \leq \mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{A}(\boldsymbol{p}, \boldsymbol{x}) \leq-T_{\boldsymbol{x}^{1 / s}}\left(a^{s}, b^{s}\right)
$$

Applying the result from Theorem 4, a simple calculation gives

$$
\Theta_{x^{1 / s}}\left(a^{s}, b^{s}\right)=\left(\frac{b^{s}-a^{s}}{s(b-a)}\right)^{s /(s-1)}=E_{s, 1}^{s}(a, b)=\frac{b^{s}-a^{s}}{s(b-a)} E_{s, 1}(a, b)
$$

Hence,

$$
\begin{gathered}
-T_{x^{1 / s}}\left(a^{s}, b^{s}\right)=(\Theta(\cdot))^{1 / s}-\frac{b-a}{b^{s}-a^{s}} \Theta(\cdot)-\frac{a b^{s}-b a^{s}}{b^{s}-a^{s}} \\
=E_{s, 1}(a, b)-\frac{1}{s} E_{s, 1}(a, b)-\frac{a b\left(b^{s-1}-a^{s-1}\right)}{b^{s}-a^{s}}=\frac{s-1}{s}\left(E_{s, 1}(a, b)-\frac{G^{2}(a, b)}{E_{s, s-1}(a, b)}\right) .
\end{gathered}
$$

In cases $0<s<1$ or $s<0$, one should apply the first part of Theorem 5, since $h^{-1}=x^{1 / s}$ is convex on \mathbb{R}^{+}. Proceeding as above, the result follows.

As a consequence, we obtain some converses of the $\mathcal{A}(p, x)-\mathcal{G}(p, x)-\mathcal{H}(p, x)$ inequality.
Corollary 1. Let $a \leq x_{i} \leq b, i=1,2, \ldots, n ; 0<a<b$.
Then,

$$
0 \leq \mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{H}(\boldsymbol{p}, \mathbf{x}) \leq 2(A(a, b)-G(a, b))
$$

Proof. Putting $s=-1$, we get

$$
\begin{gathered}
0 \leq \mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{B}_{-1}(\boldsymbol{p}, \mathbf{x})=\mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{H}(\boldsymbol{p}, \mathbf{x}) \\
\leq 2\left(E_{2,1}(a, b)-E_{1,-1}(a, b)\right)=2(A(a, b)-G(a, b))
\end{gathered}
$$

Corollary 2. Let $a \leq x_{i} \leq b, i=1,2, \ldots, n ; 0<a<b$.
Then,

$$
0 \leq \mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{G}(\boldsymbol{p}, \mathbf{x}) \leq L(a, b) \log \frac{L(a, b) I(a, b)}{G^{2}(a, b)}
$$

Proof. We have,

$$
\begin{gathered}
\mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{G}(\boldsymbol{p}, \mathbf{x})=\lim _{s \rightarrow 0}\left(\mathcal{A}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{B}_{s}(\boldsymbol{p}, \mathbf{x})\right) \\
\leq \lim _{s \rightarrow 0}\left(\frac{1-s}{s}\left(E_{1, s}(a, b)-E_{1-s,-s}(a, b)\right)\right) \\
=L(a, b) \log \frac{L(a, b) I(a, b)}{G^{2}(a, b)}
\end{gathered}
$$

The sequences p and x in Theorem 6 are arbitrary. Specializing a little bit, we obtain sharp converses of slightly generalized Hölder's inequalities.

Theorem 7. Let $\left\{t_{i}\right\}_{1}^{n},\left\{u_{i}\right\}_{1}^{n},\left\{v_{i}\right\}_{1}^{n}$ be any sequences of positive real numbers with $a \leq$ $u_{i} v_{i}^{1-t} \leq b$ for some constants $0<a<b$ and $1 / s+1 / t=1$ for some $s, t \in \mathbb{R}$.

