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Abstract: Performance of evolutionary algorithms in real space is evaluated by local measures such
as success probability and expected progress. In high-dimensional landscapes, most algorithms rely
on the normal multi-variate, easy to assemble from independent, identically distributed components.
This paper analyzes a different distribution, also spherical, yet with dependent components and
compact support: uniform in the sphere. Under a simple setting of the parameters, two algorithms
are compared on a quadratic fitness function. The success probability and the expected progress of
the algorithm with uniform distribution are proved to dominate their normal mutation counterparts
by order n!!.

Keywords: probabilistic optimization; spherical distribution; multi-variate calculus; hypergeometric
functions; transition kernel

1. Introduction

Probabilistic algorithms are among the most popular optimization techniques due to
their easy implementation and high efficiency. Their roots can be traced back to the first
random walk problem proposed by Pearson in 1905: “A man starts from a point O, and walks
` yards in a straight line; he then turns through any angle whatever, and walks another ` yards in
a second straight line. He repeats this process n times. I require the probability that after these n
stretches he is at a distance between r and r + dr from his starting point O.” [1–4].

Using the ability of computers to generate and store large samples from multi-variate
distributions, physicists and engineers have transformed the original random walk into a
powerful optimization tool. Probabilistic algorithms do not require additional information
on the fitness function, they simply generate potential candidate solutions, select the best,
and move on.

Sharing the same random generator, yet differing with respect to the selection phase,
two classes of probabilistic algorithms became more popular over the last decades: simulated
annealing (also known as Metropolis or Hastings algorithm) [5] and evolutionary algorithms
(EAs) [6,7]. Only the latter will be discussed in this paper.

EAs are assessed based on local quantities, such as success probability and progress
rate, respectively, on global measures, like expected convergence time. Performance
depends on both the fitness landscape, and on the particular probabilistic scheme (leading
to a probability distribution) involved in the generating-selection mechanism. A popular
test problem consists in minimizing the quadratic SPHERE function (To avoid confusion,
we use uppercase for the fitness function, and lowercase for the uniform distribution in/on
the sphere.), with optimum in the origin.

F : <n → < F (x1, . . . , xn) =
n

∑
i=1

x2
i . (1)
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An elitist (that is, keeping always the best solution found so far), one-individual, muta-
tion+selection EA is depicted below (Algorithm 1).

Algorithm 1 An elitist, one-individual, mutation+selection EA.

Set t = 0 and the initial point of the algorithm, x0

Repeat
t := t + 1
Mutation: generate a new point x ∈ <n according to a multi-variate distribution
Selection:if F (x) < F (xt−1) then xt := x

else xt := xt−1

Until t = tmax, for some fixed tmax

The region of success of Algorithm 1 is

RS
x = {y ∈ <n|F (y) < F (x)}. (2)

A rigorous description of the long-term behavior of EAs involves renewal processes,
drift analysis, order statistics, martingales, or other stochastic processes [7–13]. However,
the basic structure is that of a Markov chain, as the algorithm’s state at the next itera-
tion depends only on its current state. Difficulties occur when, even for simple fitness
functions, SPHERE included, the actual position of the algorithm affects significantly the
local behavior, such that the process lacks homogeneity; so begins the search for powerful
mathematical tools, able to describe the transition kernel, which encapsulates the local
probabilistic structure of the algorithm [6,7].

For any fitness function F and fixed point x ∈ <n, assumed as current state, the
transition kernel provides the probability of the algorithm to be in set A ⊂ <n at the
next step. Even if the mutation distribution has a probability density function (pdf),
discontinuity occurs due to the disruptive effect of elitist selection. To make that clear, let
us denote the mutation random variable by Y, its pdf by f , and cumulative distribution
function (cdf) by F. The singular (Dirac) distribution, that loads only one point, is denoted
δ. Index x designates conditioning by the current state. The finite time behavior of the
algorithm is inscribed in the random variable Zx and the next state of the algorithm,
provided the current state, is x.

Zx(ω) =

{
Yx(ω), Yx(ω) ∈ RS

x

x, Yx(ω) ∈ <n \ RS
x

. (3)

while the (Markov) transition kernel carries the local transition probabilities

Px(A) =
∫

A∩RS
x

f (y)dy +

[
1−

∫
A∩RS

x

f (y)dy
]
· δx(A). (4)

As the mutation distribution is entirely responsible for the evolution of the algorithm,
let us take a look at the possible candidates, the multi-variate distributions.

