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Abstract: In this article, we give sharp two-sided bounds for the generalized Jensen functional
Jn(f, 8 hp.x). Assuming convexity /concavity of the generating function &, we give exact bounds for
the generalized quasi-arithmetic mean A, (h;p,x). In particular, exact bounds are determined for the
generalized power means in terms from the class of Stolarsky means. As a consequence, some sharp
converses of the famous Holder’s inequality are obtained.
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1. Introduction
Recall that the Jensen functional ], (¢; p, x) is defined on an interval I C R by

n

Tn(@ipx) = Y pip(xs) — ¢<$pixi>,

1

where ¢ : I = R, x = (x1,x2,- -+ ,x,) € ["and p = {p;}], L[ p; = 1, is a positive weight
sequence.
If ¢ is a convex function on I, then the inequality

0 < Ju(¢:p,x)

holds for each x € I" and any positive weight sequence p.

Jensen’s inequality plays a fundamental role in many parts of mathematical analysis
and applications. For example, well known A — G — H inequality, Holder’s inequality, Ky
Fan inequality, etc., are proven by the help of Jensen’s inequality (cf. [1-4]).

Assuming that x € [a,b]" C I", our aim in this paper is to determine some sharp
bounds for the generalized Jensen functional

n n
Julfog i) i= FQUpih(x)) = gD p)),

1

for suitably chosen functions f, g and h, such that

Crgn(@ab) < Ju(f, 8 p,x) < Crgnlab),
i.e., the bounds which does not depend on p or x, but only on 4, b and functions f, g and .
Our global bounds will be entirely presented in terms of elementary means.
Recall that the mean is a map M : R; x Ry — R, with a property
min(x,y) < M(x,y) < max(x,y),

foreachx,y € Ry.
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In order to make our results condensed and applicable, we shall use in the sequel the
class of so-called Stolarsky (or extended) two-parametric mean values, defined for positive
values of x,y, x # y by the following:

rie—y) )60 _
(S(x’*y’)> L rs(r—s) #0
exp(%l—i-%), r=s%#0
ET,S(x/ }/) = x°—y° 1/s o
(s(logx—logy)) ’ s 7& 0,r=0
VXY, r=s=20,
X, y=x>0.

In this form, it was introduced by Keneth Stolarsky in [5].
Most of the classical two variable means are just special cases of the class E.
For example,
x+
Alxy) = Eralxy) = 57

is the arithmetic mean;

G(x,y) = Eoo(x,y) = E—rr(xy) = VXY

is the geometric mean;
Xy

L(x,y) = Eop(x,y) = logx —logy

is the logarithmic mean;

I(x,y) = Eva (%) = (/)77 /e

is the identric mean, etc.
More generally, the r-th power mean

is equal to E; o, (x, ).

Theory of Stolarsky means is very well developed, cf. [6,7] and references therein.

Some basic properties are listed in the following:

Means E, s(x,y) are

a. symmetric in both parameters, i.e., Ers(x,y) = Es,(x,y);

b. symmetric in both variables, i.e., E;s(x,y) = E;s(y,x);

c. homogeneous of order one, that is E, s(tx, ty) = tE,s(x,y), t > 0;

d. monotone increasing in either r or s;

e. monotone increasing in either x or y; and

f. logarithmically convex in either v or s for v,s € R_ and logarithmically concave for
r,s € Ry,

Let i : I — | be a continuous and strictly monotone function on an interval I C R.