Then,

$$
0 \leq\left(\sum_{1}^{n} t_{i} u_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} t_{i} v_{i}^{t}\right)^{1 / t}-\sum_{1}^{n} t_{i} u_{i} v_{i} \leq C_{s}(a, b) \sum_{1}^{n} t_{i} v_{i}^{t}
$$

with

$$
C_{s}(a, b)=\frac{s-1}{s}\left(E_{s, 1}(a, b)-\frac{G^{2}(a, b)}{E_{s, s-1}(a, b)}\right)
$$

and $s>1$;

$$
0 \leq \sum_{1}^{n} t_{i} u_{i} v_{i}-\left(\sum_{1}^{n} t_{i} u_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} t_{i} v_{i}^{t}\right)^{1 / t} \leq D_{s}(a, b) \sum_{1}^{n} t_{i} v_{i}^{t}
$$

where

$$
D_{s}(a, b)=\frac{1-s}{s}\left(E_{s, 1}(a, b)-E_{1-s,-s}(a, b)\right)
$$

and $0<s<1$.
Proof. Changing variables

$$
p_{i}=t_{i} v_{i}^{t} / \sum_{i}^{n} t_{i} v_{i}^{t} ; \quad x_{i}=u_{i} v_{i}^{1-t}, i=1,2, \ldots, n
$$

yields

$$
\begin{gathered}
\boldsymbol{p}_{i} \boldsymbol{x}_{i}=t_{i} u_{i} v_{i} / \sum_{1}^{n} t_{i} v_{i}^{t} \\
\boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}=t_{i} v_{i}^{t}\left(u_{i} v_{i}^{1-t}\right)^{s} / \sum_{1}^{n} t_{i} v_{i}^{t}=t_{i} u_{i}^{s} v_{i}^{s+t-s t} / \sum_{1}^{n} t_{i} v_{i}^{t}=t_{i} u_{i}^{s} / \sum_{1}^{n} t_{i} v_{i}^{t}
\end{gathered}
$$

Now, applying Theorem 6 for $s>1$, we get

$$
\begin{gathered}
0 \leq \mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})-\mathcal{A}(\boldsymbol{p}, \mathbf{x})=\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}\right)^{1 / s}-\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i} \\
=\frac{\left(\sum_{1}^{n} t_{i} u_{i}^{t}\right)^{1 / s}}{\left(\sum_{1}^{n} t_{i} v_{i}^{t}\right)^{1 / s}}-\frac{\sum_{1}^{n} t_{i} u_{i} v_{i}}{\sum_{1}^{n} t_{i} v_{i}^{t}} \leq \frac{s-1}{s}\left(E_{s, 1}(a, b)-\frac{G^{2}(a, b)}{E_{s, s-1}(a, b)}\right),
\end{gathered}
$$

and the result clearly follows by multiplying both sides with $\sum_{1}^{n} t_{i} v_{i}^{t}$.
Applying the same procedure in the case $0<s<1$, we obtain the second part of this theorem.

Finally, we prove another sharp converses of Hölder's inequalities. For this cause, we shall estimate firstly the expression

$$
\mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x}):=\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{-t}\right)^{1 / t}, 1 / s+1 / t=1, s, t \in \mathbb{R} .
$$

Lemma 1. Let $a \leq x_{i} \leq b, i=1,2, \ldots, n$ for some $0<a<b$.
If $s>1$, we have

$$
1 \leq \mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x}) \leq \frac{E_{s, s+t}(a, b) E_{t, s+t}(a, b)}{G^{2}(a, b)}
$$

and

$$
\frac{E_{s, s+t}(a, b) E_{t, s+t}(a, b)}{G^{2}(a, b)} \leq \mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x}) \leq 1
$$

for $0<s<1$.
Proof. Following the method from the proof of Theorem 1, we get

$$
x_{i}^{s}=\lambda_{i} a^{s}+\mu_{i} b^{s}, \lambda_{i}+\mu_{i}=1, i=1,2, \ldots, n
$$