Let x = (x1, . . . , xn) denote some n-dimensional random variable, and the euclidean
norm in <n be ||x|| = (x′x)1/2 =

(
∑n

i=1 x2
i
)1/2. The n-dimensional sphere of radius 1, its

surface and volume are given by [14]

Sn = {x ∈ <n | ||x|| ≤ 1}, δSn = {x ∈ <n | ||x|| = 1}, Vn =
2π

n
2

nΓ n
2

. (5)

We use ‘bold-face’ for (single, or multi-variate) random variables, and ‘normal-face’
for real numbers (or vectors). When partitioning the n dimensions into two sets {1, . . . , m}
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and {m + 1, . . . , n} with 1 ≤ m < 1, we use the compact notation x = (x(1), x(2)) =
((x1, . . . , xm), (xm+1, . . . , xn)), for either vectors or random variables. Unless otherwise
stated, Betaa,b denotes the beta random variable with support (0, 1) and parameters a, b,
while β and Γ stand for the corresponding coefficients. The (one-dimensional) uniform

random variable with support (a, b) is denoted U(a,b). The sign d
= denotes two random

variables with identical cdf.
The class of spherical distributions can be defined in a number of equivalent ways,

two of which are depicted below ([15], pp. 30, 35) (See the excellent monograph of
Fang et al. [15] for an exhaustive introduction to spherical distributions.):

Definition 1.

• An n-dimensional random variable x is said to have spherically symmetric distribution (or
simply spherical distribution) if

x d
= r · un (6)

for some one-dimensional random variable (radius) r, and the uniform distribution on the unit
sphere un. Moreover, r and un are independent, and also

r = ||x|| ≥ 0, un d
=

x
||x|| . (7)

• If the spherical distribution has pdf g, then g satisfies g(x) = g(||x||), and there is a special
connection between g and f , the pdf of r, namely,

f (r) =
2πn/2

Γ n
2

rn−1g(r2). (8)

Three spherical distributions are of particular interest in our analysis:

• the uniform distribution on the unit sphere, with support δSn, denoted un;
• the uniform distribution in (inside) the unit sphere, with support Sn, denoted simply

UNIFORM in this paper; and
• the standard normal distribution, denoted N(0, In) or simply NORMAL.

A comparison of the previous distributions can be performed from many angles.
NORMAL was the first discovered, applied, and thoroughly analyzed in statistics, as
being one of the only spherical distributions with independent and identically distributed
marginals. By contrast, the components of uniform distributions on/in the sphere are
not independent, neither uniform (However, the conditional marginals are uniform, see
Theorem 5). Recently, the scientific interest shifted to uniform multi-variate distributions,
following the increasing application of directional statistics to earth sciences and quantum
mechanics [16,17], and also the application of Dirichlet distribution (which lies at the
basis of spherical analysis) to Bayesian inference, involved in medicine, genetics, and
text-mining [18].

From the computer science point of view, uniform and normal distributions share
an entangled history, in at least two areas: random number generators and probabilistic
optimization algorithms. With respect to the first area, early approaches to sampling from
the uniform distribution on sphere were actually using multi-normal random generators to
produce a sample x, which was further divided by ||x||, following Equation (7). Nowadays,
the situation changed, with the appearance of a new class of algorithms which circumvent
the usage of the normal generator by using properties of marginal uniform distributions
on/in spheres [17,19]. The comparison of mean computation times demonstrates that
the uniform sampling method outperforms the normal generator for dimensions up to
n = 7 [20].

Concerning global optimization, the probabilistic algorithms based on the two distribu-
tion types evolved at the same time, although with few overlaps. In the theory and practice
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of real space (continuous) EA-evolution strategy being their most popular, the representative-
normal distribution has played, from the beginning, the central role. Therefore, there is a
great amount of literature stressing out the advantages of this distribution [6,21,22].

Occasionally, the supremacy of the normal operator has been challenged by theoretical
studies that proposed different mutation distributions, such as uniform in the cube (which
is non-spherical) [10], uniform on the sphere [7,23], uniform in the sphere [9], or even the
Cauchy distribution [24]. An attempt to solve the problem globally, by considering the
whole class of spherical (isotropic) distributions, was made in [25,26]. These approaches
yielded only limited results (valid either for small space dimension n, or for n → ∞), or
not so tight lower/upper bounds for the expected progress of the algorithm.