Then, its inverse function h~! : ] — I exists and generates so-called quasi — arithmetic
mean A, (p, x), given by

n

Anp,x) o= = (Y pih(xi),

1

where x = (x1,x2,- - ,x,) € I"and p = {p;}|, L[ p; = 11is a positive weight sequence.
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Quasi-arithmetic means are introduced in [1] and then investigated by a plenty of
researchers with most interesting results (cf. [8]). In this article, we shall give tight two-
sided bounds for the difference

Ap(p,x) — Alp, x).
An important special case is the class of generalized power means B; (p, x), generated

by h(x) = x°, s € R/{0},
n 1/s
x) = (Zpixls'> :
1

It is well known fact that power means are monotone increasing in s € R (cf. [1]).
Some important particular cases are

Zpl/xz = ( p,x x);

Bo(p,x) = lim By(p, x Hx” = G(p,x);

n
Bi(p,x) =) pxi = Alp,x),
1

that is, the generalized harmonic, geometric and arithmetic means, respectively.
Therefore,

H(p,x) < Gp,x) < Alp,x),

represents the celebrated A — G — H inequalities.

Some converses of these inequalities will be given in this paper.

For arbitrary positive sequences a and b and real numbers s, f with 1/s + 1/t = 1, the
celebrated Holder’s inequalities says that

n

iaibi < (;a >1/s <; >1/t,

and . v s
;aibiz (;ai) (;bi) ,0<s<1.

We shall give in the sequel precise estimations of the difference
n n 1/s ;1 1/t
Z aibi - Z as Z bt ’
et () (M)

and the quotient
n n n

(1) (e) "/ L

1 1 1
that is,

Z”b = (Z”) (i )l/t < el b()::s;)tt(a )3 b,

1

forl/s+1/t=1,st>1; a §ail/t/bi1/s <bi=1,2,..,n

2. Results and Proofs

Our main result concerning the generalized Jensen functional J,(f, g, h; p, x) is given
by the following:
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Theorem 1. Let f: ] = R, g: ] = R, h: I — | be continuous and eventually differentiable
functions on their domains.

For x € [a,b]" C I", let h be convex on I and f be an increasing function on J.

Then,

Crgn(a,b) :=min[(foh+goh)(pa+ (1-p)b)]

4
<Iu(f. g lpx) <
m;XLf(Ph(a) + (1 =p)h(b)) — g(h(pa+ (1 —p)b))] := Crgnla,b).

Both bounds cg,q j,(a,b) and Cy g, (a,b) are sharp.

Proof. Since a < x; < b, there exist non-negative numbers A;, yi;; A; + y; = 1, such that
xi=MAa+ub i=12,.,n

Hence,
In(f, g, i) = f(in-h(x») - g(h()j:p,-xi» - f(ijp,-h(?wa b)) — g(h(ipiwa b))

n

< fQCpi(Aih(a) + pih(b))) — g(h(a Z::pi/\i +b Z::piﬂi)))

1
= f(ph(a) + (1 = p)h(b)) — g (h(pa+ (1~ p)b)) < max[f(ph(a) + (1 = p)h(b)) — g(h(pa+ (1 - p)))l,

where we denoted Y| p;A; :=p € [0,1].
The above estimate is valid for arbitrary sequences p and x. To prove its sharpness,
suppose that the maxima is reached at the point p = p,), i.e.,

m;XU(ph(a) + (1 =p)h(b)) — g(h(pa+ (1 —p)b))]

= f(poh(a) + (1 = po)h(b)) — g(h(pga+ (1 —py)b)) = Crgn(a,b).
Then
Ju(f. 8 h;po,x0) = Crgn(ab),

where
Po = (Po, P21 Py)r X0 = (a,b, ..., D).

On the other hand, since / is a convex function on I, by Jensen’s inequality we get
n n
Y pih(xi) > () pxi).
1 1

Because f is an increasing function, it follows that

Ju(f, 8, i, %) = f(imh(x») fg<h<$p,-xi>> > f(h(ipixi» w(h(ipix,«))

= f(h(pa+ (1 —p)b)) = g(h(pa+ (1 —p)b)) = min[(foh+goh)(pa+ (1 —p)b)] = crgn(ab).