If $s>1$, then also $t>1$, hence the function $x^{-t / s}$ is convex.
Therefore,

$$
x_{i}^{-t}=\left(x_{i}^{s}\right)^{-t / s}=\left(\lambda_{i} a^{s}+\mu_{i} b^{s}\right)^{-t / s} \leq \lambda_{i}\left(a^{s}\right)^{-t / s}+\mu_{i}\left(b^{s}\right)^{-t / s}=\lambda_{i} a^{-t}+\mu_{i} b^{-t}
$$

and

$$
\begin{gathered}
\mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x})=\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{-t}\right)^{1 / t} \\
\leq\left(a^{s} \sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}+b^{s} \sum_{1}^{n} \boldsymbol{p}_{i} \mu_{i}\right)^{1 / s}\left(a^{-t} \sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}+b^{-t} \sum_{1}^{n} \boldsymbol{p}_{i} \mu_{i}\right)^{1 / t} \\
=\left(p a^{s}+q b^{s}\right)^{1 / s}\left(p a^{-t}+q b^{-t}\right)^{1 / t}
\end{gathered}
$$

where we put

$$
\sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}:=p, \sum_{1}^{n} \boldsymbol{p}_{i} \mu_{i}:=q ; p+q=1
$$

Therefore, it follows that

$$
\begin{gathered}
\mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x}) \leq \max _{\boldsymbol{p}}\left[\left(p a^{s}+q b^{s}\right)^{1 / s}\left(p a^{-t}+q b^{-t}\right)^{1 / t}\right] \\
=\left(\boldsymbol{p}_{0} a^{s}+q_{0} b^{s}\right)^{1 / s}\left(p_{0} a^{-t}+q_{0} b^{-t}\right)^{1 / t}
\end{gathered}
$$

By the standard technique we obtain that this maxima satisfy the equation

$$
\frac{s\left(\boldsymbol{p}_{0} a^{s}+q_{0} b^{s}\right)}{a^{s}-b^{s}}=\frac{-t\left(\boldsymbol{p}_{0} a^{-t}+q_{0} b^{-t}\right)}{a^{-t}-b^{-t}}
$$

that is,

$$
p_{0}=\frac{1}{s+t}\left(\frac{s b^{s}}{b^{s}-a^{s}}-\frac{t a^{t}}{b^{t}-a^{t}}\right) ; q_{0}=\frac{1}{s+t}\left(\frac{t b^{t}}{b^{t}-a^{t}}-\frac{s a^{s}}{b^{s}-a^{s}}\right) .
$$

Henceforth,

$$
p_{0} a^{-t}+q_{0} b^{-t}=\frac{s}{s+t} \frac{a^{-t} b^{s}-a^{s} b^{-t}}{b^{s}-a^{s}}=\frac{s}{s+t} \frac{(a b)^{-t}\left(b^{s+t}-a^{s+t}\right)}{b^{s}-a^{s}}
$$

and

$$
p_{0} a^{s}+q_{0} b^{s}=\frac{t}{s+t} \frac{b^{s+t}-a^{s+t}}{b^{t}-a^{t}}
$$

Therefore,

$$
\begin{gathered}
\left(\boldsymbol{p}_{0} a^{-t}+q_{0} b^{-t}\right)^{1 / t}=E_{s+t, s}(a, b) / G^{2}(a, b) ; \\
\left(\boldsymbol{p}_{0} a^{s}+q_{0} b^{s}\right)^{1 / s}=E_{s+t, t}(a, b)
\end{gathered}
$$

and we finally obtain

$$
\begin{aligned}
& \max _{p}\left[\left(p a^{s}+q b^{s}\right)^{1 / s}\left(p a^{-t}+q b^{-t}\right)^{1 / t}\right]=\left(\boldsymbol{p}_{0} a^{s}+q_{0} b^{s}\right)^{1 / s}\left(\boldsymbol{p}_{0} a^{-t}+q_{0} b^{-t}\right)^{1 / t} \\
&=\frac{E_{s+t, s}(a, b) E_{s+t, t}(a, b)}{G^{2}(a, b)}
\end{aligned}
$$