The study of EAs with uniform distribution in the sphere recently culminated with
two systematic studies, one for RIDGE [27], the other for SPHERE [28], comparable to
classical theory of evolution strategies [6,29]. Under a carefully constructed normalization
of mutation parameters (equalizing the expectations of normal and uniform multi-variates
as n → ∞), those studies demonstrate the same behavior for the respective EA variants.
Intuitively, the explanation is that for large dimensions, both normal and uniform dis-
tributions concentrate on the surface of the sphere. The present paper differs from the
previous analyses in the way that it does not apply any normalization of parameters. As a
consequence, the results are different from those in [28] and an actual comparison between
the two algorithms can be achieved.

Section 2 discusses the general framework of spherical multi-variate distributions,
with special focus on uniform and normal. Then, two algorithms, one with uniform
mutation and the other with normal mutation, are compared on the SPHERE fitness
function with respect to their local performance in Section 3.

2. Materials and Methods. Spherical Distributions

In light of Definition 1, the spherical distributions are very much alike. They all
exhibit stochastic representation (6), that is, each can be generated as a product of two
independent distributions, the n-dimensional uniform on the sphere un and some scalar,
positive random variable r. As the distribution of r makes the whole difference, we point
out the form of this random variable in the three cases of interest.

• un-r is obviously the Dirac distribution in 1:

δ1(x) = 1, x = 1. (9)

• NORMAL-r is the χ distribution with n degrees of freedom, with pdf ([7], p. 20):

f (x) =
1

2
n
2−1Γ n

2

e−
x2
2 xn−1, x ∈ (0, ∞). (10)

• UNIFORM-r is distributed Betan,1, with pdf ([15], p. 75):

f (x) = nxn−1, x ∈ (0, 1). (11)

Using as primary source the monograph [15], we next discuss in more detail the
stochastic properties of the UNIFORM and NORMAL multi-variates, the two candidates
for the mutation operator of the algorithm.

2.1. Uniform in the Sphere

The local analysis of the EA is based on two particular marginal distributions: the
first component x1, and the joint marginal of the remaining n− 1 components, x(2). As
already pointed out, the marginals of UNIFORM are not independent random variables,
and we shall see that neither are they uniform. A general formula for the marginal density
is provided in [15] (p. 75):
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Theorem 1. If x = (x(1), x(2)) is uniformly distributed in the unit sphere, with x(1) of dimension
k, 1 ≤ k < n, then the marginal density of x(1) is

f (x(1)) =
π−

k
2 Γ n+2

2

Γ n−k+2
2

(
1− ||x(1)||

) n−k
2 , ||x(1)||2 < 1. (12)

Corollary 1. The pdf of the first component of UNIFORM is

f (x) =
1

β n+1
2 , 1

2

(1− x2)
n−1

2 , x ∈ (−1, 1). (13)

Using the symmetry with respect to the origin and substituting x2 = t in function (13),
we obtain an interesting result, previously unreported in spherical distributions literature.

Corollary 2. The square of the first component of UNIFORM is Beta n+1
2 , 1

2
, with pdf

f (x) =
1

β n+1
2 , 1

2

(1− x)
n−1

2 x−
1
2 , x ∈ (0, 1). (14)

The density of the last n− 1 components can be derived also from Theorem 1.

Corollary 3. The joint pdf of the last n− 1 components of UNIFORM is

f (x(2)) = nπ−
n
2 Γ n

2

(
1− ||x(2)||2

) 1
2 , ||x(2)||2 < 1. (15)

As function of several variables, formula (15) might not look very appealing; however,
a basic result from spherical distribution theory transforms the corresponding multiple
integral into a scalar one ([15], p. 23).

Theorem 2 (Dimension reduction).

∫
f

(
m

∑
i=1

x2
i

)
dx1, . . . , dxm =

π
m
2

Γ m
2

∫ ∞

0
y

m
2 −1 f (y)dy. (16)

One can see now that, if x is uniformly distributed in the unit sphere, the sum of
squares of the last n− 1 components is Beta distributed.

Corollary 4. Let x = (x1, x(2)) be UNIFORM. Then, the one-dimensional random variable
||x(2)||2 is Beta n−1

2 , 3
2
, with pdf

f (x) =
1

β n−1
2 , 3

2

(1− x)
n−3

2 x
1
2 , x ∈ (0, 1). (17)

Proof. Apply transformation (16) to (15), m = n− 1 and f (y) = (1− y)(n−1)/2.

As the components of the uniform distribution on/in the sphere are not independent,
a better understanding of the nature of such distributions is provided by conditioning one
component with respect to the others. In case of uniform distribution on the sphere, the work
in [15] (p. 74) states that all the conditional marginals are also uniform on the sphere.