A simple analysis of the constant c¢ , ,(a, b) reveals the next: if minima of the function
(foh+goh)(t) exists for t =t € [a,b], then csgp(a,b) = (foh+goh)(t), taken for

p=py=(b—to)/(b—a)
Otherwise, we have that c¢ . ,(a,b) = min{(f oh + goh)(a), (foh+goh)(b)}.
Those results are evidently sharp, since

Jn(f, & h;p,x0) = crgn(ab),

with xp = (to, ..., to), X0 = (a,...,a) or xg = (b, ..., b), respectively. [
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Theorem 1 with its variants (a decreasing function f, concave function /) is the source
of a plenty of interesting inequalities. Further investigations are left to the reader.

Sometimes, it is a difficult problem to evaluate exact maxima in this theorem.

For this cause, we shall give in the sequel two estimations of [, (f, g, h; p, x) with the
unique maxima, which could be easily calculated.

Theorem 2. Under the conditions of Theorem 1, assume firstly that f is a convex function on J.
Then,

Jn(f. 8, hip,x) < max{p(f o h)(a) + (1 =p)(f o h)(b) = (g o h)(pa+ (1 -p)b)].

Assuming that g o h is a concave function, we obtain
Jn(f 8, hip,x) < max{f(ph(a) + (1= p)h(b)) — (p(g o ) (a) + (1 =p)(g o 1)(b))]

Now, both maxima can be easily determined by the standard technique.

Proof. By Theorem 1, we know that there exists p € [0, 1] such that

Jn(f. & lp,x) < f(ph(a) + (1 —p)h(b)) — g(h(pa+ (1 —p)b)).

If additionally f is convex on |, then

flph(a)+ (1 =p)h(b)) < p(foh)(a)+ (1 —p)(foh)(b).
Hence,
Ju(f. 8 lip,x) < p(foh)(a) + (1= p)(f oh)(b) — (g0 h)(pa+ (1—p)b))
< max[p(f oh)(@) + (1 = p)(f o h)(b) = (g o) (pa+ (1 = p)b))].
Similarly, if g o h is a concave function on ], we have
§(h(pa+ (1—p)b) = (goh)(pa+ (1—p)b) = p(goh)(a) + (1= p)(goh)(b),

and

Jn(f.8:1:p,x) < max(f(ph(a) + (1= p)h(b)) = (p(g o 1) (@) + (1 = p)(g 0 1)())).

0

An important special case is the converse of Jensen’s inequality.

Theorem 3. Let ¢ be a convex function on I C Rand, for [§,n] C I, let x € [&,y]".
Then,

0 < Ju(¢;p,x) < m;XW(C) + 1 =p)p(n) — p(ps + (1 —p)n)] == Typ(E, 1)

If ¢ is a concave function, then

0< —Ju(p;p,x) < m;xw(pé + A =p)n) = (pP(&) + (L =p)p(n)] = —=Tp(&, 7).

The constant Ty (G, 1) is sharp since there exist sequences p, xo such that
In(¢;P0/x0) = T4>(§r 77)

Proof. This is a simple consequence of Theorem 1 obtained for f(x) = g(x) =x; h = ¢. If
¢ is a concave function, then —¢ is convex and the proof follows from the first part of this
theorem. O

In this case, the bound T (&, 77) can be explicitly calculated.
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Theorem 4. For a differentiable convex mapping ¢, we have that

¢(11) — ¢(%) ng(g) — ()
n—¢ =g

where @y (&, 1) is the Lagrange mean value of numbers ¢ and 1, defined by

0y(e) = (¢) 1 (HL=HED),

The function Ty is positive and symmetric, i.e., Ty (G, 1) = Typ(n, &) and lim,_z Tp(E,77) = 0.