On the other hand, by the monotonicity in s of \mathcal{B}_{s}, we get

$$
1 \leq \frac{\mathcal{B}_{s}(\boldsymbol{p}, \boldsymbol{x})}{\mathcal{B}_{-t}(\boldsymbol{p}, \boldsymbol{x})}=\mathcal{F}_{s, t}(\boldsymbol{p}, \mathbf{x})
$$

since $s>-t$.
In the case $0<s<1$, we have that $t<0$. Therefore,

$$
0>s t=s+t
$$

and

$$
\mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x}) \leq 1
$$

since $s<-t$.
Additionally, $-t / s>1$, hence $x^{-t / s}$ is a convex function.
Therefore,

$$
x_{i}^{-t}=\left(x_{i}^{s}\right)^{-t / s}=\left(\lambda_{i} a^{s}+\mu_{i} b^{s}\right)^{-t / s} \leq \lambda_{i}\left(a^{s}\right)^{-t / s}+\mu_{i}\left(b^{s}\right)^{-t / s}=\lambda_{i} a^{-t}+\mu_{i} b^{-t}
$$

However, because the exponent $1 / t$ is negative in this case, we obtain

$$
\begin{gathered}
\mathcal{F}_{s, t}(\boldsymbol{p}, \boldsymbol{x})=\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} \boldsymbol{p}_{i} \boldsymbol{x}_{i}^{-t}\right)^{1 / t} \\
\geq\left(a^{s} \sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}+b^{s} \sum_{1}^{n} \boldsymbol{p}_{i} \mu_{i}\right)^{1 / s}\left(a^{-t} \sum_{1}^{n} \boldsymbol{p}_{i} \lambda_{i}+b^{-t} \sum_{1}^{n} \boldsymbol{p}_{i} \mu_{i}\right)^{1 / t} \\
=\left(\boldsymbol{p} a^{s}+q b^{s}\right)^{1 / s}\left(\boldsymbol{p} a^{-t}+q b^{-t}\right)^{1 / t} .
\end{gathered}
$$

Therefore, we get

$$
\mathcal{F}_{s, t}(\boldsymbol{p}, \mathbf{x}) \geq \min _{p}\left[\left(\boldsymbol{p} a^{s}+q b^{s}\right)^{1 / s}\left(\boldsymbol{p} a^{-t}+q b^{-t}\right)^{1 / t}\right]
$$

and, proceeding as above, the second part of this theorem follows.
We are now able to formulate our main result.
Theorem 8. Let $\left\{t_{i}\right\}_{1}^{n},\left\{u_{i}\right\}_{1}^{n},\left\{v_{i}\right\}_{1}^{n}$ be arbitrary sequences of positive numbers with $a \leq$ $u_{i}^{1 / t} / v_{i}^{1 / s} \leq b$ for some constants $0<a<b$ and $1 / s+1 / t=1 ; s, t \in \mathbb{R}$.

For $s>1$, we have

$$
\sum_{1}^{n} t_{i} u_{i} v_{i} \leq\left(\sum_{1}^{n} t_{i} u_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} t_{i} v_{i}^{t}\right)^{1 / t} \leq \frac{E_{s, s+t}(a, b) E_{t, s+t}(a, b)}{G^{2}(a, b)} \sum_{1}^{n} t_{i} u_{i} v_{i}
$$

and

$$
\frac{E_{s, s+t}(a, b) E_{t, s+t}(a, b)}{G^{2}(a, b)} \sum_{1}^{n} t_{i} u_{i} v_{i} \leq\left(\sum_{1}^{n} t_{i} u_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} t_{i} v_{i}^{t}\right)^{1 / t} \leq \sum_{1}^{n} t_{i} u_{i} v_{i}
$$

for $0<s<1$.
Proof. Changing variables

$$
\boldsymbol{p}_{i}=t_{i} u_{i} v_{i} / \sum_{1}^{n} t_{i} u_{i} v_{i} ; \quad x_{i}=u_{i}^{1 / t} v_{i}^{-1 / s}, \quad i=1,2, \ldots, n
$$