We shall see that a similar characterization holds true for the uniform in the sphere.
This result is not presented in [15] and, to the best of our knowledge, in no other reference
on spherical distributions. Therefore, an additional theorem is needed ([30], p. 375).
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Theorem 3. Let x d
= r · un be a spherical distribution and x = (x(1), x(2)), where x(1) is m-

dimensional, 1 ≤ m < n. Then the conditional distribution of x(1) given x(2) = h with ||h|| = a
is given by (

x(1) | x(2) = h
)

d
= ra2 · um. (18)

For each a ≥ 0, ra2 and um are independent, and the cdf of ra2 is given by

prob(ra2 ≤ t) =

∫ √t2+a2

a (r2 − a2)m/2−1 r−(n−2)dF(r)∫ ∞
a (r2 − a2)m/2−1 r−(n−2)dF(r)

, (19)

for t ≥ 0, a > 0 and F(a) < 1, F being the cdf of r.

We prove now the result on conditional marginals of the uniform distribution in the
unit sphere. As conditioning the first component with respect to all others is the most
relevant for EA analysis, this particular case is stressed out.

First, an old result from probability theory is needed, similar to the convolution
operation, but for the product of two independent random variables [31].

Theorem 4 (Mellin’s formula). Let y and z be two independent, non-negative random variables,
with densities g and h. Then, x = y · z has pdf

f (x) =
∫ ∞

0

1
z

g
( x

z

)
h(z)dz, x ∈ (0, ∞). (20)

Note that Mellin’s formula still holds, if only one of the random variables is continuous,
the other being discrete, see, e.g., in [15] (p. 41).

Theorem 5.

• Let x = (x(1), x(2)) be UNIFORM, where x(1) is m-dimensional, 1 ≤ m < n. The conditional
distribution of x(1) given x(2) = a is UNIFORM in the m dimensional sphere with radius(
1− ||a||2

)1/2.
• If m = 1 and x(2) = h is a point in Sn−1 with ||h|| = a, the conditional distribution of x1

given x(2) = h is (
x1 | x(2) = h

)
d
= U

(−
√

1−a2,
√

1−a2)
. (21)

Proof. We begin with the last part, case m = 1.
Equation (18) gives the conditional first component as a product of two independent

random variables, the second being the one-dimensional UNIFORM-the discrete random
variable that loads −1 and 1 with equal probability, 1/2.

The cdf of the first random variable is given by (19), as a fraction of two integrals,
both with respect to F, the cdf of r. In case of UNIFORM, r is Betan,1 given by (11), thus
dF(r) = f (r)dr = nrn−1dr.

If t ≥
√

1− a2, the upper and lower integrals in (19) are equal, so the probability is 1.
If 0 ≤ t <

√
1− a2, the upper integral is

n
∫ √t2+a2

a
r(r2 − a2)−1/2dr = nt,

while the lower one is

n
∫ 1

a
r(r2 − a2)−1/2dr = n

√
1− a2.
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Thus, for any fixed a < 1, the cdf of the conditional radius is

prob(ra2 ≤ t) =
t√

1− a2
, t ∈ (0,

√
1− a2),

while the corresponding pdf is

ra2
d
= U(0,

√
1−a2).

Back to the application of Theorem 3, Equation (18). The conditional first component
of UNIFORM is a product of two independent random variables: one continuous, the
other discrete. This is the easy version of Mellin’s formula, and the result is the continuous
uniform random variable with support (−

√
1− a2,

√
1− a2) from Equation (21).

As for a larger dimension, m > 1, the cdf in (19) becomes

prob(ra2 ≤ t) =
tm

(1− a2)
m
2

, t ∈
(

0, (1− a2)
m
2

)
,

with corresponding pdf

f (t) =
mtm−1

(1− a2)
m
2

, t ∈
(

0, (1− a2)
m
2

)
,

which is Betam,1, yet with reduced support.
Summing up, Equation (18) provides the conditional marginal as a product of the

uniform in the unit sphere and a reduced Betam,1. According to representation (11), the
result is UNIFORM, in m dimensions, with the center being the origin and reduced radius
r = (1− a2)m/2.

2.2. Normal

As we did with UNIFORM, we denote the first component of the standard normal
multi-variate distribution by x, and the remaining n − 1 components by x(2). Due to
independence of the marginals, one can write a compact equivalent of Propositions 1 and 3,
see, e.g., in [6] (p. 54).