Tp(E,m) = Op(S, 1) + —9(©¢(S,7)),

Proof. If the maximum is taken at the point p = p,, by the standard technique we get

' (pol+ (1 =po)n) (& —1) = ¢(&) — o(n),

that is,
Poé + (L —po)n = Oy (¢, 7).
Therefore, @
®¢(€/ )_7/ g_@)([) 6177
- ; 1 - - 7
pO C —7 pO (: -7
and

O

Now, some important inequalities concerning quasi-arithmetic mean can be easily
obtained from Theorem 1 by putting f = ¢ = h~!. Nevertheless, in order to avoid
unnecessary monotonicity issues, we turn another way.

Our main result is contained in the following:

Theorem 5. Fora <x; <b,i=1,2,..,n;,a,b€ I leth:I — ]becontinuous and strictly
monotone function and assume that Rl J — I is convex. Then,

0 < Ap,x) = Au(p,x) < Tj-1(h(a), h(D)),

where the constant Ty (,17) is defined in Theorems 3 and 4.
If h=1 is a concave function, then

0 < Au(p,x) = Alp,x) < =Tj-1(h(a), h(b)).

Proof. We shall give a simple proof of this theorem.
Namely, since 1! is a convex function, applying the first part of Theorem 3 with
¢ = h~1, we obtain

n

n
0<Y pihH(xi) = (L pixi) < Tyoa(a,b).
1 1
Now, by changing variables x; — h(x;)i = 1,2,..,n,wegeth~!(x;) — h ' oh(x;) = x;
and a — h(a), b — h(b).
Hence, h(a) < h(x;) < h(b) or h(b) < h(x;) < h(a) depending on the monotonicity of
h. However, since Ty (¢, 17) is symmetric in variables, we finally get
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n

0= imxi - h*1<;pih(xi>) < Ty ((a), h(b)).

The second part of this theorem can be proved along the same lines. [

The most striking example of quasi-arithmetic means is the class of generalized power
means B;(p, x), generated by h(x) = x°, h~1(x) = x1/5, s € R/{0}, i.e.,

B.p.%) = (L)

As an application of Theorem 5, we shall estimate the difference B;s(p, x) — A(p, x).

Theorem 6. Leta <x; <b,i=1,2,..,nm;,0<a<b.
Then,

s—1 G2(a,b
1, o) - )

0 S Bs(p,x) —.A(p,x) S m), s > ].,

0< Alpx) ~ Bilpx) <+ (Era(ab) ~ Fy s o(a,b)), 0<s < 1;

s—1

0 < A(p,x) — Bs(p,x) < (E1—s—s(a,b) — E15(a, b)), s <O0.
Proof. Leth(x) =x°, h™1(x) = x/%,5s ¢ R/{0}.
If s > 1 then h~!is a concave function on R*. Hence, by the second part of Theorem 5,
we get
0< Bs(p,x) — A(p,x) < —=T/s(a’, b%).

Applying the result from Theorem 4, a simple calculation gives

b* —a® \s/(s-1) b — at
S 1S\ _ _ s —
Ou/s (a°,1°) = (S(bw)) Ea(ab) = s Esalab)
Hence,
b—a ab® — ba®

~Tan (@, b%) = (@D = 5—500) = o

ab(b>" 1 —a571) 51
B bs — gs -

(Es,l(a’b) B m).

In cases 0 < s < 1 ors < 0, one should apply the first part of Theorem 5, since
h~1 = x1/% is convex on R*. Proceeding as above, the result follows. [J

1
= Es,l (a, b) — gEsrl(a,b)

As a consequence, we obtain some converses of the A(p, x) — G (p, x) — H(p, x) inequality.