we get

$$
\begin{gathered}
\boldsymbol{p}_{i} \boldsymbol{x}_{i}^{s}=t_{i} u_{i} v_{i}\left(u_{i}^{1 / t} v_{i}^{-1 / s}\right)^{s} / \sum_{1}^{n} t_{i} u_{i} v_{i}=t_{i} u_{i}^{1+s / t} / \sum_{1}^{n} t_{i} u_{i} v_{i}=t_{i} u_{i}^{s} / \sum_{1}^{n} t_{i} u_{i} v_{i} \\
\boldsymbol{p}_{i} \boldsymbol{x}_{i}^{-t}=t_{i} u_{i} v_{i}\left(u_{i}^{1 / t} v_{i}^{-1 / s}\right)^{-t} / \sum_{1}^{n} t_{i} u_{i} v_{i}=t_{i} v_{i}^{1+t / s} / \sum_{1}^{n} t_{i} u_{i} v_{i}=t_{i} v_{i}^{t} / \sum_{1}^{n} t_{i} u_{i} v_{i}
\end{gathered}
$$

and

$$
\mathcal{F}_{s, t}(t, u, v)=\left(\frac{\sum_{1}^{n} t_{i} u_{i}^{s}}{\sum_{1}^{n} t_{i} u_{i} v_{i}}\right)^{1 / s}\left(\frac{\sum_{1}^{n} t_{i} v_{i}^{t}}{\sum_{1}^{n} t_{i} u_{i} v_{i}}\right)^{1 / t}=\frac{\left(\sum_{1}^{n} t_{i} u_{i}^{s}\right)^{1 / s}\left(\sum_{1}^{n} t_{i} v_{i}^{t}\right)^{1 / t}}{\sum_{1}^{n} t_{i} u_{i} v_{i}}
$$

Now, an application of Lemma 1 gives the result.

3. Conclusions

In this article, we give further development of our results from [3]. Sharp two-sided bounds are explicitly determined for the generalized Jensen functional $J_{n}(f, g, h ; \boldsymbol{p}, \boldsymbol{x})$ and, consequently, for Jensen's inequality and quasi-arithmetic means. Exact converses of $\mathcal{A}-\mathcal{G}-\mathcal{H}$ inequalities and some forms of Hölder's inequalities are also given. Since Theorem 1 achieved its definite form with very mild conditions posed on the generating functions f, g and h, there remains a lot of work to apply its results in different areas of mathematics.

Author Contributions: Theoretical part, S.S.; numerical part with examples, V.T. All authors have read and agreed to the published version of the manuscript.
Funding: Vesna Todorčević is supported by Researchers Supporting Project number 11143, Faculty of Organizational Sciences, University of Belgrade, Serbia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Acknowledgments: The authors are grateful to the referees for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1978.
2. Dragomir, S.S. Some reverses of the Jensen inequality for functions of self-adjoint operators in Hilbert spaces. J. Inequal. Appl. 2010, 496821, 15.
3. Simic, S. Sharp global bounds for Jensen's inequality. Rocky Mt. J. Math. 2011, 41, 2021-2031. [CrossRef]
4. Simic, S. Some generalizations of Jensen's inequality. arXiv 2020, arXiv:2011.10746.
5. Stolarsky, K.B. Generalizations of the logarithmic mean. Math. Mag. 1975, 48, 87-92. [CrossRef]
6. Qi, F. Logarithmic convexity of extended mean values. Proc. Am. Math. Soc. 2001, 130, 1787-1796. [CrossRef]
7. Neuman, E.; Páles, Z. On comparison of Stolarsky and Gini means. J. Math. Anal. Appl. 2003, 278, 274-284. [CrossRef]
8. Matkowski, J.; Páles, Z. Characterization of generalized quasi-arithmetic means. Acta Sci. Math. 2015, 81, 34. [CrossRef]