Proposition 1. Let x = (x1, x(2)) be NORMAL.

• The pdf of the first component, x1, is

f (x) =
1√
2π

e−
x2
2 , x ∈ <. (22)

• The joint pdf of the last n− 1 components, x(2), is

f (x(2)) =
1(√

2π
)n−1 e−

||x(2) ||
2

2 , x(2) ∈ <n−1. (23)

Due to sphericity of the joint n− 1 components, one obtains again a compact form for
the sum of squares.

Corollary 5. The one-dimensional random variable ||x(2)||2 is χ2 with n− 1 degrees of freedom,
with pdf

f (x) =
2−

n−1
2

Γ n−1
2

x
n−3

2 e−
x
2 , x ∈ (0, ∞). (24)
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3. Results

We restrict the study to the case P (current algorithm position) nearby O (optimum
of SPHERE) and analyze the local performance of two EAs, one with uniform, the other
with normal mutation, in terms of success probability and expected progress. Namely,
we assume R = |OP| ≤ 1/2, such that success region RS

P is the sphere with center O and
radius R, Figure 1.

Figure 1. Success region of Algorithm 1 with uniform mutation on SPHERE.

Re-set P as the origin of the coordinate system, and measure the algorithm’s progress
in the positive direction of the first axis-write x for x1, h for x(2) and u for ||h||2. The
success probability and the expected progress are provided by the first term of transition
kernel (4), respectively, by the upper part of random variable (3). They obey to the uniform
continuous mutation distribution with pdf f (x) = 1/Vn and compact support, the sphere
with center P and radius 1.

The calculus of success probability and expected progress resides in integrating the
random variable (3) over RS

P. For UNIFORM mutation this calculus is analytically tractable.
For NORMAL mutation, the analytic integration is impossible, see in [6] (p. 56) and
Theorem 8, but the theory of incomplete Gamma functions makes the comparison tractable.

Note that, if the success probability bears only one possible definition (the volume
of success region), the situation is different with respect to the expected progress. As the
random variable Zx from (3) characterizes the local behavior of the algorithm, one would
normally associate the expected progress to the expected value of this random variable.
However, Zx is n-dimensional, and such is E(Zx), so there is a need to mediate somehow
among the n components.

One could consider only the first component of the expected value, the one pointing
towards the optimum, which has been applied on a different fitness landscape, the inclined
plane [21]. (Yet in another landscape, the RIDGE, it is customary to consider the progress
along the perpendicular component h, see in [6,27] for an inventory of fitness functions used
in EA testing, the reader is referred to the work in [32].) For UNIFORM mutation, a simpli-
fied version of the expected progress may be defined as the centroid of the corresponding
success region [9,10]. However, a more traditional view is followed here ([6], p. 54):

progress = R−
√
(R− x)2 + u. (25)

This corresponds to the difference in distance |OP| − |OC|, provided C is a random
point generated by mutation, Figure 1.

3.1. Uniform Mutation

If the UNIFORM mutation in the unit sphere with center P is applied, one cannot use
for integration the ensemble of Propositions 1 and 3, as the marginals of UNIFORM are
not independent. Instead, one should use the conditional first component from Theorem 5,
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together with the joint n− 1 dimensional distribution from Proposition 3. The integration
region is {

u = ||h||2 ∈
(
0, R2)

x ∈
(

R−
√

R2 − u, R +
√

R2 − u
) .

Theorem 6. Let an EA with UNIFORM mutation minimizing the SPHERE be situated at current
distance R from the origin, R ∈ (0, 1/2). The success probability is

probU = Rn. (26)

Proof. The use of Equations (4), (15), (16) and (21) yields

probU =
∫

SO
n

1SP
n

dx

= nπ−
n
2 Γ n

2

∫
h∈SO

n−1

(
1− ||h||2

) 1
2 × 1

2
√

1− ||h||2

∫ R+
√

R2−||h||2

R−
√

R2−||h||2
1dx dh

=
nπ

n−1
2 −

n
2 Γ n

2

Γ n−1
2

∫ R2

0
y

n−1
2 −1

√
R2 − y dy =

nΓ n
2√

πΓ n−1
2

∫ R2

0
y

n−3
2

√
R2 − y dy = Rn. (27)

Theorem 7. Let an EA with UNIFORM mutation minimizing the SPHERE be situated at current
distance R from the origin, R ∈ (0, 1/2). The expected progress is

φU =
Rn+1

n + 1
(28)

Proof. Following the proof of Theorem 6 and inserting factor (25), one gets

φU =
1
2

nΓ n
2√

πΓ n−1
2

×
∫ R2

u=0
u

n−3
2

∫ R+
√

R2−u

R−
√

R2−u

(
R−

√
(R− x)2 + u

)
dx du

= C
∫ R2

u=0
u

n−3
2

∫ R+
√

R2−u

R−
√

R2−u
R dx du− C

∫ R2

u=0
u

n−3
2

∫ R+
√

R2−u

R−
√

R2−u

√
(R− x)2 + u dx du

= C I1 − C I2.