Corollary 1. Leta<x; <b,i=1,2,..,n,0<a<b.
Then,
0 < A(p,x) — H(p,x) <2(A(a,b) — G(a,b)).
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Proof. Putting s = —1, we get
0 < A(p,x) — B_1(p,x) = Alp,x) — H(p,x)

< 2(Ez(a,b) — Ey—1(a,b)) = 2(A(a,b) — G(a,b)).
O

Corollary 2. Leta <x;<b,i=1,2,..,n,0<a<b.
Then,
L(a,b)I(a,b)
< — <
0<A(p,x) —G(p,x) < L(a,b)log G2(a,b)

Proof. We have,
Alp,x) — G(p,x) = lim(A(p,x) — Bs(p, x))

s—0

< lim(1 —5 (E1s(a,b) — Ey—s,—s(a, b)))

s—0 S
B L(a,b)I(a,b)
= L(a,b)log ~Gab)
]

The sequences p and x in Theorem 6 are arbitrary. Specializing a little bit, we obtain
sharp converses of slightly generalized Holder’s inequalities.

Theorem 7. Let {t;}}, {u;}}, {vi}] be any sequences of positive real numbers with a <
uiv}_t < b for some constants 0 < a < band 1/s+1/t =1 for some s, t € R.

Then,
n 1/ n 1/t n n
0 S (Z tﬂl?) ’ (2 tiZJf) - Ztiuivi S CS (ll, b) Ztﬂ)f,
1 1 1 1
with (1)
s—1 G~ (a,
Cs(ﬂ/b) = s (Es,l (ﬂ/b) - m),
and s > 1;
n n 1/ n 1/t n
0<L Ztiuﬂ]i — (Z tlus> S(Z l?]f) < Ds(a,b) Ztlvf,
1 1 1 1
where ,
—s
Ds(a,b) = — (Es1(a,b) = E1-(a,b) ),
and 0 < s < 1.

Proof. Changing variables
n
pi= t,'vf/ Ztivf; X = uiv}*t, i=1,2,..,n,
i

yields

n

t,

pxi = tiuivi/ Y tvj;
1

n n n
px = tl-vf(uivilft)s/ Zt,«vf = tiu?UfH*St/ Ztivf = tju/ Ztivf.
1 1 1
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Now, applying Theorem 6 for s > 1, we get

n n
0 < Bs(p,x) — Alp,x) = (Lpxi)"° — Lpsxi
1 1

(X )t Y tuv _s G?(a,b) )

—1
= < E.1(a,b) —
Ty t0)1s — Yikol © s (Baa(at) Ees_1(a,b)

and the result clearly follows by multiplying both sides with Y/ t;!.
Applying the same procedure in the case 0 < s < 1, we obtain the second part of this
theorem. [

Finally, we prove another sharp converses of Holder’s inequalities. For this cause, we
shall estimate firstly the expression

n n
Fsr(p,x) := (Zpixf)l/s(z;ﬂix;t)l/t, 1/s+1/t=1, st cR.
1 1

Lemmal. Leta<ux; <b,i=12,.,nforsome0<a<b.
Ifs > 1, we have
Es,s+t(a/ b)Et,s+t(a/ b)
G?(a,b) ’

1< Fsr(px) <

and
Es,s+t (a/ b) Et,s+t (Cl, b)
G?%(a,b)

< Forlpx) <1,

for0<s <1

Proof. Following the method from the proof of Theorem 1, we get
X =Aa® + b, Ai+pi=1,i=1,2,..,n.

If s > 1, then also t > 1, hence the function x~!/$ is convex.
Therefore,
X7 = ()T = (e 4 ) TS < A(@) T g (0°) T = N b

1 1

and . .
Fst(p,x) = (Zpix?)l/s(zpixft)l/t
1 1
< (a° 4 A+ b 4 NL/s ¢ —t 4 As b—t 4 N1/t
< (a Zpi it Zpﬂf‘l) (a Zpi it Zpiﬂl)
1 1 1 1