We treat separately I1 and I2. I1 is simply (27), multiplied by the constant R, thus

C I1 = Rn+1. (29)

For I2 one can apply formula ([33], p. 13)∫
(x2 + a)

1
2 dx =

x
2
(x2 + a)

1
2 +

a
2

ln
(

x + (x2 + a)
1
2

)
.

in order to get

I2 =
∫ R2

u=0
u

n−3
2 R

√
R2 − u du +

∫ R2

u=0
u

n−3
2

u
2

ln
R +
√

R2 − u
R−
√

R2 − u
du = I3 + I4. (30)

Again, I3 is the integral (27), multiplied by R/2, thus

C I3 =
Rn+1

2
. (31)
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The substitution y = u/R2 on I4 provides

I4 =
Rn+1

2

∫ 1

0
y

n−1
2 ln

1 +
√

1− y
1−

√
1− y

dy

while partial integration gives

I4 =
Rn+1

n + 1

∫ 1

0
y

n+1
2 · 1

y
√

1− y
dy =

Rn+1

n + 1
β n+1

2 , 1
2
.

Bringing in the constant C, one gets

C I4 =
1
2

nΓ n
2√

πΓ n−1
2

· Rn+1

n + 1
β n+1

2 , 1
2
=

1
2

n− 1
n + 1

Rn+1. (32)

Summing up (29)–(32) one gets the desired result.

The results from Theorems 6 and 7 are also presented in [28], yet with different
proofs. Equations (26) and (28) point out a remarkable property of the EA with UNIFORM
mutation on the SPHERE.

Corollary 6. In the conditions of Theorems 6 and 7, the success probability is the derivative of the
expected progress.

3.2. Normal Mutation

Setting σ = 1 and avoiding the transformation σ∗ = σn/R, one obtains the success
probability and the expected progress for the EA with standard normal mutation following
closely the proof in ([6], pp. 54–56). The incomplete Gamma function is ([33], p. 260):

P(a, x) =
1
Γa

∫ x

0
e−tta−1dt. (33)

The following expressions are not restricted to the case of algorithm nearby optimum,
due to the unbounded support of the normal distribution. Unfortunately, integration
is impossible.

Theorem 8. Let an EA with NORMAL mutation minimizing the SPHERE be situated at current
distance R from the origin.

• The success probability is

probN =
1√
2π

∫ 2R

x=0
e−

x2
2 P
(

n− 1
2

, Rx− x2

2

)
dx. (34)

• The expected progress is

φN =
2−

n−1
2

√
2πΓ n−1

2

∫ 2R

x=0

∫ 2Rx−x2

u=0
e−

x2
2 u

n−1
2 −1e−

u
2 progress dudx. (35)
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Proof.

probN =
2−

n−1
2

√
2πΓ n−1

2

∫ 2R

x=0

∫ 2Rx−x2

u=0
e−

x2
2 u

n−1
2 −1e−

u
2 dudx

=
2−

n−1
2

√
2πΓ n−1

2

∫ 2R

x=0
e−

x2
2

(∫ 2Rx−x2

u=0
u

n−1
2 −1e−

u
2 du

)
dx

=
1√
2π

∫ 2R

x=0
e−

x2
2

(
1

Γ n−1
2

∫ Rx− x2
2

t=0
t

n−1
2 −1e−tdt

)
dx

=
1√
2π

∫ 2R

x=0
e−

x2
2 P
(

n− 1
2

, Rx− x2

2

)
dx. (36)

The same calculus applies for the expected progress, with the addition of the factor corre-
sponding to the one dimensional progress along the x axis, Equation (25).

3.3. Comparison

Due to the analytic intractability of integral representations (34) and (35), a theoretical
comparison between two variants of Algorithm 1-one with UNIFORM, the other with
NORMAL mutation-must resort to inequalities. Therefore, a deeper insight into the prolific
theory of Euler and hypergeometric functions is required. We start with an upper bound
for the incomplete Gamma function (33) ([34], p. 1213).