_ (Pas —i—qbs)l/s(pa*t —i—qb*t)l/t,

where we put
n n
Y pri=p Y pii=q p+qg=1.
1 1
Therefore, it follows that

For(p,x) < max[(pa® +qb*)Y/S(pa~" + qb~")1/1]
P

= (poa® + qob*)"/* (poa" + qob~")!/".
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By the standard technique we obtain that this maxima satisfy the equation

s(poa® +qob°) _ —t(poa ' +q0b")

as — bs a t—pt 4
that is,
1 sb’ tat 1 tht sa’
Po= s+t(bs—as N bt—at)’ o= s+t(bt—at - bs—as)'
Henceforth,
—tps _ st —t(}S5+E _ s+t
_t pt_ S @ b —a’b™ s (ab) 1B — a5t
Po =+ 0 s+t b —a s+t b —as '
and bs—i—t s+t
s s t —a
pOa +q0b _S+t bt_at .
Therefore,

(poa "+ qob™")Y" = Esy45(a,b)/ G*(a,b);
(poa® + qob*)Y* = Esi14(a,b),

and we finally obtain

max|(pa® +qb%)"/*(pa~" + gb=") V] = (pya® + qob*)V/* (pga~" + qob™") V!
P

_ Esits (ll, b)Es+t,t (a/ b)
G2%(a,b) ’

On the other hand, by the monotonicity in s of Bs, we get

Bs(p,x)
1< ——% = FS Ay
= B,t(p,x) ,t(P x)

since s > —t.
In the case 0 < s < 1, we have that t < 0. Therefore,

0>st=s5+4t,

and
]:s,t(P/x) S 1/

since s < —t.
Additionally, —t/s > 1, hence x~ /% is a convex function.
Therefore,

X7 = ()T = (e 4 b®) T <A@ T (%) = A 4 b

1

However, because the exponent 1/t is negative in this case, we obtain

n n
Farlpx) = (pa) ' (Upp )Y
1 1

n n n n
> (a°) pAi +b° Zl’i#i)l/s(“it Y pAi+b Zpi.ui)l/t
T T T T

= (pa* +q0%)"*(pa~" +qb ™)1,
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Therefore, we get

Fst(p,x) = min](pa’ +qb") S (pa~t 4+ qp )],

and, proceeding as above, the second part of this theorem follows. [
We are now able to formulate our main result.
Theorem 8. Let {t;}}, {u;}}, {v;}] be arbitrary sequences of positive numbers with a <

u}/t/z}}/s < b for some constants 0 < a < band1/s+1/t =1; s,t € R,
For s > 1, we have

- < Vs (& vt _E b)Etsit(a,b)
;ti”ivi < (; tiuf) (; tivf) < s’s+t(G 2(a,b ts+t Zt U;v;,
- Ess+t( b)Ets+t(ﬂ b) n s 1/s /1 ¢ 1/t L
OB < (E ) (1) < Bt
for0<s <1

Proof. Changing variables
n
p; = tiu;v;/ Ztiuivi; x; = uil/tv;l/s, i=1,2,..,n,
1
we get

n n n
pl-x? = tiuivi(u}/tvi’”s)s/ Ztiuivi = tiu}Jrs/t/ Ztl‘uﬂ)i = tiuls'/ Ztiuivi;
1 1 1

n n n
—t 1/t —1 —t 1+t t
px;, = tiuivi(ui/ v; /S) / E tiujv; = tiUiJr /S/ E tiujv; = tjv;/ E tiu;v;,
1 1 1

and

Yh i )1/5( i tiol )w (S tus) VS (X tiof) !
Y tiuv; Y tiu; Y tiu; '

Now, an application of Lemma 1 gives the result. [

Fsi(t,u,v) = (

3. Conclusions

In this article, we give further development of our results from [3]. Sharp two-sided
bounds are explicitly determined for the generalized Jensen functional J,(f, g, h; p,x) and,
consequently, for Jensen’s inequality and quasi-arithmetic means. Exact converses of
A — G — H inequalities and some forms of Holder’s inequalities are also given. Since
Theorem 1 achieved its definite form with very mild conditions posed on the generating
functions f, g and &, there remains a lot of work to apply its results in different areas of
mathematics.
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