Proposition 2. The following inequality holds

P(a, x) ≤ xa

a(a + 1) Γa

(
1 + ae−x). (37)

More results are gathered from in [35], [36] (p. 240), [37] (pp. 890, 894), [38] (pp. 53, 57).

Proposition 3 (Hypergeometric functions).

• For any real set of parameters a, b, ai, bi and any real number x, define

F1 1 (a, b | x) =
∞

∑
k=0

(a)k
(b)k

xk

k!
(38)

F2 2 (a1, a2; b1, b2 | x) =
∞

∑
k=0

(a1)k(a2)k
(b1)k(b2)k

xk

k!
(39)

where (a)k = a(a + 1) . . . (a + k− 1) = Γa+k/Γa is the Pochhammer symbol, with

(a)2k =
( a

2

)
k

(
a + 1

2

)
k
22k. (40)

• If A = (a1, . . . , aq) and B = (b1, . . . , bq), we write B ≺W A, if

0 < a1 ≤ . . . ≤ aq, 0 < b1 ≤ . . . ≤ bq

k

∑
i=1

ai ≤
k

∑
i=1

bi, k = 1, . . . , q.
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• If B ≺W A, the following inequality holds:

Fp p (A, B | x) ≤ 1− θ + θex, (41)

θ =

{
a
b , p = 1, (A, B) = (a, b)
a1 a2
b1 b2

, p = 2, (A, B) = (a1, a2; b1, b2)
.

We can prove now the main result stating that, for an EA acting on the SPHERE with
current position at maximal range 1/2 from the origin, the UNIFORM mutation provides a
larger success probability than the NORMAL mutation, for the arbitrary dimension n. We
denote by n!! the double factorial (semi-factorial), that is, the product of all integers from 1
to n of same parity with n.

Theorem 9. Let an EA minimizing the SPHERE be situated at current distance R from the origin,
such that R ≤ 1/2. For any n ≥ 3, the following holds:

probN

probU <
1

n!!
. (42)

Proof. Apply inequality (37) to Equation (34)

probN ≤ 1√
2πΓ n−1

2

∫ 2R

x=0
e−

x2
2

4
(

Rx− x2

2

) n−1
2

n2 − 1

(
1 +

n− 1
2

e
x2
2 −Rx

)
dx

=
4√

2π(n2 − 1)Γ n−1
2

∫ 2R

x=0
e−

x2
2

(
Rx− x2

2

) n−1
2

dx

+
2√

2π(n + 1)

∫ 2R

x=0
e−Rx

(
Rx− x2

2

) n−1
2

dx

=
Rn2

n+5
2

√
2π(n2 − 1)Γ n−1

2

∫ 1

x=0
e−2R2t2

t
n−1

2 (1− t)
n−1

2 dt (43)

+
Rn2

n+3
2

√
2π(n + 1)Γ n−1

2

∫ 1

x=0
e−2R2tt

n−1
2 (1− t)

n−1
2 dt.

Using the series expansion of the exponential, the second integral in (43) becomes
a hypergeometric function of type (38). The interchange of the integral and the sum is
justified by the absolute convergence of the series.

∫ 1

x=0
e−2R2tt

n−1
2 (1− t)

n−1
2 dt =

∫ 1

x=0
t

n−1
2 (1− t)

n−1
2

∞

∑
k=0

(
−2R2t

)k

k!
dt

=
∞

∑
k=0

(
−2R2)k

k!

∫ 1

x=0
t

n−1
2 +k(1− t)

n−1
2 dt =

∞

∑
k=0

(
−2R2)k

k!

Γ n+1
2 +kΓ n+1

2

Γn+1+k

= β n+1
2 , n+1

2

∞

∑
k=0

(
−2R2)k

k!

(
n+1

2

)
k

(n + 1)k
= 2−nβ n+1

2 , 1
2

F1 1

(
n + 1

2
, n + 1 | − 2R2

)
. (44)
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Identity (40) reduces the first integral in (43) to a hypergeometric function (39).

∫ 1

x=0
e−2R2t2

t
n−1

2 (1− t)
n−1

2 dt =
∫ 1

x=0
t

n−1
2 (1− t)

n−1
2

∞

∑
k=0

(
−2R2t2)k

k!
dt

=
∞

∑
k=0

(
−2R2)k

k!

∫ 1

x=0
t

n−1
2 +2k(1− t)

n−1
2 dt =

∞

∑
k=0

(
−2R2)k

k!

Γ n+1
2 +kΓ n+1

2

Γn+1+k

= β n+1
2 , n+1

2

∞

∑
k=0

(
−2R2)k

k!

(
n+1

2

)
2k

(n + 1)2k
= β n+1

2 , n+1
2

∞

∑
k=0

(
−2R2)k

k!

(
n+1

4

)
k

( n+3
4
)

k22k(
n+1

2

)
k

( n+2
2
)

k22k

= 2−nβ n+1
2 , 1

2
F2 2

(
n + 1

4
,

n + 3
4

;
n + 1

2
,

n + 2
2
| − 2R2

)
. (45)

Summing up Equations (43)–(45), and using inequality (41) for p = 1, 2, one gets

probN ≤ Rn

2
n+2

2 (n + 1)Γ n+2
2

[
(n− 1)

(
1 + e−2R2

)
+ 4− n + 3

n + 2

(
1− e−2R2

)]

<
Rn

2
n+2

2 (n + 1)Γ n+2
2

[2(n− 1) + 4] = Rn 1

2
n
2 Γ n+2

2

= Rn 1

2
n
2 n

2
n−2

2 . . .
= probU 1

n!!
.

In the last equality we have used Equation (26) and the definition of the double
factorial, for n even. Obviously, for n odd the constant

√
2/
√

π will appear at the tail of
the product, yet this is a minor difference that may be neglected.

The result for the expected progress follows now easily.

Theorem 10. Let an EA minimizing the SPHERE be situated at current distance R from the
origin, such that R ∈ (0, 1/2). For any n > 3, the following holds:

φN

φU <
n + 1

n!!
≈ 1

(n− 2)!!
. (46)

Proof. The expected progress of NORMAL mutation (35) differs from success
probability (34) only by the integration factor (25). As progress < R, inequality (46)
is a simple consequence of Theorems 7 and 9.

4. Discussion

Within evolutionary algorithms acting on real space, the use of normal distribution
makes the implementation easier: in order to generate an n dimensional point, one simply
generates n times from the normal uni-variate. Unfortunately, simplicity of the practical
algorithm does not transfer to the theoretical analysis, making EA experts go long distances
in order to estimate performance quantities like the success probability and the expected
progress. In the end, the normal mutation only provides asymptotic formulas, valid for
large n.

This paper analyzes a different mutation operator, based on the uniform multi-variate
in the sphere, with dependent components. Using deeper insights into the spherical
distributions theory, the local performance of the algorithm with uniform mutation was
measured on the SPHERE fitness function. Close expressions for the success probability
and the expected progress of the EA with uniform mutation have been derived, valid
for arbitrary n. Compared to the performance of the normal operator-which, due to the
intractability of integral formulas in Theorem 8, required inequalities with hypergeometric
functions-, the success probability and the expected progress of the algorithm with uniform
mutation are both larger, by a factor of order n!!.
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5. Conclusions

From a broader perspective, this paper can be seen, together with the works in [27,28],
as an attempt of revisiting the classical theory of continuous evolutionary algorithms.
Even if practitioners in the field will continue to use the normal multi-variate as mutation
distribution, we claim that the theory can benefit from the uniform distribution inside
the sphere. First, as demonstrated in this paper, a particular setting of parameters (the
natural choice ρ = σ = 1) provides better performance for the uniform mutation operator
on the SPHERE landscape, if current position of the algorithm is nearby the optimum.
However, in light of the “no free-lunch theorem for optimization” paradigm [39], one
cannot expect general dominance of an algorithm over all others, irrespective of the
fitness function. Rather, specific algorithms with particular operators should be analyzed
separately, on different optimization landscapes. This is where the second advantage of the
new uniform distribution occurs, in terms of more tractable mathematical analysis, yielding
close formulas, previously not attained by normal mutation theory—see the studies of
the RIDGE landscape in [28] and of the elitist evolutionary algorithm with mutation and
crossover on SPHERE in [27].

A theory of continuous evolutionary algorithms could not be complete without the
analysis of global behavior and adaptive mutation parameter. These cases have already
been treated in [27,28]—under a normalization of mutation sphere radius which makes
algorithm behave similarly to the one with normal mutation, in terms of difference and
differential equations, following the works in [6,29]. This opens the way for the challenging
task, previously unattempted in probabilistic optimization literature, of linking the theory
of continuous evolutionary algorithms to that of differential optimization techniques such
as particle swarm optimization [40] and differential evolution [41].
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